

Numerical modeling of methane hydration and droplet transport for deepwater oil spill

Y. Takagi^{1)*}, T. Ban¹⁾, Y. Okano¹⁾, S. Kunikane²⁾, S. Kawahara²⁾, N. Kato²⁾ and K. Ohgaki¹⁾
1)Dept. of Materials Engineering Science, Osaka University, Japan
2)Dept. of Naval Architecture and Ocean Engineering, Osaka University, Japan
*Corresponding author E-mail: takagi@cheng.es.osaka-u.ac.jp

Keywords: Methane hydration, Oil/gas droplet transport, Numerical simulation

Project overview

Innovative disaster prevention system for oil/gas spill

Conclusions

 Oil/gas spill behavior was simulated by using a Lagrangian approach.

- Effect of convective mass and heat transfer on methane hydration was successfully considered with Ranz-Marshall equation.
- Small oil drop raise slowly and diffused in horizontal direction by sea current.

Results and discussion

Kinetics of hydrate formation

Objective of present study

Numerical modeling of oil/gas spill in deep water.
Implementation of methane hydration considering convective mass and heat transfer.
Investigation of drop size effect on spilled region.

Numerical model

Methane gas

 Lagrangian control volume + Lagrangian particle tracking

- Simulated extent of spilled oil/gas well agreed with experiment.
- Methane hydration decreased the rising velocity of methane.
- Convective mass and heat transfer affected methane hydration immediately after blowout.

Oil spill simulation in GOM with the Prinston Ocean model (POM)

Vertical distribution of oil droplet

Horizontal distribution of oil droplet

Droplet size distribution

High accuracy prediction requires a proper ocean model.