NATECH2016 January 12-13, 2016 Nakanoshima Center of Osaka University

SEISMIC RESISTANCE CAPACITY ON PIPE BRACED SUPPORTING FRAME OF SPHERICAL TANK

Takashi OHNO The High Pressure Gas Safety Institute of Japan (Graduate School of Aoyama Gakuin University) Nobuyuki KOBAYASHI Aoyama Gakuin University Kenji OYAMADA The High Pressure Gas Safety Institute of Japan

OUTLINE

- 1. Introduction
 - seismic damage for high pressure gas equipment in japan in 2011
 - Investigation into the cause of accident
 - objective ~ evaluation of seismic reinforcement~
- 2. Stress analysis for Spherical tank using FEA
 - Deformation behavior
 - Stress distribution
- 3. Evaluation of seismic capacity using FEA
 - Plastic strain distribution
 - Seismic capacity
- 4. Evaluation of seismic capacity using Shaking tests
 - Experimental conditions
 - Result of response character and seismic capacity , fracture mode from Shaking test
- 5. Summary

INTRODUCTION(1/3)

Huge earthquake hit East Japan (March.11th.2011)

 \rightarrow Fire and explosion accident (LPG $\,$ spherical tank was collapsed) \rightarrow Investigation into the cause of accident

the 2011 Great East Japan Earthquake

Epicenter of Main shock date and time : 2011/3/11 14:46:18 magnitude : 9.0

Epicenter of Max. After shock date and time : 2011/3/11 15:15:34 magnitude : 7.6

Accident 2 :Spherical tank support broke

Accident 1:Spherical tank collapsed

INTRODUCTION(2/3)

Huge earthquake occurred in Japan (March.11th.2011) \rightarrow Fire and explosion accident (LPG spherical tank was collapsed) \rightarrow Investigation into the cause of accident

Collapsed spherical tank

Steel pipe brace breaking

Fig. Spherical Tank with steel pipe brace and column structure

Accident 2

INTRODUCTION(3/3)

Huge earthquake occurred in Japan (March.11th.2011)

- \rightarrow Fire and explosion accident (LPG spherical tank was collapsed)
- \rightarrow Spherical tank support was broken

→Investigation into the cause of accident

Objectives of this study

Validation:Fracture mechanism and deformation behavior Study:Effectiveness of reinforcement and seismic capacity of spherical tank

ANALYSIS CONDITION FOR FEA

STRESS EVALUATION OF INTERSECTION OF BRACES BY ELASTIC ANALYSIS CASE1 (UNREINFORCEMENT)

STRESS EVALUATION OF INTERSECTION OF BRACES BY ELASTIC ANALYSIS CASE2 (DIAPHRAGM)

STRESS EVALUATION OF INTERSECTION OF BRACES BY ELASTIC ANALYSIS CASE3 (GUSSET PLATE)

SUMMARY OF ELASTIC ANALYSIS ON EFFECTIVE OF REINFORCEMENT

Dainforced type	Inner surface		Middle		Outer surface	
Reinforced type	average	max	average	max	average	max
without reinforce	308	1624	167	619	247	1633
with diaphragm	141	368	108	215	118	610
with gusset plate	145	526	98	249	122	423

Long brace σ_t =100 MPa Short brace σ_c =130 MPa

EVALUATION OF ULTIMATE STRENGTH BY ELASTO-PLASTIC ANALYSIS

Case1 Distribution of equivalent of plastic strain without reinforcement

EVALUATION OF ULTIMATE STRENGTH BY ELASTO-PLASTIC ANALYSIS

Case2 Distribution of equivalent of plastic strain with diaphragm

EVALUATION OF ULTIMATE STRENGTH BY ELASTO-PLASTIC ANALYSIS

Case3 Distribution of equivalent of plastic strain with gusset plate

SUMMARY OF ELASTIO-PLASTIC ANALYSIS ON EFFECTIVE OF REINFORCEMENT

Fig. Relationship of Force and displacement

- Case3:Seismic horizontal Force was not constantly increasing at calculating limit.
- In Case3 it was considered that braces reinforced by gusset plate was buckled, 18,000kN is brace limit buckling load.

Case	Maximum horizontal seismic force kN	Effectiveness of reinforcement
Case1 (unreinforcement)	12620	-
Case2 (diaphragm)	15658	1.25 times
Case3 (gusset plate)	17531	1.39 times

SHAKING TESTS

Test models specs

Dimensional ratio for real equipment 1/1.896 Tank A: Unreinforced model Tank B: Reinforcement model with gusset plate same as FEA model

Acceleration meter for input

•Acceleration. and duration time with similarity rule

•Cut off long term period with high pass filter(2.8Hzz)

·Simulated seismic wave fit on acceleration spectrum for design

Input seismic wave JMA Kobe NS wave Simulated seismic wave Sine wave Simulated seismic wave 800 Created by design spectrum 600 gal 400 α, 200 Acceleration -200 -400 -600 -800 20 40 60 80 100 120 0 Time t, sec

TEST CASES

Similarity rule Acceleration: original ×1.896 Time : original / 1.896

JMA Kobe NS

Without reinforce			Reinforced with gusset plate			
Tank A			Tank B			
Acceleration	Maximun Input		Acceleration	Maximun Input		
amplification ratio β	Acceleration α_{imax}	(gal)	amplification ratio β	Acceleration α_{imax}	(gal)	
10%		158	25%		340	
15%		227	50%		745	
100%		1062	100%		1065	

Simulated seismic wave

Without reinforce			Reinforced with gusset plate			
	Tank A		Tank B			
Wave shape	Acceleration amplification ratio β	Maximun Input Acceleration α_{imax} (gal)	Wave shape	Acceleration amplification ratio β	Maximun Input Acceleration α_{imax} (gal)	
Simulated Sismic Wave	5%	55		10%	103	
	10%	107		20%	201	
	15%	158		35%	335	
	30%	295	Simulated Sismic Wave	70%	693	
	70%	699		100%	981	
	100%	986		138%	1362	
	138%	1343		200%	2036	
	200%	2008		260%	2648	
-	-	-	sin wave (11.2Hz 200gal)		175	
-	-	-	sin wave (11.0Hz 800gal)		800	

MOVIE DURING SHAKING TEST OF SPHERICAL TANK WITHOUT REINFORCEMENT

MOVIE DURING SHAKING TEST OF SPHERICAL TANK WITH REINFORCEMENT

Tank B

RESULT OF SEISMIC CAPACITY AND FRACTURE MODE

Broken brace around weld joint with upper column

Broken intersection of braces

Broken brace around weld joint with lower column

SUMMARY(1/2)

The failure mechanism of the steel pipe brace structure of a spherical tank were clarified by the elastic and elastic-plastic FEA.

From FEA results (with respect to the accident report), it was concluded the failure mechanism of spherical tank as follows

(1) Seismic capacity of spherical tank with steel pipe brace, the intersection of braces is the weakest point.

(2) The intersection of braces is in a multi-axial stress state due to the structural characteristics of pipe brace configuration when seismic inertia force is applied. This induces the fracture by plastic deformation.

(3) In case of long brace member is in tension, the intersection of long brace member is received compression force from short brace members, locally bending stress from cross-sectional deformation. In consequence, the intersection of braces is deformed very large.

(4) The effect of the reinforcement by diaphragm and gusset plate were discussed from FEA result of reinforcement models. by reinforcing the intersection of braces, seismic resistance capacity were increased to 1.25 times by diaphragm, and to 1.39 times by gusset plate.

SUMMARY(2/2)

Non-linear response characteristics and failure mode of a spherical tank were clarified by shaking tests using small models of spherical tank.

From the test results, it was concluded the effectiveness of reinforcement and the response characteristic of the pipe braced supporting frame of a spherical tank as follows;

- (1) In a case of brace intersection was reinforced, the maximum response acceleration increased at collapse.
- (2) In a case of there was reinforced there is no reinforcement to brace intersection, structural strength indicated the lowest at the load direction acting tensile force on long brace, cross section of long brace were deformed largely.

ACKNOWLEDGMENT

This study used the results to verify the seismic performance of the spherical tank in Research Committee of the Ministry of Economy, Trade and Industry commissioned project in 2014. Advice and comments given by IHI Corporation has been a great help in shaking tests. We would like to express the deepest appreciation to committee members and participator.

THANK YOU FOR YOUR KIND ATTENTION.