

NATEC 2016

Recovery of Heavy Fuel Oil from Sunken Ships by High Frequency Induction Heating Method

Shoichi Hara, Osamu Miyata, Masao Ono National Maritime Research Institute Hiroyasu Kifune Tokyo University of Science and Technology Sukekazu Shimonishi Nippon Salvage Co., Ltd

Contents of presentation

(1) Introduction

- (2) Outline of experiment
- (3) Experimental results
- (4) Discussions
- (5) Numerical calculation
- (6) Conclusion

Necessity of recovering oil remained in the ship tank

• When the ship sinks loaded with the cargo oil or fuel oil due to marine disaster, the oil recovery is required because of the risk reduction of oil discharge and marine environment protection,

• The operation of the oil recovery from sunken vessels is extremely difficult in winter or in deep water, because the fluidity of oil in the tank is quite low.

NMRI

Principle of technique (High Frequency Induction Heating Method)

Heavy fuel oil recovery system

Heating system

①Direct heating unit: heating unit inside the hull
②Side hull heating unit: heating of heavy fuel oil outside the hull by heat transfer

Assuming the case of impossibility of direct heating inside the hull, the target is to develop the system for providing the heat from outside of the hull.

Schematic idea

Characteristics of heavy fuel oil recovery system

Advantage

• The induction heating recovery system needs no large-scale facilities such as boilers.

• The power can sufficiently be supplied from auxiliary generator on the salvaging vessel.

Outline of experiment

Outline of experiment

schematic idea of the experimental arrangement

Measurement by thermo couples

unit:mm

No	х	У	z				
1	5	5	300				
2	5	10	300				
3	5	50	300				
4	5	100	300				
5	5	300	300				
6	5	500	300				
7	5	595	300				
8	300	5	300				
9	300	10	300				
10	300	50	300				
11	300	100	300				
12	300	300	300				
13	450	5	300				
14	450	10	300				
15	450	50	300				
16	450	100	300				
17	450	300	300				
18	595	5	300				
19	595	10	300				
20	595	50	300				
21	595	100	300				
22	595	300	300				
23	595	500	300				
24	595	595	300				
25	450	5	5				
26	450	10	5				
27	450	50	5				
28	450	100	5				
29	450	300	5				
30-37	horizontal pipe						
41-48	heated pipe						

Experimental conditions

Exp.No.	Pipe length L(m)	Pipe diameterd Φ (mm)	Water pressure head h(m)	Heat time (min)	Mat size (m)	Water temperature (°C)	Atmosphere temperature (°C)	Oil temperature (°C)	Electric power before oil recovery (W)	Heating position during oil recovery	Electric power during oil recovery (W)	Recovery rate (kg/s)
1	4	25	4	—	—	28.2	—	—	-	—	-	0.0577
2	4	25	4	—	-	24.8	—	—	-	—	-	0.0539
3	2	25	4	—	-	28.0	—	_	-	-	—	0.1050
4	2	32	4	-	1	28.0	-	_	-	1	_	0.2310
5	4	32	4	—	1	27.9	—	_	-	-	—	0.1710
6	4	32	2	_	I	27.7	—	_	-		—	0.1090
7	2	32	2	—	1	27.7	-	_	-	1	_	0.1570
8	2	25	2	_	1	27.7	-	_	-	1	_	0.0699
9	4	25	4	—	1	27.4	—	_	_		_	0.0372
10	4	25	4	120	0.2	25.1	—	_	400	Top (Center)	400	0.0767
11	4	25	4	120	0.6	24.5	—	_	600	Top (Center)	600	0.0818
12	2	25	4	120	0.6	23.5	—	_	600	Top (Center)	600	0.1280
13	4	32	4	240	0.6	23.1	-	_	600	Top (Center)	600	0.1740
14	4	25	4	0	-	29.3	30.7	28.6	—	-	-	0.0771
15	4	25	4	10	0.2	28.8	28.9	28.6	400	Top (Center)	400	0.0813
16	4	25	4	30	0.2	29.1	27.8	28.7	400	Top (Center)	400	0.0803
17	4	25	4	60	0.2	28.1	27.8	28.2	400	Top (Center)	400	0.0808
18	4	25	4	120	0.2	27.3	26.9	27.1	400	Top (Center)	400	0.0705
19	4	25	4	120	0.2	27.1	26.4	26.7	400	Top (Recovery side)	400	0.0693
20	4	25	4	120	0.2	25.0	25.6	26.4	400	Side plate	400	0.0696
21	4	25	4	10	0.2	25.8	26.0	26.1	2000	Top (Center)	2000	0.0671
22	4	25	4	—	-	12.3	11.1	12.3	-	_	—	0.0118
23	4	32	4	—	_	11.7	11.0	11.7	—	-	—	0.0224
24	4	32	2	_	-	11.6	11.0	11.6	_	-	—	0.0119
25	4	25	2	—	-	11.6	11.7	11.6	-	-	-	0.0052
26	4	25	4	—	0.2	11.3	10.3	13.5	—	Pipe(Recovery side)	400	0.0144
27	4	25	4	—	0.2	11.1	10.3	13.2	—	Pipe(Recovery side)	1000	0.0181
28	4	25	4	—	0.2	11.2	10.1	12.7	_	Pipe(Recovery side)	2000	0.0230
29	4	25	4	120	0.2	11.4	9.6	11.5	2000	Top (Center)	2000	0.0085
30	4	25	4	120	0.2	10.9	9.8	12.2	2000	Top+Pipe	4000	0.0305

Experimental materials and instrument

non-woven fabric

set-up of thermo couple

Inverter unit

Work coil of pipe type

Gravity tank and reservoir tank

gravity tank

gravity tank

oil tank and pipe

reservoir tank

load cell

13

Relation between Reynolds number and friction loss factor

Relation between loaded electric power and improved ratio by heating

Numerical simulation

mesh for half model

19

52.3256 (kcal/mh°C

thermal conduction rate

Particle trajectory and temperature distribution

Change of temperature distribution

Change of temperature distribution

Arrangement of work coil In another experiment

Coil arrangement on top plate

Oil recovery system ²³

large coil(150×150mm)

small coil(100 × 100mm)

Experimental conditions and results

Exp. No.	Pipe length L(m)	Pipe diameterdd (mm)	Water pressure head h(m)	Heat time before Exp. (min)	Mat size & number of use(m) ×	Water temperature (°C)	Atmosphere temperature (°C)	Oil temperature (°C)	Heating position	Injection electricity (W)	Recovery rate (kg/min)
1	4	25	4	_	—	13.3	12.4	15.3	-	—	0.72
2	4	25	4		0.2 × 2	12.9	12.1	13.9	Central edge	2000	0.90
3	4	25	4	120	0.2 × 1	11.0	10.2	11.6	Center rear	2000	0.58
4	4	25	4		0.14×2	9.9	9.6	11.7	Central edge	2000	0.37
5	4	25	4	_	0.2 × 2	9.9	10.5	9.2	One side edge	2000	0.52
6	4	25	4	_	0.14×2	9.8	9.0	11.5	Central edge	2000	0.49

Time history of oil recovery weight in each case of experiments

Relation between oil recovery rate and kinematic viscosity of oil

Modeling for computer simulation

Streamline of oil and water inside the tank

'athlines Colored by Velocity Magnitude (mixture) (m/s) (Time=5.0000e+01)

Streamline of oil and water inside the model tank (Section distance : X=0.3m, t=50sec)

Pathlines Colored by Velocity Magnitude (mixture) (m/s) (Time=1.0000e+02)

Streamline of oil and water inside the model tank (Section distance : X=0.15m, t=100sec)

Pathlines Colored by Velocity Magnitude (mixture) (m/s) (Time=1.0000e+02)

Streamline of oil and water inside the model tank (Section distance : X=0.3m, t=100sec)

Comparison of streamline of oil and water inside the tank

With partition

1680 sec 1680 sec

Streamline of oil and water inside the model tank (Section distance : X=0.3m, t=50sec)

Streamline of oil and water inside the model tank (Section distance : X=0.3m, t=100sec) Streamline of oil and water inside the model tank (Section distance:X=0.15m, t=100sec)

Without partition

Experimental conditions and oil recovery rate

Pipe length : 4 m Pipe diameter : 25 mm Water pressure head : 4 m Water temperature : 25.1 °C Electric power before oil recovery : 400 w/2 hour

(1) The oil recovery rate has been estimated by the simple method using various parameters.

(2) The improved oil recovery rate comparing with the case of no heating as for the pipe type of heating increases linearly with the increase of electric power.

(3) The combination of pipe and mat type of heating can improve the oil recovery rate.

(4) The numerical calculation results of oil temperature inside the tank does not agree well with the experimental results and represent the natural convection of heat

(5) The heating at the cutout part of the partition plate does not improve the effect of fluidization.

(6) The size of the coil mat does not show the significant difference of the oil recovery efficiency.

(7) The partition plate prevents the oil from fluidizing because of making the route of water. This phenomenon is seen in the practical operation of salvage.

Thank you for your kind attention.