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Abstract: In this paper a parallel ANN(artificial neural networks) for the automatic berthing will 
be discussed. This controller has a separated hidden layer each control an engine and a rudder 
respectively. Using this controller simulations were carried out where the initial conditions such 
as ship’s positions and heading angle are different from teaching data. Finally comparison of 
separated hidden layer and united hidden layer will be described. Copyright○c 2001 IFAC 
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1. INTRODUCTION 
 
Automatic berthing control is one of unresolved 
problems in ship control. Many methods and theories 
were adopted to achieve the goal. A typical example 
is feedback control, which has been used as a 
controller in some research.  (K. Kose et al.,1986).  
Even if conventional feedback controller is great tool, 
ship’s berthing is so complicated that a lot of 
limitations still are found. Therefore many studies 
(Koyama.1987, Yamato.1990&1992, Hasegawa.1993, 
Itoh 1998) suggest other controllers such as fuzzy 
theory, neural network, and expert system. A neural 
network controller is one of them. As it is known, a 
neural network has good ability to recognize the 

pattern and then produces similar output with the 
pattern. The feature was used to control a ship in 
berthing problem. Yamato (H. Yamato,1990) 
suggested automatic berthing by a neural network 
and produced excellent results, but he soon changed 
his research field to others such as expert system (H. 
Yamato,1992). So deep study for neural networks 
controller was not conducted.  Hasegawa (K. 
Hasegawa,1993) took over the study. Excellent 
results were produced even if many things should be 
overcome: general simulations have same initial 
value with teaching data and oscillation phenomenon 
occurred in controller. In other hands, when you look 
to the existing research that is done for the automatic 
berthing, it is found that main  



 
Fig. 1 Coordinate system for ship dynamics 

 
concept is based on a centralized controller. In other 
words, output units just come from one command 
line system. Some studies (Itoh, 1998) mentioned that 
the concept of centralized control might make the 
problem more difficult. This paper is based on the 
same idea. Parallel order system in the ANN is 
suggested. Two feed forward networks are adopted to 
compose parallel ANN. 
 
 

2. ARCHITECTURE OF ANN 
 
 
2.1 Model ship 
 
A 260,000 tons of tanker is adopted for this paper, of 
which dynamics and details are well explained in 
other research (K. Kose,1986). Particulars of the ship 
are presented in table 1 and dynamics coordinate is 
given in Fig. 1. 
 
 

 
Fig. 2  Neural network with parallel hidden layer 

Table 1  Particulars of ship 
 

Hull Ship type 
Length 
Beam 
Draft 
Cb 

Tanker 
304 (M) 
52.5 (M) 
17.4 (M) 
0.827 

Propeller Rudder Height 
Propeller Diameter 
Propeller Pitch 
Rudder area 
Pitch ration 

12.94(M) 
8.5(M) 
5.16(M) 
98(M 2 ) 
1.709 

 
 
2.2 ANN 
 
A typical three-layer network is used. The main 
future is the separated structure of hidden layer as 
shown in Fig. 2. As mentioned in introduction, a 
parallel control is adopted in neural network. A 
conventional neural network in ship berthing problem 
just has one of hidden layer. But the neural network 
in this paper has separated hidden layer that controls 
engine and rudder respectively. For example, the 
engine control would not be affected by the heading 
angle, lateral speed, angular velocity and etc., when a 
ship far away from a wharf. When speed reduction is 
needed, a navigator just takes mainly the remaining 
distance to goal or present ship’s speed into 
considerations. These facts are reflected well in 
newly designed neural network. For input units, 8 
factors will be used which state the present ships 
conditions such as speed, heading angle, distance 
form goal point, etc. Among them funny thing are 
beam distance: d1 and d2. Fig. 3 explains the details.  
The d1 is beam distance to the imaginary line, which  
is used by navigators to help safe berthing. And the 
 
 

 
Fig.3 Coordinate system for berthing 
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Fig. 4-1 training of 6 cases   Fig.4-2  4 cases  
 
 
d2 is the rema ining distance to the goal point. These 
factors can explain the fact that navigators usually 
make imaginary line to goal point under berthing 
work. Even if ηξ ,  can explain the location 
information, they are not enough to explain the ship’s 
location information. 
 
 

3. PROCEDURE FOR LEARNING AND 
MAKING TEACHING DATA 

 
3.1 Preparing for the teaching data 
 
This paper focuses  mainly on how a parallel neural 
network will work effectively. So authors didn’t try 
the automatic berthing problem using a tug or side 
thruster. This  problem will be a next challenge. 
Automatic berthing mentioned here means that a ship 
stops near the goal point within 0.2m/s of speed and 
between 250-270deg of heading angle. Basically 6 
types of teaching data were adopted as like the Fig. 
4-1 where disturbance is not considered. 4 types of 
teaching data are also adopted to compare their 
effectiveness with 6 types of teaching data. Fig. 4-2 
shows 4 types of teaching data. 
 
 
 
3.2 Procedure of training 

 

Fig. 5  Effect of training 

Fig. 6 Comparison of parallel and united NN when 
intial conditions are different with teaching data 
(cross marks indicate initial positions of teaching 

data) 
 
 
Popular method of training, back propagation, is 
adopted. The Neural Network Toolbox from the 
MATLAB package has been used to train the model. 
Just variable learning rate method is used to minimize 
time taken. Generally learning rate is  held constant 
throughout training. If the learning rate is set too high, 
the algorithm may oscillate and become unstable. If 
the learning rate is set too small, the algorithm will  
take too large time to converge. So variable learning 
rate is adopted here. Since a neural network in this 
paper have separated hidden layers, training is needed 
twice to make one set of weight and bias which will  

-2 0 2 4 6 8
-2

-1

0

1

2

3

4

5

6

7

8

9

 

 

4 study

120 122 124 126 128 130 132 134 136 138

0

0.2

0.4

0.6

0.8

R
ud

de
r 

an
gl

e

120 122 124 126 128 130 132 134 136 138 140
0

0.2

0.4

0.6

0.8

1

rp
s[

en
gi

ne
]

Before training 

Original data, teach data 

After training 

Comparision berore and after the training 

-2 0 2 4 6 8
- 2

- 1

0

1

2

3

4

5

6

7

8

9

 

 

By parallel hidden layer 

Initial conditions               
(5, 7.5), 240deg, No disturbance 
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Old03

Initial conditions               
(6, 8.5), 230deg, No disturbance 
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Initial conditions               
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Old06

By parallel hidden layer 

Initial conditions               
(2, 7.5), 270deg, No disturbance 



Fig. 7  Simulation results having same initial 
conditions with teaching data 

 
 

Fig. 8  Initial point of simulations 
 
 
produce one set of output units. The group for rudder 
and the group for engine are trained separately. One 
example of these training is presented in Fig. 5. The 
figure explain very well the before and after training,  
where the circle shapes indicate the original data, 
teaching data, triangle means before training data and 
square means after training data respectively. It is 
easy to understand how much training is conducted 
well by this figure. 
 

4. SIMULATION RESULTS 
 
 
4.1 Effect of parallel hidden layer control 
 
Fig. 6 shows comparisons with the parallel hidden 
layer and conventional layer. The red line (heavy 
line) is the results of separated control. The thin line 
is the results of united hidden layer. Cross marks 
indicate initial positions of the teaching data used for 
controller. This figure shows that even if the ship’s 
states of two models are same in the initial stage, the 
output of the rudder and the engine are different 
because of the different hidden layer design. It is easy 
to understand that the parallel hidden layer has more 
stable and corrective control than the united hidden 
layer by these figures. Take a look at the last case of 
Fig. 6,even if  both cases failed successful berthing, 
the parallel NN is showing its improvement in 
stopping ability and keeping track comparing with 
normal NN. Especially in the case of last two of Fig.6, 
even if weights and bias of Fig. 4-2 are used, in other 
words, starting positions and state are different with 
training data, but the parallel hidden layer’s results is 
showing good ability comparing with that of united 
hidden layer. 
 
 
4.2 Simulations having the same init ial conditions as 

training data  
 
Even if 6 cases were simulated, only 3 cases are 
presented as examples here. As it is shown in Fig. 7, 
the ability of stopping near the wharf and seeking a 
goal point is very good. Especially the stopping 
ability is good. It was possible to end within 0.2m/s at 
the wharf in all the cases. Also the final heading 
angles were within 250-270deg. The details are 
shown in Fig. 7. 
 

Fig. 9  Extension of funnel area 
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auto/13/or

Initial conditions               
(4, 7.5), 260deg, No disturbance 

-2 0 2 4 6 8
-2

-1

0

1

2

3

4

5

6

7

8

9

 

 

auto/11/or

Initial conditions               
(6, 7.5), 210deg, No disturbance 

0 100 200 300 400 500 600 700 800
- 2

0
2

u 

0 100 200 300 400 500 600 700 800
- 1

0

1

v 

0 100 200 300 400 500 600 700 800
- 2

0

2
x 10

-3

r 

0 100 200 300 400 500 600 700 800

200

250

hd
in

g

 

0 100 200 300 400 500 600 700 800

-20
0

2 0

R
ud

0 100 200 300 400 500 600 700 800
- 2

0

2

t [s]

rp
s

auto/13/(2) 

0 100 200 300 400 500 600 700 800 900
- 2

0
2

u 

auto/15/(2)

0 100 200 300 400 500 600 700 800 900
- 1

0

1

v 

0 100 200 300 400 500 600 700 800 900
- 2

0

2
x 10

-3

r 

0 100 200 300 400 500 600 700 800 900

200

250

hd
in

g

 

0 100 200 300 400 500 600 700 800 900

-20
0

2 0

R
ud

0 100 200 300 400 500 600 700 800 900
- 2

0

2

t [s]

rp
s

0 100 200 300 400 500 600 700 800 900
- 2

0
2

u 

0 100 200 300 400 500 600 700 800 900
- 1

0

1

v 

0 100 200 300 400 500 600 700 800 900
- 2

0

2
x 10

-3

r 

0 100 200 300 400 500 600 700 800 900

200

250

hd
in

g

 

0 100 200 300 400 500 600 700 800 900

-20
0

2 0

R
ud

0 100 200 300 400 500 600 700 800 900
- 2

0

2

t [s]

rp
s

auto/11/(2) 

-1 0 1 2 3 4 5 6 7 8 9 10
-1

0

1

2

3

4

5

6

7

8

 

 

Example of Non-studied case

Imaginary Funnel 1 

1 

1 

2 

2 

2 

2 

2 

1: studied cases 

2: non-studied cases 

 Funnel Entrance 

0 2 4 6 8 10
-1

0

1

2

3

4

5

6

7

8

9

10

 

 

Funnel Effect
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Fig. 10  Results having different initial conditions with teaching data (cross marks 

indicate initial positions of teaching data) 



4.3 Results having different conditions with 
   training data and Funnel Effect 
 
In this section, the funnel effect will be discussed. 
Many simulations that have different initial 
conditions with teaching data, are presented in this  
section. Fig. 8 shows the details. While the No. 1 
represents simulation case where the same initial data 
as the teaching data are used, the No. 2 has different 
initial data with teaching data, but they carried good 
automatic berth. Figs. 10 shows the results where 
cross marks indicate initial positions of the teaching 
data. It is easy to understand with these figures that 
successful automatic berthing has been accomplished 
even if they have different initial conditions and 
different starting point with the teaching data. This is  
due to the interpolation ability of neural networks. 
ANN has great power of interpolation to solve a 
faced problem even if the situations are different with 
the teaching data. In Fig. 8 the square is marked. It is 
an area, which guarantees safe automatic berthing to 
the wharf from that area. The authors would like to 
call it the ‘funnel area’. For example, when an object 
comes into the entrance of a funnel, the object should 
reach the opposite side of the funnel without escaping 
from the funnel passage like in Fig. 8. In this paper 
all simulations, which are done at the square area, are 
finished with good automatic berthing like Fig. 7 and 
10. This funnel effect suggests the possibility that if 
more of these funnel areas are established like in Fig. 
9, automatic berth can be realized from every 
direction and every dis tance.  
 
 

5. CONCLUSIONS AND DISCUSSIONS 
 
In this paper, a parallel ANN for ship berthing was 
discussed. In this paper, two groups of input units are 
considered to compose a parallel NN where hidden 
layers are split into two. The first group consider all 
of input units and anther group include only two 
input units such as remaining distance, d2, and a ship 
speed, u. But it can be said that additional research is 
needed to determine how input units should be 
separated. Conclusions of this paper can be drawn as 
follows   
1)  Newly designed ANN was used in automatic 

berthing problem as a controller. 
2) A parallel ANN has good control ability 

comparing with normal ANN of united hidden 
layer. 

3)  The funnel area suggests the possibility that 
automatic berth from every direction can be 
accomplished.  

4) Successful berthing has been accomplished even if 

under different initial condition and different 
starting point with teaching data 
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