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ABSTRACT: In this paper, consistently trained Artificial
is discussed. Minimum time course changing manoeuv

Neural Network controller for automatic ship berthing
re is utilised to ensure such consistency and a new

concept named ‘virtual window’ is introduced. Such consistent teaching data are then used to train two
separate multi-layered feed forward neural networks for command rudder and propeller revolution output.
After proper training, several known and unknown conditions are tested to judge the effectiveness of the
proposed controller using Monte Carlo simulations. After getting acceptable percentages of success, the trained
networks are implemented for the free running experiment system to judge the network’s real time response for
Esso Osaka 3-m model ship. The network’s behaviour during such experiments is also investigated for possible
effect of initial conditions as well as wind disturbances. Moreover, since the final goal point of the proposed
controller is set at some distance from the actual pier to ensure safety, therefore a study on automatic tug
assistance is also discussed for the final alignment of the ship with actual pier.

1 INTRODUCTION

The ever-increasing modern technologies —often
demand a promising solution of highly demanding
control problems. Although conventional approaches
are proposed for many control problems, however
the successful applications can only be found within
well-constrained environment. Therefore, numerous
advancements have been made in developing
intelligent systems like artificial neural network
(ANN). ANN consists of several interconnected
simple non-linear system that are typically modelled
by the transfer function. Therefore, ANN is suitable
enough for system without clear and known
structure. Regarding the potential of neural network
for learning complicated behaviour of any nonlinear
multi-input multi-output system, researchers from
several disciplines are now designing the ANN to
solve different problems in pattern recognition,

prediction, optimisation, associative memory or
control. Yamato et al. (1990) was the first who
considered the application of ANN as a controller
and he used it for automatic ship berthing. Later on,
Fujii and Ura (1991) confirmed the effectiveness of
ANN as a controller using both supervised and non-
supervised learning system for autonomous
underwater vehicles (AUVs). ANN was also tried as
a controller in different controlling aspects like
temperature control, wastewater treatment control,
engine air/fuel ratio control, process control, etc.
Regarding ship berthing, after Yamato, Hasegawa
and Kitera (1993) and Im and Hasegawa (2001, 2002)
had continued the research. Hasegawa and Kitera
proposed ANN combined with the expert system to
assist ANN, while Im and Hasegawa proposed
separate controller instead of a centralised one for
command rudder and propeller revolution output
respectively. Both proposals played a vital role
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individually for further development of this research.
However, the teaching data used for these research
studies were not consistent, i.e. not in similar pattern.
As a result, in the presence of wind disturbances, the
ANN often failed to guide the ship.

On the other side, Ohtsu et al. (2007) proposed a
new minimum time ship manoeuvring method using
nonlinear programming. The method is used to
create teaching data consistent and a concept named
‘virtual window’ is proposed by Ahmed and
Hasegawa (2013a). Such window consists of
gradually changing ship’s position as well as ship’s
heading. To ensure minimum time manoeuvre, a
ship with its initial heading is expected to start from
a desired starting point of that window. Then by
taking the calculated rudder as proposed by the
optimal method, it is guaranteed for each ship with
different heading to reach the so-called imaginary
line. Such line is usually imagined by most ship
operators during the berthing manoeuvre to ensure
safe guidance of their ships. For the first time, Kose et
al. (1986) mentioned about such strategy when he
analysed the manoeuvring of ships in harbours. This
imaginary line serves as a goal during optimisation
and acts as a reference line for further descent. In this
research, four of such virtual windows are
constructed for minimum time course changing. Each
window has its limitation of maximum usage of
rudder angle used as non-equality constraint during
optimisation. Following the imaginary line, ship will
drop propeller revolution according to speed
response equation and stop at the end of it
Considering the effect of wind disturbances during
slow speed running along the imaginary line, in this
research a modified version of PD controller is
chosen to deal with it. Such controller can correct not
only ship’s heading, but also the distance between
the ship’s CG (centre of gravity) and the imaginary
line. Finally, by combining the course changing and
track keeping trajectories, a complete set of consistent
teaching data are created. Using the set of teaching
data, two multi-layered feed forward neural
networks are trained for the minimum mean squared
error (MSE) value. Several simulations are then done
to judge the effectiveness of the trained controller for
wind up to 1.5 m/s for an Esso Osaka model ship that
would be 15 m/s for full scale considering the same
Froude number. To analyse the success of the
proposed controller, Monte Carlo simulations are
also performed.

Although neural network is becoming widely
used in complex control problems, however the
effectiveness of such controller cannot be judged only
by doing simulations. Many unknown situations may
arise which cannot be simulated well before to judge
the behaviour of controller. The first attempt to
perform automatic ship berthing experiment using
ANN was made by Nakata and Hasegawa (2003) but
unfortunately the success rate was very low due to
improper fraining. Considering this fact and to
demonstrate the virtual window concept, the
consistently trained neural networks are then
implemented for the free running experiment system
to perform automatic ship berthing experiment.
Initially, a few experiment results are published by
Ahmed and Hasegawa (2013b) in a scattered way.
Later on, more experiments are done in different
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unknown situations and gathered depending on =
network’s behaviour. This paper contains swe
interesting experiment results that will also focus
how the ANN behaves in different situations. ==
understand the possible causes of networs «
behaviour, the effect of initial conditions and wirz
disturbances are then tried to discuss. Moreover, the
goal point of the proposed controller is set at 1.51
distance from actual pier. Therefore, to execute the
crabbing motion as a last stage of berthing operation
automatic side thrusters are also introduced.

2 MODEL SHIP AND MATHEMATICAL MODELS

2.1 Model Ship

In this research, among the different types of model
available, ‘Esso Osaka’ 3-m model is chosen. The
main reason of choosing this model is the availability
of large amounts of captive model test results as well
as a physical model itself. Its details are given in
Table 1.

Table 1. Principal particulars of model

Hull Propeller Rudder
L(m) 3.0 Dp(m) 0.084 b(m) 0.0830
B(m) 048 P* (m) 006  h(m) 0.1279
D(m) 020 z 5.0 Ar (m?) 0.0106
(@ 0.831 P_ratio 07151 A 1.5390
* Pitch

Here, the Esso Osaka ship model used for
berthing experiment is made of FRP (fibre-reinforced
plastic) and scaled as 1:108.33.

2.2 Mathematical models

In this research, a modified version of mathematical
model based on manoeuvring mathematical group
(MMG) is used to describe the ship hydrodynamics
in three degrees of freedoms. This MMG model can
predict both forward and astern motion of ship for
any particular rudder angle and propeller revolution.
The corresponding equations of motions at the CG of
the ship are expressed in the Equation 1.

(mmJi—(m+m e =Xy +Xp+Xp+ Xy
(m+m W+ (m+m ur =Yy +Yp+ ¥ + 1y (1)

(Uzz +J 7z =Ny + Np+Np + Ny

where, X#, Yn, Nu are hydrodynamic forces and
moment acting on a hull, Xz Yr, Nr are
hydrodynamic forces and moment due to rudder, X,
Yr, Ne are hydrodynamic forces and moment due to
propeller and Xw, Yw, Nw are hydrodynamic forces
and moment due to wind. Details of such
mathematical model can be found in the 23rd ITTC
meeting report on Esso Osaka.

To consider the wind disturbances, Fujiwara wind
model (1998) is adopted and instead of steady wind,
gust wind is considered.




3 TEACHING DATA CREATION & TRAINING OF
ANN

3.1 Berthing Plan and Execution

In this research, similar to aircraft landing, the
berthing manoeuvre is planned to make first course
changing from any given initial heading to a final
desired ship heading. This final heading with no
sway speed and angular velocity will align the ship
to a reference line known as imaginary line. To
imagine such reference line during berthing
operation is usually a common practice for most ship
operators. After merging to this line, the ship will
keep its path and drop its speed according to the
speed response equation as proposed by Endo and
Hasegawa (2003). In this research, the imaginary line
is assumed 15L of length according to the IMO
standard. The berthing goal point is also considered
at a distance of 1.5L from the actual pier as proposed
by Kose et al. (1986) to ensure safety. Figure 1 shows
the details of the co-ordinate system used in this
research together with other valuable information.
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Figure 1. Coordinate system and other assumptions during
berthing

3.1.1 Virtual Window Concept for Course Changing

Maintaining consistency in the course changing
trajectories while training neural network, would be
a key factor to increase the robustness of the
coritroller. In this research, nonlinear programming
(NLP) method for minimum time course changing
manoeuvre is utilised to do so. Then, considering the
repeated optimisation techniques as explained by
Ahmed and Hasegawa (2013a), several course
changing trajectories are constructed for ship’s
different initial heading and one particular final
heading which is 240° with no sway and angular
velocity. Here, the final heading 240% means making
an angle 30° with the pier i.e. the ship will align with
the imaginary line after course changing.

Virtual window

Start point (0,0 ‘% % "‘k.ﬂ. _

ﬁ 5? Final goal. headiug ﬁ
Final geal, heading

240° with v=0, r=0. g
240 withv=0, r=0.

a) Three sample trajectories

e b) Trajectories resbuffled for
for course changing using NFL

same termination point
Figure 2. Idea of virtual window

During the optimisation process, the time is set as
objective function and rudder angle as optimal
variable. Moreover, four different rudder angles =107,
+15%, 20° and #25° are used as non-equality
constraints. The repeated optimisation technique
used in this research is to generate the course
changing trajectories by altering only the initial
heading and keeping the same starting point.
Therefore, the plot of consecutive trajectories would
be the same as shown in Figure 2 (a), i.e, each
trajectory ends with a different endpoint. However.
by following the reshuffling process as shown in
Figure 2 (b), it is possible to align the trajectories for a
particular endpoint that will coincide with the
imaginary line. Such reshuffling process results 2
new set of starting points, each belongs to
particular ship heading and it is possible to draw
curvature through such points. Such curvature !
named as ‘virtual window’. In this research, four
different windows are constructed, each result due ©
the constraint rudder angle used during the
optimisation technique.
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3.12 Track Keeping using PD Controller

After making a proper course change using the
calculated command rudder for minimum tims
manoeuvre, the ship is expected to go straight if there
would no wind disturbances. However, in real cases
such disturbances exist. Therefore, after merging t©
the imaginary line while reducing the speed
gradually, slight wind may cause drastic course
changes if no action is taken to compensate such
disturbances. Considering the difficulties in
maintaining the course, especially in low speed
under environmental disturbances, in this research a=
a feedback controller PD is used which is mentioned
in the Equation 2. The coefficients used for the
controller are tuned on a trial basis to ensure earlier
response of the controller in any slight disturbances.
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u{here, wa is desired heading, ¢’ is current heading,
 is yaw rate, d1 is a deviation from the imaginary
line, Ci~C; are coefficients.

Maintaining a proper telegraph order is also
important to stop the ship within an availabie
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distance. The sequence of telegraph maintained here
is half ahead during course changing, then it is
followed by show ahead, dead slow ahead, engine
idling and at last propeller reversing. To judge the
proper timing of telegraph order without damaging
the engine and propeller shaft, a time constant Tp is
used which is mentioned in Equation 3.

duU(i)
T 3
P @)

+U (1) = Kpn(t)

where, U(t) is ship velocity, n(t) is propeller
revolution, Ty is time constant and Kj is gain.

3.2 Teaching Data Creation and Training of ANN

Combining the course changing and track keeping
trajectories along the imaginary line, the whole set of
teaching data is created. In order to include the wind
effect in teaching data, each successful ship berthing
trajectory is considered under three different wind
velocities which are 0.2m/s, 0.6m/s and 1.0 m/s for
model ship. Each velocity is again considered for
four different wind directions that are 459, 1359, 225°
and 315% Therefore, instead of using the wind
information directly as input neuron, the influence of
wind is considered in a way of somewhat deviated
ship trajectories and at the same time using the PD
controller to correct them during low speed running.
The resulting set of teaching data considering the
wind effect is given in Figure 3.
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Figure 3. Teaching data including wind influence

The above mentioned teaching data are then
divided for left hand side (LHS) and right hand side
(RHS) approach to ensure similar course changing
pattern (port or starboard). Using these two sets of
teaching data, two multi-layered feed forward neural
networks are constructed using Lavenberg-
Marquardt algorithm as training function and mean
squared error (MSE) as an evaluation function for
each case. Figure 4 shows the constructed networks
for command rudder and propeller revolution
output. The number of neurons used in the hidden
layers for LHS approach is (10, 6) for command
rudder and (12, 8) for propeller revolution output.
For RHS approach, this number would be (12, 5) for
command rudder and (12, 8) for propeller revolution
output.
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Considering Figure 4, input parameters for
command rudder output are u: surge velocity, :
sway velocity, r: yaw rate, ¢: heading angle, (x, y):
ship’s position, 6: actual rudder angle, d1: distance to
imaginary line and d2: distance to berthing point. For
propeller revolution, input parameters are u: surge
velocity, ¢ heading angle, (x, y): ship’s position, d1:
distance to imaginary line and d2: distance to
berthing point. '

Input layer

Hidden layers

Qutput layer

Figure 4. Teaching data including wind influence

In this research, the ANN controller for rudder is
used only during course changing. Then, it will be
followed up by the PD controller for low speed
straight running. Here, the decisive factor to alter the
ANN for PD controller is ship’s position. Once the
PD controller is activated, the rest of the task
regarding the rudder controller is solely determined
by the PD controller itself. On the other hand, the
ANN controller for propeller revolution is used
throughout the whole berthing process. Therefore, it
would be a combined effort of both ANN and PD
controller while considering the wind disturbances.
Figure 5 shows the control strategy during the whole
berthing process.
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Figure 5. Control Strategy
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4 SIMULATION RESULTS

As a next step after successful training of ANNSs,
several simulations are done by Ahmed and
Hasegawa (2013a) where the ship starts from its
desired virtual window point either used as teaching
data or non-teaching data. Flowever, the ship, staring
from any arbitrary point within the constructed



virtual window area is not yet considered. Such cases
are studied in the following subsection.

4.1 Berthing Simulations for arbitrary Staring Point

Several combinations of ship’s initial heading and
starting point are possible to judge the robustness of
the proposed controller. Figure 6 illustrates one of
such results.
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Figure 6. Ship with different heading and same initial point

Here, the ship starting with initial heading 1607,
180° and 200° respectively is tested for the same
starting point. In case of initial heading 160° as
shown in the first row of Figure 6, the ANN first
decides to take a port turn. Later on, it starts its
expected starboard turn, but very gradually.
Therefore, the ship follows a long way of course
changing and there exists a large gap between the
ship and the imaginary line. This is a quiet unusual
phenomenon and may sometimes occur due to
starting from unexpected point. However, the PD
controller works effectively to minimise such existing
gap and at last, the ship successfully stops within the
expected zone. For the other two cases, the ANN
controller takes proper decision and after a slight
port turn, the ship starts its expected starboard turn.
Therefore, it takes a shorter path to travel as well as
less time to complete the berthing process. The wind
disturbances considered in all three cases are the
same, which is average wind velocity of 1.5 m/s from
315° wind direction.
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Figure 7. Ship with same heading and different initial point

Figure 7 illustrates the simulation results for shio
starting with the same initial heading, but from three
different arbitrary points. In all three cases, the
controller takes different decisions based on
surrounding situation and succeeded to guide the
ship up to the expected safety zone. The PD
controller gradually corrects the error regarding
ship’s position and heading after course changinz
during low speed running as mentioned before. In
case 1, the controller also increases the propelier
revolution during idling stage that is similar to
boosting action. The wind disturbances considered in
all three cases are the same, which is average wind
velocity of 1.5 m/s from 1802 wind direction.

42 Monte Carlo Simulations

In any closed loop system, it is very important to
prove the stability in order to guarantee the success
of the controller. In this research, to analyse the
stability of the system, Monte Carlo simulations are
performed. To generate the random numbers,
uniformly distributed pseudorandom numbers are
chosen. Such random numbers are generated for
ship’s staring points, headings, average wind
velocities and angles. Then 970 cases are investigatsd
which covers all virtual window areas.

As a success index, three parameters are
considered. These parameters are sufficient to know
the success of the controller in each run. The indexes
are: non- dimensioned distance with respect to the
ship’s length from the target goal point, heading
error from target value 240° and surge velocity error
from target value 0.05 m/s. Figure 8 shows the
frequency distribution table of these three success
indexes.
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421 Non-dimensionalized Distance from Final Goal
Point

In this research, the ship is assumed to be stopped
if the surge velocity becomes less than 0.05 m/s
during reversing. After the termination of each
simulation case, error in ship position, i.e. Ax and Ay
are calculated based on target goal point (0,0). In this
research, the success of each ship berthing counts if
the ship stops within the desired successful zone,
which is 1.5L area around the goal point due to safety
reason. After that, tugs will assist to align it with
pier.

Here, the distance as a success index is calculated
as  Ad = +/Ax> +Ay® and non-dimensionalised as
Ad'= Ad | L(ship) . The frequency distribution of this
success index in Figure 8 clearly shows the maximum
frequency occurs at 0.1L~0.19L interval that is 29.66%
of total sample cases. Then the frequency gradually
decreases with the increment of non-dimensionalised
distance value. Beyond 1.12L, the percentage gets less
than 1.0. Here, the total success rate is 91.45%.
However, the unsuccessful cases can be solved by
including those initial conditions into the teaching
data while training nets again.

4.2.2 Heading Error

The error in final heading is calculated based on
the target heading i.e. Ay = (final)—240. Here it
noted that the expected heading to be kept by the PD
controller during low speed running is 240%
However, due to the hydrodynamic properties that
are acting on the ship during reversing, the ship with
single rudder single propeller has the natural
tendency to turn toward its starboard side. Thus, the
frequency distribution for heading error is shifted
towards the starboard side.

The frequency distribution of this success index in
Figure 8, clearly shows the maximum frequency
occurs at 20°~20.9? interval which is 28.73% of total
sample cases. This will actually make the final ship
heading parallel to the pier. Beyond that maximum
frequency, in both positive and negative directions
the frequency gradually reduces.

4.2.3 Surge Velocity

One of the criteria for considering the berthing as
successful in this research is final surge velocity <
0.05 m/s. Thus, for each of the sample cases, the final
surge velocity error is calculated to know its
frequency distribution by considering the expression
as Asurge = surge( final)—0.05 .

The frequency distribution of this success index in
Figure 8 shows the maximum frequency occurs when
the error is almost zero. Such cases occur as 86.92% of
total sample cases. This clearly shows, the controller
is effective enough in stopping the ship within a
desired zone. Beyond that maximum frequency, it
gradually decreases to a smaller value.
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5 EXPERIMENT RESULTS

After getting promising simulation results,
experiments are conducted by implementing the
trained nets for free running experiment system.
While performing the experiments, the model is
accelerated first from the pier and then turned to
enter the virtual window. As a result, every time
while switching to auto mode, the ship experiences
some sway velocity as well as initial yaw rate. For
real ship operation, it is also very difficult to
maintain zero sway and zero yaw rate in a straight
course before entering to the virtual window.
Therefore, the fact is also true for the real ship
operation and it would be quite interesting to
observe how the ANNSs behave to such new situation
by utilising the robustness.

In this research, experiments are carried out for
both LHS and RHS approach. Desired virtual
window points as well as arbitrary starting points are
considered to judge the effectiveness of the
controller. While doing such experiments, some
similarities are found in the network’s behaviour.
Based on that, the experiment results are presented in
some groups where the controller behaves in a
similar way or the resulting trajectories look like it.

For LHS approach, three types of pattern are
identified during the experiments. The representative
trajectory belongs to each pattern is shown in
Figure 9.

For the first type, while switching to auto mode,
the ANN decides to take the starboard rudder first to
ensure the ship’s approach from left hand side. This
is a usual case for the left hand side approach and
ANN's action remains same irrespective of initial
sway velocity or yaw rate. Here, in most cases within
reasonable wind, the ship manages to merge with the
imaginary line well ahead and proceeds along with
the line without much deviation.

For the second type, due to the presence of some
initial sway velocity and yaw rate while switching to
auto mode, the ANN first decides to minimise them
by taking the counter rudder. Doing so often distracts
the ship from its safest place to approach. Therefore,
the ANN realises such situation and continues with
port rudder until the ship makes a complete port
turn. At the same time, ANN also tries to adjust the
ship’s position to a safer place. Then it decides to take
the desired starboard rudder to start the
approaching. Here, during the turning and course
changing stage, the controller keeps steady half-
ahead speed.
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Figure 9. Berthing experiments for LHS approach

For the third type, ANN always tries to oppose
the existing initial sway velocity and yaw rate while
switching to auto mode. However, sometimes ANN
may go with such existing values by taking the
expected starboard rudder first like in type one. By
doing so, if the sway velocity or yaw rate reaches
some peak value depending on the ship’s position,
then the ANN finally decides to take the port rudder
to oppose them. But this time, unlike as type two, the
ANN prevents the complete turn of ship by taking
the starboard rudder again as the ship is believed to
be still in suitable positing to start its approaching to
merge with the imaginary line. Therefore, all
trajectories belong to this group is due to subsequent
starboard to port or port to starboard rudder taken
by ANN according to situations demand.

For the RHS approach, separately trained
networks are used and three different types of
pattern are identified. The representative trajectory
belongs to each pattern is shown in Figure 10. In the
following figure, the ship starts from nearby starting
point, however due to having different gust wind
and initial conditions the resulting trajectories are
different.

For type one, while switching to auto mode, the
ANN may take starboard rudder first to oppose the
existing surge velocity and yaw rate as shown in the
figure. However, it may go with the existing one by
taking the port rudder. While taking the port rudder,
if surge velocity and yaw rate reach their maximum
value as analysed by ANN, it takes the starboard
rudder to minimise these values. After that, the AN N
actuates the desired port rudder to start its final
approach to merge with the imaginary line. The
important concern belongs to this group is that after
course changing, ANN in most cases manages to
make it without much deviation.

In this research,
command rudder is analysed depending on the
initial sway velocity and yaw rate. During the
experiment for LHS approach, the ship is expected to
take a starboard turn to enter the window. Thus,
while switching to auto mode, the initial sway
velocity and yaw rate are likely to have negative and
positive value respectively. On the contrary, for RHS
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Figure 10. Berthing experiments for RHS approach

Most of the results belong to type two are due to
the presence of high wind disturbances during
course changing. Therefore, the ship fails to merge
with the imaginary line in large extent. After that, the
PD controller takes continuous counter rudder to
compensate such deviation and it succeeds in some
extent.

For type three, depending on ANN's response or
due to the existence of wind disturbances, sometimes
a ship fails to merge with the imaginary line, which is
similar to type two. However, this time, the PD
controller during steep deceleration successfully
returns the ship to the imaginary line by taking the
starboard rudder and the ship just passes through it.
Then for such overshooting, the controller again
takes the port rudder to correct the ship’s heading
and minimise its deviation from the imaginary line.
Finally, the completed trajectories look like ‘S” shape.

Figure 11 shows other experiment results for LHS
and RHS approach while starting from different
arbitrary points. However, the trajectory patters are
same as explained above.

LHS approach

X/L position [-]

0 5 w0 15 20 0 5 10 T
YIL position [-] Y/L position [-]

Figure 11. Berthing experiments for arbitrary starting

point

6 ANALYSIS OF NETWORK'S BEHAVIOUR

the network’s behaviour for



approach the ship expected to a port turn to enter the
window. Thus, the initial sway velocity and yaw rate
are likely to have positive and negative value
respectively. To analyse such situations, four
different sway velocities are considered as found
during the experiment. Then for each sway velocity,
the yaw rate varies in a particular range. The
corresponding plots of such analysis are given in
Figure 12 for LHS and RHS approach.

Here, the responses for LHS approach are
illustrated for varying yaw rate from 1.0 deg/s to 2.4
deg/s. Although in each case, the network possesses a
pulsating characteristic, however the nature of the
curves is almost similar. Here, each of the curves
show a particular band of yaw rate, for which ANN
decides to take the port rudder to oppose the existing
sway velocity and yaw rate. Beyond that mentioned
band, ANN takes the starboard rudder, which is
usual for left hand side approach of a ship.
Moreover, the defined band of yaw rate gradually
shifts towards the right side with the increment of
sway velocity. Although, these curves demonstrate
the result for any particular ship’s heading and initial
position, however upon altering these values the
ANN shows similar types of behaviour. In general, it
means that if a ship has some drifted sway velocity
while entering to the window, then depending on its
initial yaw rate ANN may sometimes take counter
rudder initially before activating its expected rudder
action.
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Figure 12. ANN's response for different sway velocity and
yaw rate

On the other hand, for RHS approach, the low
sway velocity curve does not have that much effect in
altering the ANN'’s behaviour. As a result, the effect
of having an initial yaw rate is more prone than
having any low sway velocity in RHS approach. The
ANN takes the port rudder only for smaller values of
yaw rate. Otherwise, irrespective of any higher
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values of yaw rate as an initial condition, ANN
always takes the starboard rudder. On the other
hand, with the increment of sway velocity, the curves
are gradually pulled down. Thus, the effect of having
high sway velocity is dominant for small yaw rate.
However, later on with the increment in yaw rate, the
curve turns toward the positive value and the ANN
starts to take starboard rudder. Each time with the
increment of sway velocity, the graph is also little bit
shifted towards the left. Finally, the analysis of the
network for RHS approach can be concluded in a
similar way as for LHS approach. That is if a ship has
a low initial sway velocity while entering to the
window, then in most cases the ANN will take the
starboard rudder to oppose the expected turn except
for low existing yaw rate.

Here, the analysis of the network’s behaviour
mainly demonstrates how the network behaves
depending on existing initial sway velocity and yaw
rate. Therefore, no matter how such existing initial
sway velocity or yaw rate results from. Thus, the
network will behave in a similar way in other
experiment sites depending on the existing initial
conditions. '

7 AUTOMATIC TUG ASSISTANCE

After stopping the ship within the assumed
successful zone as shown in Fig. 1, the final step
would be the actual alignment of the ship to the pier.
In this research, to execute the crabbing motion for a
big ship like Esso Osaka with single rudder and
single propeller, two lateral and one longitudinal
thrusters are considered. First, the ANN controller is
tried for the mentioned purpose as proposed by Tran
and Im (2012). However, in the most unpredictable
wind, there is no other easy way to create consistent
teaching data that is important to ensure the
effectiveness of ANN controller. As a result, the PD
controller has given some preference over the ANN.
Equations 4 to 8§ demonstrate the PD controllers used
for automatic thrust generation in lateral and
longitudinal direction.

if W<270%nd dis_fore>dis_rev

T =C*X,,—15-X,)+C *sway

T, =CG*X,,~15-X ,,,,I,L). +C, *sway+ C, *diff )
if W>270and dis_aft>dis_rev

T =G *(X,,~1.5-X,,) +C, *sway+C, *diff o)
L =G " (X,;—1.5-x,)+C, *sway

if W<270"and dis_fore<dis_rev

Toe=C*(-1.5-X, ) +C, *sway (6)

L =G*(=15-X

<%t

)+ C, *sway+ C, *diff



if W>270°and dis_aft<dis_rev

T, =G *(=1.5-X,,)+C, *sway+C; *diff o
T,=GC *(-1.5-X ;) +C, *sway

aft
Longitudinal thrust

X, =Cy¥surge+ C, *Ypos+ C, *distance (8)

where, W is ship’s heading, X@e and Xy are x-
coordinate of ship’s fore and aft peak respectively,
diff is abs( XprXap), distance is the perpendicular
distance of ship’s CG from the actual pier, dis_fore
and dis_aft are perpendicular distance of ship’s fore
and aft peak respectively from the actual pier, dis_rev
is the perpendicular distance from the actual pier to
start reverse thrust, Yy is the y coordinate of ship’s
CG in the earth fixed coordinate, Ci~Cs are the
coefficients.

Considering Equation 4 and 5 for providing side
thrusts, first part belongs to a constant value
irrespective of ship’s position to withstand the wind
force up to 1.5 m/s. Second part is for controlling
sway velocity and third part activates if a correction
for ship’s heading is needed. On the other hand, if
ship reaches the zone to provide reverse side thrusts
as given in Equation 6 and 7, the first part is no
longer constant rather increases the thrust value
gradually with the decrement of the distance value to
minimise the sway velocity upon reaching the pier.
Other parts remain same. Here, the value of dis_rev
depends on the “steady sway velocity while
approaching to the pier using side thrusters in
presence of wind disturbances form different
direction. Considering longitudinal thrust given in
Equation 8, the first part is for controlling forward
velocity, second part is for controlling ship’s position
in longitudinal direction and the third part is for
controlling thrust value with respect to ship’s
distance from actual pier. Now, by combining the
proposed controller for side thrusters with the
existing ANN-PD controller, simulations are done for
the different unknown situation. Figure 13 and 14
demonstrate such results.

Considering Fig.13, the combined controller is
tested for following wind. Here, the following wind
brings the ship much closer to the pier than in Fig.14.
Finally, the simulation ends with a ship heading 271°
and sway velocity close to zero.

On the other hand, for Fig. 14, the controller also
successfully manages to maintain the ship’s heading
against the wind during the crabbing motion.
However, the ship takes a long time to reach the pier
as the sway velocity is relatively low due to opposite
wind direction. It is also noted that there is barely in
need of any longitudinal thruster for position
alignment. Here, the ship’s final heading is 2692 and
sway velocity is almost zero.
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Figure 13. Initial heading 340° starting from an arbitrary
point
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Figure 14. Initial heading 180" starting from an arbitrary
point

Simulations are also done considering the end
condition of different experiment results to judge the
capability of the proposed PD controller in aligning
the ship to the pier. Fig. 15 illustrates such results.
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Figure 15. Simulations with different experiment end
condition

Considering the above figure, in spite of dealing

with the ship having different final heading and
position, the controller is effective enough to guide it
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up to the pier. Only for the following wind, it poses
some difficulties in correcting the ship heading.

§ CONCLUSIONS

In this research, repeated optimisation technique is
utilised to create consistent teaching for training the
ANN controller. The proposed repeated optimisation
technique also demonstrates a new idea named
‘virtual window’, which is to start a ship with its
particular heading from a desired point for minimum
time course changing.

Following the control strategy mentioned in this
research, several simulations are done for desired
and arbitrary starting point to judge the robustness of
the controller under gust wind disturbances. Stability
of the closed loop system is also analysed using
Monte Carlo simulations. This gives 91.45% success
over 970 arbitrarily chosen cases. However, the
success rate can be increased by including the initial
conditions of the unsuccessful cases into the teaching
data while training the net again.

After getting satisfactory percentages of success,
ship berthing experiments are conducted and results
are included in this paper. While performing the
experiments, the controller has found to behave in
some particular ways depending on different initial
conditions and wind disturbances. Therefore, the
experiment results are tried to gather in some groups
depending on the similarities of network’s behaviour
or trajectories pattern. Such behaviours are also tried
to analyse for different initial sway velocities and
vaw rates.

The controller in this paper is proposed to stop
the ship at some safe distance from actual pier.
Therefore, as a final approach to the berthing
operation, the PD controlled side thrusts is proposed
and coupled with the current controller. Several
simulations are done to check the compatibility of the
controllers and found quite promising results.

Finally, it is clearly said that the existing
environmental disturbance plays a vital role while
using the proposed controller for automatic ship
berthing. If the wind blows beyond permitted limit,
then evenusing the proposed PD controller, it will no
longer possible to keep the track due to reduced
manoeuvrability at low speed.
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