Qualitative and Quantitative Analysis of Congested Marine Traffic Environment – An Application Using Marine Traffic Simulation System

K. Hasegawa & M. Yamazaki
Osaka University, Osaka, Japan

ABSTRACT: Difficulty of sailing is quite subjective matter. It depends on various factors. Using Marine Traffic Simulation System (MTSS) developed by Osaka University this challenging subject is discussed. In this system realistic traffic flow including collision avoidance manoeuvres can be reproduced in a given area. Simulation is done for southward of Tokyo Bay, Strait of Singapore and off-Shanghai area changing traffic volume from 5 or 50 to 150 or 200% of the present volume. As a result, strong proportional relation between near-miss ratio and traffic density per hour per sailed area is found, independent on traffic volume, area size and configuration. The quantitative evaluation index of the difficulty of sailing, here called risk rate of the area is defined using thus defined traffic density and near-miss ratio.

1 INTRODUCTION

Recently, marine traffic is congested and complex according to the increasing of marine traffic volume, high speed ships, and larger ships. Accordingly, navigators and captains are stressed more. As the result, it is supposed to increase accidents such as collisions between ships and so on. Once an accident happens, not only ship, cargo, and human are lost, but also it is influenced on the local economy and environment because of load and oil spillage. Therefore, evaluating the difficulty of sailing is necessary in order to design routes and improve the safety in marine. On the difficulty index of sailing in marine, some methods are suggested. In this paper, a method using marine traffic simulation system is used.

For reproducing marine traffic flow, so-called macro simulation such as the network simulation is used, but nowadays so-called micro simulation where individual ships are directly controlled, is used. In most cases, ships are sailing according to the predefined planed route, but there are some methods where ships can avoid collisions according to the situation. Marine Traffic Simulation System (abbreviating as MTSS hereafter) (Hasegawa (et al.) 1987, 1989, 1990, 1993, 1997, 2000, 2001, 2004a, 2004b, 2008, 2010, 2011, 2012a, 2012b), which is developed in Osaka University and used in this study, has this feature. It applies fuzzy reasoning to predict collision risk using TCPA and TCPA, and can treat multiple ship encounter situation. Applying for several marine areas, it is proved that MTSS can reproduce the marine traffic flow in the most realistic way compared to the other existing methods. However, the result is a case study, and the sailing difficulty or danger of the area cannot be compared quantitatively among various marine areas. Therefore in this study, the indices for evaluating the difficulty or danger of sailing under the different conditions are proposed and compared among various marine areas quantitatively.
2 COLLISION AVOIDANCE ALGORYTHM

The feature of MTSS is having automatic collision avoidance function. In this chapter, automatic collision avoidance function is briefly explained (Hasegawa 2012a).

2.1 Collision risk

There are many collision risk indices proposed by several researchers. Ship domain concept is probably the first concept treating it. In this study CR is used. CR is the collision risk defined by DCPA and TCPA using fuzzy reasoning. Later the definition of CR is somewhat modified and now the following definition is used. For assessing collision risk in normal (WP mode in Figure 4) condition, CR defined by TCPA and DCPA' (eq. (3)) is used.

For determining avoiding action, ACR is used to check the collision risk of the assumed avoiding action. In this case, following modified TCPA is used for calculating ACR considering individual ship manouevrability, especially for large ships.

\[
TCPA_c = TCPA - C_c T
\]
(1)

\[
TCPA_v = TCPA - C_v / T
\]
(2)

where \(C_c \) and \(C_v \) are constants and \(T \) is the time constant of Nomoto’s equation (Nomoto et al. 1957, Nomoto 1960) of the subject ship. In the simulation, \(C_c=2 \) and \(C_v=1000 \) are used based on some simulation results. These modifications are reflecting the difference of course changing ability roughly estimated from the time constant \(T \).

DCPA is non-dimensionalised using longer ship’s length of two ships encountered.

\[
DCPA' = DCPA / \max(L_O,L_T)
\]
(3)

Both TCPAc , TCPAv and DCPA' are defined by 8 and 5 linguistic variables using membership functions as shown in Figures 1 and 2 respectively, which are determined by authors' previous researches on experts knowledge and experience and both maximum values (360 and 7.2 for open sea respectively) can be modified based on the gaming area, or users can tune them as they like. Collision risk CR is defined by 8 linguistic variables and membership functions as shown in Figure 3. The reasoning fuzzy table to determine CR is provided using TCPAc and DCPA' as shown in Table 1. CR is thus defined between -1 and 1 and it is positive before passing CPA and negative after passing CPA. The absolute value is proportional to the collision risk.

Figure 3. Membership functions for CR

![Figure 3. Membership functions for CR](image)

Table 1. Fuzzy reasoning table for CR

<table>
<thead>
<tr>
<th>TCPA'</th>
<th>SAN</th>
<th>MEN</th>
<th>DAN</th>
<th>DAP</th>
<th>DMP</th>
<th>MEP</th>
<th>SMP</th>
<th>SAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>DA</td>
<td>SAN</td>
<td>MEN</td>
<td>DAN</td>
<td>DAP</td>
<td>DMP</td>
<td>MEP</td>
<td>SMP</td>
<td>SAP</td>
</tr>
<tr>
<td>DM</td>
<td>SAN</td>
<td>SAN</td>
<td>MEN</td>
<td>DMP</td>
<td>MEP</td>
<td>SMP</td>
<td>SAP</td>
<td>SAP</td>
</tr>
<tr>
<td>SM</td>
<td>SAN</td>
<td>SAN</td>
<td>SAN</td>
<td>SMP</td>
<td>SAP</td>
<td>SAP</td>
<td>SAP</td>
<td>SAP</td>
</tr>
<tr>
<td>SA</td>
<td>SAN</td>
<td>SAN</td>
<td>SAN</td>
<td>SAP</td>
<td>SAP</td>
<td>SAP</td>
<td>SAP</td>
<td>SAP</td>
</tr>
</tbody>
</table>

Figure 4. Procedure of collision avoidance manoeuvre

![Figure 4. Procedure of collision avoidance manoeuvre](image)

2.2 AVOIDING ACTION STRATEGETY

The own ship will start avoiding when CR is equal or greater than \(CR_c \). \(CR_c \) is \(CR_c(0.7 \text{ in the system}) \) for the
give-way situation and CR_c (0.9 in the system) for the stand-on situation. After detecting the collision risk reaches to the criteria, each ship will take a collision avoidance action. Once avoiding mode started, the ship will take avoiding action normally by turning right. The angle of course change will be determined by ACR. ACR is CR assuming the present heading angle as this angle plus the course changing angle Ψ_A^*. Ψ_A^* is chosen 30 deg. first, but if ACR is bigger than CR_c, it will be increased every $\Delta \Psi_A^* (= 5$ deg. in the system) and repeated until ACR becomes lower than CR_c but it stops at 45 deg. in the maximum. After Ψ_A^* is fixed, the own ship will change course to Ψ_A^*. Once getting in the avoiding mode, the system is checking VCR continuously until it falls below CR_{th} (0.7 in the system). If Ψ_A^* reaches 45 deg. and ACR is still larger than CR_c, void course changing and reduce speed to half of the present speed.

3 SIMULATION CONDITIONS

In order to quantitatively assess and compare the difficulty of sailing, simulations are done for southward of Tokyo Bay, Strait of Singapore, and off Shanghai. Simulation time is 24 hours and the number of individual simulations is five times. Traffic volume is chosen in various percentage of the real traffic volume as shown in Table 2.

4 ASSESSMENT USING NEAR-MISS

In this chapter, quantitatively assessing the difficulty of sailing in individual areas is explained.

4.1 Near-miss

On evaluating the difficulty of sailing by MTSS, the number of near-misses is proposed as an index. A near-miss is defined that it occurs WHEN $CR \geq 0.7$ AND other ship exists within a rectangular area of FA height and SP width around the own ship, where FA and SP are defined for harbour area by Inoue (1994) as

$$FA = (0.0015 \times L_T + 2.076) \times L_O$$

(4)

$$SP = (0.008 \times L_T + 0.667) \times L_O$$

(5)

Figure 5 shows this area and the numbers in the figure is the ratio of the position of the own ship dividing this rectangular.

4.2 Assessment examples using near-miss as an index

The number of near-misses NM for the simulation done for three areas for 100% traffic volume is shown in Figure 6. For each area five-time trial results are individually shown. The number of near-misses in Strait of Singapore is about 20 times and that of off-Shanghai area is about 70 times compared with that of southward of Tokyo Bay respectively. Does it mean the difficulty of the area is also proportional to this number?

5 ASSESSMENT USING TRAFFIC DENSITY AND NEARMISS RATE AS INDICES

In previous chapter, the difficulty of sailing is discussed quantitatively using the number of near-misses. However, it is difficult to compare, because the number of ships and the area size, configuration and so on are different.

5.1 Traffic density and Near-miss rate

In order to assess the difficulty of sailing on the same conditions in any marine area, number of ships, and near-miss count per the unit time and size of area, which are defined as traffic density TD and near-miss rate NR. In this study, the unit time is 1 hour and the unit size of area is 1 mile2. Next discussion is how to
evaluate the definition of the size of the area A. It is defined as the number of the unit rectangular areas where at least once by a ship or ships pass. In the case of Figure 7, the number of rectangular areas is 13, so number of ships NS is 2, A is 13 mile2 and time of simulation T_s is number of hours taking both ships to pass this area in hours.

![Figure 7. The example how to measure the size of the area](image)

Using this method, the formula of Traffic density TD and Near-miss rate NR are defined as follows.

$$TD = \frac{NS}{A} \quad (6)$$

$$NR = \frac{NM}{T_s \times A} \quad (7)$$

5.2 Assessment examples using Traffic density and Near-miss rate

Under the conditions shown in Table 2, the results of near-miss rate NR is plotted versus traffic density TD in logarithm scale (Figure 8). The strait line in the figure is an approximate line fitting the simulation results. Although the areas are quite different in their size, configuration and traffic volume, the near-miss rate NR including the artificial variation of traffic volume is surprisingly proportional to the traffic density TD.

![Figure 8. The relation between traffic density and Near-miss rate by simulation](image)

6 ASSESSMENT USING RISK RATE OF THE AREA

In previous chapter, the strong relation between near-miss rate and traffic density is shown. However, it is still difficult to evaluate how much dangerous the area is. Are there any threshold values for the traffic density and the near-miss rate?

6.1 The definition of Risk rate of the area

To answer this question, an assumption is considered. Suppose all ships in the area feel dangerous (= near-miss), every time they meet other ships. This means the near-miss rate is $O(NS^2)$, where $O()$ is the order and NS is the number of ship in the area.

This is the maximum near-miss rate to be expected. The ratio of the near-miss rate to this maximum near-miss rate defined as MNR will be a measure to evaluate the risk of the area. Therefore the risk ratio of the area RRA can be defined as

$$RRA = \frac{NR}{MNR} = \frac{1.24TD^{2.39}}{TD^2} = 1.24TD^{0.39} \quad (8)$$

6.2 Assessment example by using Risk rate of the area

Maximum near-miss rate MNR is added in Figure 9 and compared with Figure 8. Table 3 shows the risk rate of the area RRA thus estimated for each area at 100% traffic volume using equation (8), although the actual simulation results are somewhat more and less around these values. The difficulty of sailing in Strait of Singapore is about 1.7 times, and that of off-Shanghai are 2.1 times compared with that of southward of Tokyo Bay respectively. As MNR is extreme condition, from the safety point-of-view, RRA had better to be kept as low as possible and the value of off-Shanghai area seems quite close to the dangerous zone.

![Figure 9. The traffic volume allowance degree](image)

Table 3. Risk rate of the area by simulation results

<table>
<thead>
<tr>
<th>Simulation Area (traffic volume)</th>
<th>Risk Rate of the Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southward of Tokyo Bay (100%)</td>
<td>0.35</td>
</tr>
<tr>
<td>Strait of Singapore (100%)</td>
<td>0.59</td>
</tr>
<tr>
<td>Off-Shanghai area (100%)</td>
<td>0.75</td>
</tr>
</tbody>
</table>
7 CONCLUSIONS

The difficulty of sailing is discussed in this paper. The proposed index of the difficulty of sailing is independent and quantitative for the area. Conclusions are summarized as follows.

1 Near-miss rate is strongly proportional to traffic density.
2 Risk rate of the area is defined and expressed the difficulty of sailing independently from the area size, configuration and traffic volume and quantitatively.
3 To determine the maximum allowance of risk rate of the area, further discussion should be done continuously.

8 NOMENCLATURE

[Nominal value [Definition] [(Unit)]]

ACR Collision risk assuming taking considered avoidance manoeuvre (-)
A Areas where ships sail in the simulation at least once in a unit (1 mile²) area (mile²) (cf. Figure 7)
Cc Constant to evaluate TCPA\(^c\) taking account of time constant \(T \) (-)
CPA Closest point of approach
CR Collision risk calculated from TCPA and DCPA using fuzzy reasoning (-)
CR\(_c\) CR threshold for changing manoeuvring mode to avoiding mode from waypoint mode (-)
CR\(_g\) CR\(_c\) for give-way ship (-)
CR\(_r\) CR threshold for changing manoeuvring mode to returning mode from parallel manoeuvring mode (-)
CR\(_p\) CR\(_c\) for stand-on ship (-)
CR\(_v\) CR threshold for changing manoeuvring mode to parallel manoeuvring mode from avoiding mode (-)
CR\(_v\) CR threshold for changing manoeuvring mode to returning mode from parallel manoeuvring mode (-)
C\(_r\) Constant to evaluate TCPA\(_v\) taking account of time constant \(T \) (-)
DCPA Distance to closest point of approach (m)
DCPA\(^\prime\) Non-dimensionalized DCPA (-)
L, Lo, Lr Ship length in general, that of own ship and that of target ship (m)
MNR Maximum near-miss rate (1/mile\(^2\)hour)
MTSS Marine Traffic Simulation System developed by Osaka University as a kind of marine traffic simulation system taking account of collision avoidance manoeuvres
NM The number of near-misses in the simulation area and time (-)
NR Near-miss rate (1/mile\(^2\)hour)
NS The average number of ships existing in the simulation area (-)
OCR Collision risk assuming taking returning manoeuvre (-)
RRA Risk ratio of a area (-)
T Time constant of a ship for manoeuvring (sec)
TCPA Time to closest point of approach (sec)
TCPA\(_c\) TCPA for CR evaluation (sec)
TCPA\(_v\) TCPA for VCR evaluation (sec)
TD Traffic density defined (1/mile²)
T\(_s\) Simulation time (hour)
VCR Collision risk assuming taking parallel shift manoeuvre (-)
\\(\psi_A \) Course changing angle in avoiding mode (deg)
\\(\psi_{TA} \) Relative angle to target ship measured from own ship stern (deg)
\\(\psi_{TE} \) Encounter angle of target ship measured from own ship bow (deg)

REFERENCES

Hasegawa, K. 1990. An Intelligent Marine Traffic Evaluation System for Harbour and Waterway Designs. 4th International Symposium on Marine Engineering Kobe ’90 (ISME KOBÉ ‘90); (G-1)-7-14
Inoue, K. 1994. Modelling of Mariners’ Senses on Minimum Passing Distance between Ships in Harbour. JIN (125): 63-71