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a b s t r a c t

Ship handling during berthing is considered as one of the most sophisticated tasks that a ship master has
to face. The presence of current and wind make it even more complicated to execute, especially when
ship approaches to a pier in low speed. To deal with such phenomenon, only experienced human brain
decides the necessary action taken depending on situation demand. So automation in berthing is still far
beyond imagination. But, if the human brain can be replicated by any suitable artificial intelligence
technique to perform the same action that human brain does during berthing, then automatic ship
berthing is possible. In this research artificial neural network is used for that purpose. To enhance its
learnability, consistent teaching data based on the virtual window concept are created to ensure optimal
steering with the help of nonlinear programming language (NPL) method. Then instead of centralized
controller, two separate feed forward neural networks are trained using Lavenberg–Marquardt algorithm
in backpropagation technique for command rudder angle and propeller revolution output respectively.
The trained ANNs are then verified for their workability in no wind condition. On the other hand,
separate ANNs are trained with reconstructed teaching data considering gust wind disturbances. To deal
with any abrupt condition, ANN followed by PD controller is also introduced in case of command rudder
angle output whose effectiveness is well verified not only for teaching data but also in case of non-
teaching data and different gust wind distributions.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Ship berthing has always demanded a sophisticated controller due
to the requirement of multiple input and output parameters including
data of environmental disturbances. To achieve that purpose, different
kinds of controllers like fuzzy theory and knowledge based system are
tried by many researchers but each of such controllers has some
limitations when using for berthing. Like in case of fuzzy theory, it is
needed to define the fuzzy rule but to define proper rule is very tough
for berthing since any unpredictable situation may arise including
environmental disturbances which cannot be pre-implemented as a
rule. On the other hand in case knowledge based system or expert
system, every possible situation needs to be included as written
statement with corresponding solution which makes the controller
more rigid instead of robust. Thus human knowledge judgement
should be regarded as a best alteration in such cases. That is why,
among different kinds of controllers investigated for berthing, ANN

has some privileges like it can be a good replicator of human brain and
also has the ability to generalize and learn any nonlinear multi-input
multi-output (MIMO) system. Moreover as the network learns from
examples and adapts to situation based on its findings, it can
generalize knowledge to produce adequate responses to any unknown
situation. As a result ANN is expected to solve complex problems like
automatic berthing that are difficult to manage by other controlling
system.

In this research to ensure a safe and appropriate berthing
manoeuvre, the whole manoeuvring plan is divided into three basic
elementary manoeuvres which are course changing, step decelera-
tion and stopping. For course changing manoeuvre, using NPL
method, four virtual windows are founded where rudder angles
are restricted within 7101, 7151, 7201 and 7251 respectively.
Each of such windows ensures a ship with a particular heading angle
passes through its allocated position to reach the imaginary line by
actuating the corresponding rudder angle for which the window is
constructed. In such cases, the NPL method ensures the command
rudder angle taken to direct the ship with optimal time manoeuvre
so as to merge with imaginary line well ahead which is 15 L from
berthing point. Imaginary line is that line which most masters use to
direct their ship course towards the berthing pier. After merging with
imaginary line, ship commands to go straight by following sequential
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telegraph order which is constructed by maintaining speed response
equation. Finally the engine idling time is tuned such that when
engine idling followed by propeller revering, ship will stop as close as
possible to the berthing point.

After preparing the teaching data, two separate feed forward
multi-layered ANN controllers have been investigated to find the
suitable number of hidden layers together with appropriate
number of neurons in each layer which best suit to the teaching
data for command rudder angle and propeller revolution output
respectively and such suitability is determined by considering
minimum squared error (MSE) as evaluation function. The famous
back propagation which is gradient descent algorithm is used
during training process where the network weights are moved
along the negative of the gradient of the evaluation function.

In case of wind disturbances, same types of teaching data are
reconstructed but this time considering gust wind of different
velocities and from different directions. But in low speed, ship
manoeuvrability reduces drastically. Therefore, when ship moves
straight along with imaginary line and its velocity gradually
reduces due to propeller revolution drop then the effect of such
wind is very severe. If a ship motion is considered as signal and
environmental disturbances as noises then in low speed straight
running the signal-noise ratio becomes low enough for any
controller to separate the noises from actual ship motion. Thus,
even the ANN is trained to deal with wind disturbances, the
differences in ship motion during low speed are quiet large and
uncertain due to such high noises. As a result instead of ANN, more
robust controller is preferable to take adequate rudder angle to
guide the ship in correct path in such situation. In this research
among different types of controllers, the more sophisticated PD
controller is introduced to prevent ship's deviation from imaginary
line by taking proper rudder angle and make the complete set of
teaching data. While using the PD controller, the compensation for
desired ship heading as well as minimizing the perpendicular
distance from the imaginary line is given preference. As a result,
even be a common PD controller, it plays a significant role due to
its robust nature and works effectively than any other controller or
rule based adjuster as Im and Hasegawa (2002) used during low
speed running.

Finally, the effectiveness of ANN followed by PD controller
is verified by performing automatic berthing simulations even
under different initial conditions with teaching data and wind
disturbances.

2. Background of this research

Considering the advantages of artificial neural network, it has a
great applicability to use as a controller for any suitable nonlinear
system or to assist some other controller to form a hybrid one. The
first research using ANN as a controller was started by Yamato et al.
(1990) for automatic ship berthing and found good results. Fujii and
Ura (1991) then used both supervised and non-supervised learning
system to construct neural network based controller for AUVs and
compared the results. After him ANN had been used in different
controlling aspects like temperature control (Cui et al., 1992), process
control (Lee et al., 1994), paper mill wastewater treatment control
(Zeng et al., 2003), and engine air/fuel ratio control (Zhau et al.,
2009). ANN together with Fuzzy logic also created another field of
research for hybrid controller like Aoyama et al. (1995) used it for
process control, Di et al. (2001) used such for arc welding.

For automatic ship berthing, after Yamato et al., Hasegawa and
Kitera (1993) and Im and Hasegawa (2001, 2002) have continued
the research. Hasegawa considered neural network controller
combined with expert system where Im proposed two separate
nets to control rudder angle and propeller revolution instead of

using centralized controller. In case of wind disturbances, Im also
proposed motion identification method using ANN for detecting
ship's lateral velocity and yaw rate. Then based on the two rule
based adjusters for the corresponding, the necessary action was
taken. Using this procedure, although he succeeded in limited
wind velocity but in case of wind blowing parallel to the ship's
direction, results were not fruitful. Later on, his research was tried
to update by putting weights on creation of teaching data. Some
adopted human knowledge for creating teaching data and some
used standard manoeuvring plan. But in both cases consistency
was not there. Thus the problems regarding how to create
teaching data in more consistent way and whether proper trained
ANN has the ability to cope with any possible wind disturbances
remain unsolved. As a continuation of research, recently Im et al.
(2007) proposed a new algorithm for automatic berthing using
selective controller. In his proposed algorithm he divided the
approaching ship area into several zones and used separately
trained ANN to guide the ship from one zone to another. The main
intention of this research was to make ANN independent of
particular port shape and predetermined approaching pattern.
On the contradictory, Nguyen et al. (2007) tried non-supervised
learning system using adaptive ANN for automatic ship berthing
where neural network controller is trained online using adaptive
interaction technique without any teaching data and off-line
training phase. Therefore, none of the mentioned researches
put weight on creation of consistent teaching data and judge the
effectiveness of trained ANN with such teaching data. In the
meanwhile, Ohtsu et al. (2007) proposed a new minimum time
ship manoeuvring method using nonlinear programming. Using
his proposed method, first attempt to make consistent teaching
data for berthing was made by Xu and Hasegawa (2012). But in
such research even NPL method for creating teaching data was
used but usage of too many constraints as termination conditions,
resulted fluctuation in command rudder angle output which also
provided difficulties during training net. As a result even in
absence of disturbances, ANN results are not good enough during
low speed manoeuvre. Moreover, such research also considered
limited direction of wind blowing together with uniform wind
disturbances up to certain small limit while investigating ANN's
effectiveness in wind condition. But, in real case wind blows in
gust form rather than uniform and severe wind may also expected
to blow from any possible direction during travelling with reduced
velocity which have not been investigated yet in case of berthing
problem. Moreover, in case of wind disturbances he also adjusted
the propeller revolution according to the requirement manually
rather than by ANN. So to improve such lackings, current research
is highly concentrated on creating consistent teaching data using
NPL method with almost no fluctuating command rudder angle
based on virtual window concept. Consideration of such virtual
window concept in teaching data also eliminates the use of
selective controllers as it covers almost all possible ship approach-
ing and adjustable to any suitable pier configuration. After train-
ing, the effectiveness of ANNs are checked in case of no wind and
gust wind condition where maximum wind velocity is considered
as 1.5 m/s (15 m/s for full scale) from different directions which is
also considered as maximum one in most ports in Japan for
berthing.

3. Subject ship and mathematical model

3.1. Subject ship model

In this research, 3 m model ship of Esso Osaka is used as subject
ship. Principal particulars of the corresponding model ship are
shown in Table 1.
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Moreover, the coordinate system used to formulate the equa-
tions of motions together with the wind direction consideration is
shown in Fig. 1.

3.2. Mathematical model

A modified version of mathematical model based on the MMG
(23rd ITTC meeting, The Specialist Committee on Esso Osaka,
2002) for describing the ship hydrodynamics in three degree of
freedoms is used for Esso Osaka 3 m model ship. This mathema-
tical model can predict the ship hydrodynamics for both advance
and astern motions. The equations of motion as well as measured
hydrodynamic forces are considered at CG (centre of gravity) of
the ship. The corresponding equations of motions are expressed in
the following form:

ðmþmxÞ _u�ðmþmyÞvr¼ XHþXPþXRþXW

ðmþmyÞ_vþðmþmxÞur ¼ YHþYPþYRþYW

ðIZZþ JZZÞ_r ¼NHþNPþNRþNW

XH ;YH ;NH: hydrodynamic forces and moment acting on hull
XP ;YP ;NP: hydrodynamic forces and moment due to propeller
XR;YR;NR: hydrodynamic forces and moment due to rudder
XW ;YW ;NW : hydrodynamic forces and moment due to wind

To verify the effectiveness of modified mathematical model,
turning circles are compared with experiment results for both port
and starboard turning as shown in Fig. 2.

The little variations existing in the comparison trajectories are
believed due to wind disturbances since the tactical diameters of
the corresponding circles are quiet same.
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Fig. 2. Turning circles comparison.

Fig. 1. Coordinate system.

Table 1
Principal particulars and parameters of model ship.

Hull Propeller Rudder

L (m) 3 Dp (m) 0.084 b (m) 0.083
B (m) 0.48 P (m) 0.06 h (m) 0.1279
D (m) 0.2 Pitch ratio 0.7151 AR (m2) 0.0106
Cb 0.831 Z 5 Λ 1.539
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3.3. Wind force model

To consider the influence of wind disturbances during ship
manoeuvring, famous Fujiwara et al. (1998) wind model is used for
calculating wind forces and moment. The following equations are
used for such calculation:

XW ¼ 1
2
CXρV

2
RAT

YW ¼ 1
2
CYρV

2
RAL

NW ¼ 1
2
CNρV

2
RALLOA

LOA, length over all of ship;
AT, transverse projected area of ship;
AL, lateral projected area of ship;
VR, relative wind speed;
XW, fore-aft component of wind force;
YW, lateral component of wind force;
NW, yawing moment;
CX, CY, CN, coefficients calculated using Fujiwara's model.

3.4. Gust wind consideration

Simulation of manoeuvring motion in actual sea necessities
wind effects consideration. A simple way of doing that is to apply
uniform wind loads. Previous researches based on the berthing
simulation mostly considered such uniform wind velocity. How-
ever, if we need a result which is closer to reality, we have to
consider the fluctuation of the wind velocity. In this research, the
following equation is used to make irregular wave pattern by using
power spectral density function S(ω):

ζðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ið1Þ=M

p
∑
M

m ¼ 1
cos ðωmtþεmÞ

where

a2m ¼ 2Ið1Þ=M; IðωÞ ¼
Z ω

0
SðωÞdω

ωm satisfies IðωmÞ ¼ ð2m�1ÞIð1Þ=2M
The power spectrum of wind expressed by Davenport (1967) is
used as follows:

SðωÞ ¼ 8πk
U2

10

ω
x′2

ð1þx′2Þ4=3
¼ 14:4U10

x′2

ð1þx′2Þ4=3

 !

M assigned integer number
K 0.003 above water surface
U10 average wind velocity at 10 m high above water surface
x′ nondimensional frequency ¼ ð600ω=πU10Þ

Thus by using inverse Fourier transform, the time series of
fluctuating wind is found.

4. Teaching data creation

4.1. Manoeuvring plan for berthing

In order to ensure safe and appropriate berthing manoeuver
the whole berthing procedure is divided into three basic elemen-
tary manoeuvres, such as minimum time course changing where

virtual window concept is used, step deceleration and finally
propeller reversing to stop the ship. In case of no wind condition,
during straight running along with imaginary line, no rudder angle
is taken. But in case wind disturbances, ship deviation from
imaginary line is adjusted by more sophisticated PD controller.

Kose et al. (1986) proposed two concepts by analysing the
manoeuvring procedure followed by the captain in case of real
large ship to ensure safety. One is that the goal of berthing
manoeuver is supposed to be at some interval distance before
pier instead of approaching the pier board to board. The second
one is planning a manoeuvre which allows a well-to-do operation
in case of any critical situation.

In this research, to ensure Kose's two proposed concepts, the
supposed berthing goal is assumed to be at a distance 1.5 times of
ship length from the pier. However, the ship approaches the pier
along with an imaginary line which makes an angle 301 with
the pier. Other one is that, to cope with any un-expected situation
rudder angle is restricted within 7101, 7151, 7201 or 7251
depending on its initial position on virtual window for course
changing and in case of wind disturbances, the PD controller
during straight running is restricted to take rudder angle within
751.

4.1.1. Virtual window creation for minimum time course changing
manoeuvre

Virtual window denotes that safety window which ensures
ship with any particular heading angle passing through its desired
position to reach imaginary line via course changing so that it can
continues with further deceleration to make successful berthing.
In this research, four different types of rudder restrictions are
considered as non-equality constraints to get their corresponding
virtual windows.

Nonlinear programing method is used in such cases to get
optimal steering which satisfies the constraints given in form of
termination conditions during course changing. Here, the objective
function is time which ensures minimum time steering and optimal
variable is command rudder angle. The constraint conditions used
in nonlinear programming method are shown in Table 2.

Virtual window construction is basically based on the findings
of several points where each point indicates a particular ship
heading angle to reach the imaginary line. To find such points
repeated optimisation technique is used where in each optimisa-
tion, ship's initial heading angle is changed by certain amount
keeping the termination conditions same. Fig. 3 demonstrates the
technique adopted in this research to find several points on a
particular virtual window.

Fig. 4 verifies the virtual window concept where ships with
different heading angles start from different points on a particular
window and merge with the imaginary line well ahead.

Table 2
Constraints used in optimal course changing.

Objective function Course changing time
Optimal variable Command rudder angle, δ-order

Initial conditions Ship velocity Half Ahead
Heading angle ψ

Position (x, y)
Others v¼0; r¼0; δ¼ 0

Termination conditions/equality
constraints

Heading angle 240 (deg)
Position On the imaginary

line
Ship velocity Free

Non-equality constraints Rudder
restriction

jδjr10=15=20=25
(deg)
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4.1.2. Deceleration and stopping manoeuvre
As Endo et al. (2003) have surveyed the contents of decelera-

tion manoeuvring during the real navigation cases, ships usually
approach the berthing goal by dropping the ship velocity step by
step as a standard deceleration manoeuvring. In this research,
deceleration manoeuvring is performed by dropping ship speed
from Half Ahead -Slow Ahead-Dead Slow Ahead -Stop Engine
step by step in a straight course. The step changing time is as much
as time constant Tp of ship speed response equation which is

shown in the following:

TP
dUðtÞ
dt

þUðtÞ ¼ KPnðtÞ

U(t), ship velocity (m/s)
n(t), propeller revolution (rps);
Tp, time constant;
Kp, gain.

In case of stopping manoeuvre, slow astern is used as telegraph
order. Since engine idling is followed by propeller reversing thus
engine idling time is also adjusted such that the ship can reach as
close as possible to the berthing point during propeller revering
stage. The total available distance considered during deceleration
and stopping manoeuvre is 15 times of ship length according to
IMO standard. Fig. 5 shows the execution of complete berthing
plan. Here, 1st and 2nd rows indicate the command ruder and
propeller revolution respectively and 3rd row is the corresponding
trajectory due to such action.

4.2. Teaching data creation

Initially no wind disturbances are consider while making
teaching data and such teaching data are used to train ANN in
no wind condition. But, since such teaching data does not include
any rudder angle during straight running, thus using the same
teaching data to train ANN in wind condition does not make any
sense as slow speed ship has high possibility to deviate from its
original path due to any small wind disturbances. As a result, new
set of teaching data are constructed including PD controller to take
appropriate rudder angle during straight running and make
successful berthing even in wind condition.

4.2.1. Teaching data for no wind condition
Considering the mentioned manoeuvring plan, teaching data are

created based on the ship's initial heading angle staring from 901 to
2301 (for 7101 restricted rudder angle) at 201 interval when ship
comes from left hand side of imaginary line and �2701 to 2301 at
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same interval in case of right hand side. Maximum rudder angle
taken in the teaching data is fully dependent on ship's initial
position and the corresponding virtual window. Fig. 6 shows the
set of constructed teaching data used to train ANN in no wind
condition.

4.2.2. Teaching data for wind condition
To make ANN understand about the influence of wind dis-

turbances, teaching data are reconstructed considering wind
speed as 0.2, 0.6 and 1.0 m/s and wind direction as 451, 1351,
2251 and 3151. Such teaching data also include PD controller
during straight running to cope the deviated ship position in low
speed. But, the command rudder angle during turning and the
telegraph order remains same as in no wind condition. Because,
such command rudder angle during turning as well as telegraph

order are expected to be modified by ANN itself after training
depending on wind influences.

5. Construction of neural network

Two separate feed forward neural networks are constructed for
command rudder angle and propeller revolution output respec-
tively instead of centralized controller as its effeteness has already
proved by Im and Hasegawa (2001) in previous researches.
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5.1. Training function, transfer function and performance function

Famous back propagation technique which is gradient descent
algorithm is used where the network weights are moved along the
negative of the gradient of the performance function. In this
research MATLAB Neural Network Toolbox is used where varieties
of training functions with different basic algorithms are available
to train the net. Among them training function based on Laven-
berg–Marquardt algorithm is used. This algorithm is designed to
approach second-order training speed without having to compute
the Hessian matrix like in quasi-Newton method. When the
performance function has the form of a sum of squares, then the
Lavenberg–Marquardt algorithm uses the following approxima-
tion to the Hessian matrix in order to follow Newton-like update:

xkþ1 ¼ xk�½JT JþμI��1JT e

J, the Jacobian matrix that contains first derivatives of the
network errors with respect to the weights and biases

e, a vector of network errors
μ, a scalar value.

If μ becomes zero, algorithm is same as Newton's method and
when large, it results gradient descent with a small step size. Thus μ
is decreased after each successful step when performance function is
also reduced and vice versa. In this way, the performance function
will always be reduced at each iteration of the algorithm.

In case of transfer function, log-sigmoid is found suitable which
is given as

f ðxÞ ¼ 1
1þe�x

And performance of the trained network is judged depending on
calculated mean squared error value (MSE). If the normalized
teaching data are considered in the following form:

fp1; q1g; fp2; q2g;…fpn; qng

P, input of network; q, target output.
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Fig. 9. Initial heading 1101with rudder restriction 7101. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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Consequently, MSE can be calculated as follows:

MSE¼ 1
n

∑
n

i ¼ 1
eðiÞ2 ¼ 1

n
∑
n

i ¼ 1
ðqðiÞ�OðiÞÞ2

O, output of network.

5.2. Construction of artificial neural network

In order to construct well trained net first we need to
investigate appropriate inputs for that net as well as number of
hidden layers and the corresponding number of neurons in each
hidden layer. In order to determine the suitable inputs, different

parameters are tested depending on the previous researchers'
preference and found the followings as suitable one.

For command rudder output, input parameters for the net are
v, sway velocity; r, yaw rate; ψ , heading angle; (x, y), ship's
position; δ, actual rudder angle; d1, distance to imaginary line;
d2, distance to berthing point.

For propeller revolution, input parameters are u, surge velocity;
ψ , heading angle; (x, y), ship's position; d1, distance to imaginary
line; d2, distance to berthing point.

Since there are no any existing rules how to select the hidden
layers and neurons, thus in this research such numbers are
determined by trial and error and observing the minimum
MSE value after each training period. In previous researches very
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Fig. 12. Average wind velocity 1.0 m/s, wind direction 3151, initial ship heading �2701 with rudder restriction 7101. (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this article.)
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Fig. 11. Average wind velocity 0.6 m/s, wind direction 2251, initial ship heading 1801with rudder restriction 7251. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this article.)
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limited set of teaching data were used to train which resulted a
very simple neural network construction with single hidden layer.
But here to learn the complex pattern of teaching data, two hidden
layers are found suitable enough with appropriate neurons to
ensure minimum MSE value. Different combinations of neurons
for the two hidden layers are investigated and that particular
combination which gives less MSE value is chosen. Fig. 7 demon-
strates the determination of neurons in each hidden layers for
minimum MSE value.

And the resulting multi-layered ANN can be demonstrated
in Fig. 8.

Here, the outputs from the hidden layers are given by

An ¼ sig ∑
n

n ¼ 1
Wn;oIoþbn

� �
Am ¼ sig ∑

m

m ¼ 1
Wm;nInþbm

� �

Finally, our respective output for rudder angles and propeller
revolution is given by

Ol ¼ purelin ∑
l

l ¼ 1
Wl;mAmþbl

 !

O, number of input parameters; n, number of neurons in 1st
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Fig. 14. Average wind velocity 1.0 m/s, wind direction 2251, initial ship heading 901 with rudder restriction 7151. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this article.)
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Fig. 13. Average wind velocity 1.0 m/s, wind direction 1801, initial ship heading 3201 with rudder restriction 7151. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this article.)
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hidden layer;m, number of neurons in 2nd hidden layer; l, number
of output; sig: log sigmoid function.

6. Verification of ANN in no wind condition

Verification of ANN has been done using not only the same
initial ship position and states with teaching data but also with
those different from the teaching data. Fig. 9 illustrates such
verification for same initial position and sates with teaching data
where Fig. 10 illustrates for completely different one. Considering
the left hand side of such figures, 1st row represents the trajectory
due to ruder action and propeller revolution change as shown in

2nd row, decided by the ANN itself. The right hand side of such
figures describe the time history of several parameters. Among
them the 3rd row represents the velocity drops and it clearly ends
with zero in both cases, i.e. ship stops near the pier successfully. In
those figures the squared dotted line around pier ensures the
assumed successful zone for berthing.

7. Reconstructed net for gust wind

The teaching data used in training net for no wind condition do
not contain any effect of wind disturbances, thus ship does not
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Fig. 16. Average wind velocity 1.3 m/s, wind direction 01, initial ship heading 1401 with rudder restriction 7151. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this article.)
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Fig. 15. Average wind velocity 1.5 m/s, wind direction 3151, initial ship heading 2501 with rudder restriction 7101.
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take any rudder angle while going straight along imaginary line.
But, it is not real while considering wind where ship must take
rudder angle to compensate its deviation from desired path. In
case of berthing, such action is very necessary as ship's velocity is
comparatively low enough to cause its deviation due to any small
wind disturbances from any direction. For that reason, teaching
data are reconstructed considering wind effect to train new set of
nets which can deal with any possible wind disturbances while
more sophisticated PD controller is used to prevent ship's devia-
tion during straight running.

Reconstruction of such teaching data also creates the opportu-
nity to investigate new set of input parameters to make under-
stand how situation differs for different wind speeds and
directions keeping other condition same. In such situation, surge
velocity has found to be suitable one to be added in addition as an
input parameter when training net for command rudder angle and
for propeller revolution output as it already contains the surge
velocity, no any extra parameter is needed.

7.1. Controllers throughout the berthing process in wind

Proper trained ANN with reconstructed teaching data is used
for course changing in case of command rudder angle output.

After merging with the imaginary line when going straight, as
ship's velocity is gradually reduced thus maintaining its desired
straight course becomes more sensitive than in course changing.
As a result instead of using ANN, more sophisticated PD controller
is introduced for the first time in berthing case. In this research the
following expression for PD controller is used where the corre-
sponding coefficients are decided by trial and error to ensure
earlier response during deviation:

δorder ¼ C1nðψd�ψÞ�C2nψ�C3nd1

)
if δorder400; δorder ¼ 50

if δorder ¼ 00; δorder ¼ 00

if δordero00; δorder ¼�50

8><
>:

9>=
>;

ψd, desired heading angle; d1, deviation from imaginary line;
C1¼0.30; C2¼0.08; C3¼0.010

Another aspect which is very important in berthing case is the
telegraph order which is based on the speed response equation.
In case of no wind, it is very easy to determine correct timing of
propeller revolution change but in case of gust wind distur-
bances, velocity drop curve is no longer predictable as it
changes with wind velocity together with its direction of
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Fig. 17. Wind direction 01, initial ship heading 1401 with rudder restriction 7151. (For interpretation of the references to color in this figure caption, the reader is referred to
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blowing. So, correct timing of changing propeller revolution need
to be determined by a proper trained ANN during the whole
berthing process i.e. in case of both course changing and straight

running. Such trained ANN in this research can ensure final ship
velocity reduction considerably low enough which is less than
0.05 m/s.
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Fig. 19. Initial heading 1601 from any arbitrary point. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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Fig. 20. Average wind velocity 1.5 m/s, wind direction 01, initial ship heading 2501 with rudder restriction 7101.
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Fig. 21. Average wind velocity 1.3 m/s, wind direction1801, initial ship heading �2701 with rudder restriction 7101.
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8. Verification of ANN-Pd in gust wind condition

8.1. Verification for teaching and non-teaching data

To verify the effectiveness of trained ANN with PD controller
during straight running, both teaching and non-teaching are
tested. When considering teaching data, same ship's initial posi-
tion and states are used with identical wind disturbances as used
while training net. On the other hand, in case of non-teaching
data, not only different ship states but also completely different
wind velocities and directions are tried to judge whether the
trained ANN can cope with such disturbances or not. And the
results are quite satisfactory in both cases. Figs. 11 and 12 illustrate
the effectiveness of ANN-PD controller when tested with same
teaching data provided. In such figures, two types of trajectories
are plotted. One is for ANN-PD controller in wind and other one is
for optimal steering without PD in wind. It clearly shows when
using PD controller, it succeed to prevent the ship's deviation even
in low speed. On the other hand, the red trajectory results due to
not using PD controller and ship simply deviates from its desired
path. Although in course changing, such deviation is not notice-
able due to high ship speed. Wind information is shown in 1st row
2nd column of each figure which is experienced by the ship during
such berthing.

On the other hand, Figs. 13 and 14 illustrate the validation for
ANN-PD controller when tested in completely different situations
than used in teaching data during training net. In such figures, 2nd
row 2nd column clearly shows how the ANN adjusts the propeller
revolution by elongating idling time or by considering engine
idling and reversing sequentially depending on situation demands,

where 2nd row 1st column shows the rudder angle which is
adjusted by ANN during course changing and PD controller during
straight running.

In most of the previous researches, consideration of maximum
wind velocity was very limited say 1.0 m/s for Esso Osaka model
ship. So, in this research one of the most changing tasks is to make
ANN-PD controller able to ensure successful berthing when con-
sidering severe wind over 1.0 m/s although teaching data contain
information upto 1.0 m/s. To judge such workability, average wind
velocities of 1.3 and 1.5 m/s are tested for different directions of
blowing. Figs. 15 and 16 demonstrate such validation where ANN
adjusts the propeller revolution and ANN-PD control the com-
mand rudder to ensure safe berthing.

Even though above figures show successful berthing results
using ANN-PD controller but due to the difficulties of accurate
prediction of wind disturbances and to verify the ANN-PD con-
troller in more real world situation, further researches are done
where three separate types of investigations are carried out. These
are given as follows:

(a) The effectiveness of ANN-PD controller is tested for any
particular ship's initial states and increasing the wind velocity
gradually keeping the direction same in every case.

(b) Different gusts for same average wind speed and directions are
tested for same ship's initial states.

(c) Eight different wind directions are tested for particular aver-
age wind velocity and ship's initial states.

The following subsections will explain about such investigation
results.
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Fig. 22. Average wind velocity 1.5 m/s, initial ship heading 1801 with rudder restriction 7251. (For interpretation of the references to color in this figure caption, the reader
is referred to the web version of this article.)
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8.1.1. Verification for different wind speeds
To verify the controller's effectiveness for different wind

speeds, ship with any particular initial states is tested for gradually
increasing wind speed in each case. Although many successful
results are found during such investigation but some rare cases are
also found where ANN provides proper propeller revolution order
but due to inappropriate rudder angle used in PD controller during
straight running, ship cannot reach the pear successfully. Fig. 17
shows one such examples where ANN-PD controller is capable
enough to guide the ship safely to the berthing zone upto 1.0 m/s
but for 1.3 or 1.5 m/s it fails as shown in rows 3 and 4.

To deal with such rare situation which may arise in real cases, a
revised rudder angle is proposed to use for PD controller during
straight running which is 7101 instead of 751. Fig. 18 demon-
strates its effectiveness where successful berthing is ensured even
in such cases where PD with 751 fails as found in 3rd and 4th
cases of Fig. 17 for average wind speed 1.3 and 1.5 m/s. Therefore
for further investigation, ANN controller followed by newly
proposed PD controller is used during straight running to judge
the workability of ANN-PD controller.

Using that modified PD controller the following figure is also
analysed to judge the interpolation ability of ANN. In Fig. 19
considering the 1st row, the red and blue lines indicate the
surrounded teaching data when ANN is tested for any arbitrary
point in mid of 7101 and 7151 virtual windows as shown in
black line with initial ship heading 1601. It is also mentioned that
teaching data contains only 1501and 1801 ship heading informa-
tion considering the nearest value of tested condition. Here the
average wind velocity is 1.3 m/s and direction is 3151 for the tested
condition. It is clearly noticeable that the course changing pattern
is similar to its surrounded teaching data and the rudder angle

shown in 2nd row 1st column is a combination of 101 and 151 for
course changing which is expected one.

8.1.2. Verification for different gust distributions
Different gust distributions for same average wind velocity are

also investigated to judge the controller's effectiveness. Such
investigation also provides importance to consider the gust wind
instead of uniform one, as the resulting ship trajectories as well as
controlling action may vary drastically for different fluctuating
patterns of same average wind velocity. The following sets of
figures illustrate such validation for ANN-PD controller. In such
figures 1st and 4th rows of 2nd column show different gust
distributions although the average is the same.

Here, Fig. 20 shows almost similar trajectories for different
gusts but the PD controller's output as well as adjustment for
propeller revolution by ANN are completely different. On the other
hand, noticeable differences are found in trajectories for Fig. 21.
But in both cases ANN-PD controller can ensure successful berth-
ing by taking proper rudder angle and propeller revolution
depending on situation demands.

8.1.3. Verification for different wind directions
Wind can blow from any possible direction thus the effective-

ness of ANN-PD controller needs to be investigated for different
wind directions together with different velocities. For that pur-
pose, ships with different initial states are tested for any particular
average wind speed and different wind directions. Fig. 22 shows
the simulation results for different wind directions considerations
while keeping the average wind velocity and ship's initial states
same. During such investigation, maximum average wind velocity
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Fig. 23. Average wind velocity 1.3 m/s, wind direction 01, initial ship heading 1401 with rudder restriction 7151.
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of 1.5 m/s is used with eight different directions of blowing at 451
interval.

8.2. ANN-PD controller in severe wind near pear

In the previous stages of this research, when using PD con-
troller with restricted rudder angle 751 it was investigated by
Ahmed and Hasegawa (2012) that stopping with higher reversing
propeller revolution may become necessary in some limited cases,
depending on strong wind blowing near pear over 1.0 m/s average
velocity. Since, the final position to stop the ship in case of
berthing is very crucial, thus such criterion was investigated
depending on ship's position before stating reversing and pro-
posed as following:

If the ship's position before reversing propeller becomes less
than 0.9 times of ship length from the berthing goal point then
reversing with half astern is better than using slow astern. Thus in

such cases, ANN result for slow astern are substituted by half
astern value.

Considering such modification, the following figure demon-
strates the simulation result while using half astern ensures earlier
stopping of ship when compared with previous result.

This kind of modification is proposed for emergency cases
when ANN fails to make early reversing and the remaining
distance to stop the ship becomes less than 0.9 times of ship
length. But for further research, when same ANN-PD controller is
tested for different wind speeds and different ship's initial sates as
explained in previous subsections, it has been found in some cases
even using PD controller with restricted rudder angle 751 it may
become difficult to make successful berth due to severe wind
disturbances. In this research, such cases are investigated with
newly proposed PD controller where 7101 instead of 751 is used
and found satisfactory results as shown in Fig. 18. Considering the
newly proposed PD controller, cases with severe wind near pear
are also investigated where half astern may become necessary if
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Fig. 25. Average wind velocity 1.5 m/s, wind direction 3151, initial ship heading 3601 with rudder restriction 7201.
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PD controller with 751 is used during straight running as shown
in Fig. 23. Figs. 24 and 25 demonstrate some results in case of
severe wind near pear while modified PD controller is used during
straight running.

The above figures clearly show that when using modified PD
controller, there is no need of half astern although severe winds
are observed near pear. This is because the PD controller here is
sufficient enough to take adequate rudder angle to prevent much
deviation and ANN adjust the propeller revolution according
to demand to make successful berthing. Therefore, the ANN

controller with modified PD may treat as alternative solution to
avoid any possible higher reversing astern while berthing.

8.3. Optimal-PD controller versus ANN-PD controller

This kind of comparison emphasises the necessity of using ANN to
judge correct timing of propeller revolution change online, while
only PD controller to adjust the ship's deviation from imaginary line
may fail for higher wind condition. In this research the created
teaching data are so consistent that proper training with such set of
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Fig. 27. Average wind velocity 1.3 m/s, wind direction 2701, initial ship heading 3601with rudder restriction 7251. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this article.)
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teaching data enhances the ability of trained ANN to judge correct
telegraph order depending on ship's velocity and other input para-
meters available. Therefore, ANN with PD controller works success-
fully in most cases where optimal with PD controller fails due to the
failure of judging correct timing of propeller revolution change.
Figs. 26 and 27 illustrate such comparison for severe wind distur-
bances like 1.3 m/s or 1.5 m/s. And the difference in the trajectories is
shown in enlarged form as 1st row 2nd column of each figure.

Here, Fig. 25 shows how ANN elongates the engine idling time
to allow the ship to go further and then finally followed by
reversing to stop the ship within the successful berthing zone.
On the other hand Fig. 26 shows ANN reduces the idling time as
situation demands to make successful berthing where improper
idling time causes berthing failure.

9. Conclusions

This research starts with an intention to create automatic and
more consistent teaching data in order to train neural network for
berthing cases and judge the ability of trained ANN in presence of
gust wind disturbances which is more realistic one and not yet
consider in previous researches. The main conclusions of this research
are given as follows:

(a) To predict the hydrodynamic behaviour of subject ship while
creating teaching data, mathematical model is modified and
results from that modified model are compared with experi-
ment results for both port and starboard turning. Such
comparison results are found quite satisfactory.

(b) New way of creating teaching data using nonlinear program-
ming (NPL) method is proposed to ensure optimal steering and
by considering the technique of repeated optimisation, virtual
windows are constructed to prepare whole set of teaching data.
The concept of virtual window creation enable the teaching
data to include not only variations in ship's initial heading angle
and position but also in operated command rudder angle for
the first time which offers greater flexibility to the created Net.

(c) To make the controller more robust and to learn such complex
relationship, double hidden layer concept is introduced with
minimum MSE value where more improved Lavenberg–Mar-
quardt algorithm in back propagation technique is used as
training function to create two separate feed forward nets for
command rudder and propeller revolution output respectively
instead of centralized controller.

(d) No wind conditions are tested with trained ANN where
satisfactory results are ensured not only for teaching data
used but also for non-teaching data.

(e) In order to consider wind disturbances during berthing, gust wind
instead of uniform wind is investigated for the first time to train
ANN. Such trained ANN is proposed to be followed by a more
sophisticated PD controller with rudder restriction of 7101 during
straight running for controlling command rudder and other
separately trained ANN is used for judging propeller revolution
change throughout the whole berthing process. The proposed
ANN-PD controller is well verified to proof its combined effec-
tiveness even in completely different situations than in training
session where eight different directions of wind with maximum
velocity 1.5 m/s (15 m/s for full scale) is considered which is also
regarded as maximum one in most ports in Japan for berthing.

(f) Different gusts for same average speed are investigated for
same wind direction to verify the ANN-PD controller's work-
ability and found satisfactory.

(g) In case of severe wind blowing near pear, the ANN-PD
controller is again proved by investigating different ship's
heading angles and positions.

For further research, it is very important to perform experiment
to judge the effectiveness of ANN-PD controller in real cases.
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