Ship Manoeuvrability and Its Control - Thirty Years Research Review -

Kazuhiko Hasegawa Osaka University Japan

Dalian Maritime University, 29 Oct., 2010

Background and History of the Research

- Ship manoeuvring research in 1970s
- Autopilot for saving energy
- Necessity of the research of man-machine System
 - Developing a ship handling simulator, as one of the oldest ones in the world
- Developing standard mathematical model of ship manoeuvring

VLCCs

Ship Manoeuvring Model before 1970

- David and Schiff Model
 - Davidson, K.S.M., and L.I. Schiff, Turning and course keeping qualities. Trans. SNAME, Vol. 54, 1946.
- Abkowitz Model
 - Abkowitz, M.A., Lectures on Ship Hydrodynamics -Steering and Manoeuvrability. Hva Report no. Hv-5. 1964
- Nomoto's K-T Model
 - First order Model
 - Second order model
 - Second order non-linear model
- Necessity to develop a model for new types of ships

Model Ship Experiments

Model Ship Experiments

Ship Manoeuvring Model in 1970s

- · David and Schiff Model
- Abkowitz Model
- Nomoto's K-T Model
 - First order Model
 - Second order mode
 - Second order non-linear model
- Necessity to develop a model for new types of ships

Ship Manoeuvring Model in 1980s

- Necessity to develop a model for new types of ships
 - MMG model (module type mathematical mode considering hull, propeller, rudder and their interactions respectively)
- Still now several variation of MMG model exists
- Some extended MMG models applicable for twinpropeller ship, for shallow water etc. exist

Background and History of the Research

- Ship manoeuvring research in 1970s
- Autopilot for saving energy
- Necessity of the research of man-machine System
 - Developing a ship handling simulator, as one of the oldest ones in the world
- Developing standard mathematical model of ship manoeuvring

Adaptive Autopilot

- Model Reference Adaptive Control
 - Amerongen, J. van and A.J. Udink ten Cate, Model reference adap autopilots for ships, Automatica, Vol. 11., pp 441-449, 1975
- Self-tuning Control
- Källström, C.G., K.J. Åström, N.E. Thorell, J. Eriksson and L. Sten, Adaptive autopilots for steering of large tankers, Report Department of Automatic Control, Lund Institute of Technology, Lund, Sweden, 1977
- Stochastic Mode
 - Ohtsu, K., M. Horigome, G. Kitagawa, A new ships autopilot design through a stochastic model, Automatica, Vol 15, pp. 255-268, 1979
- Adaptive Control
 - Tiano, A., E. Volta, A.W. Brink and T.W. Verbruggen, Adaptive control of largeships in non-stationary conditions a simulation study, Proceedings Symposium on Ship Steering Automatic Control. Genova, Italy. 1980
- et

Cost Function of Fuel Consumption

- Kovama's criterion J=ψ2+λδ2
- Koyama, T. On the optimum automatic steering system of ships at second system.
- Norrbin, N.H., On the added resistance due to steering on a straight course, 13th ITTC. Berlin, Hamburg, 1972
- Clarke, D., Development of a cost function for autopilot optimization, Proceedings Symposium on Ship Steering Automatic Control, Genova,
- Blanke, M. and J.C. Nortoft Thompson, Experiment with direct measurement of steering generated propulsion losses, 6th Ship Control Systems Symposium, Ottawa, Canada, 1981
- Hasegawa's criterion
 - K. Hasegawa: On a Performance Criterion of Autopilot Navigation, Journal or the Kansai Society of Naval Architects, Japan (J.KSNAJ) 178, pp.93-103, Sep.,
- etc

Background and History of the Research

- Ship manoeuvring research in 1970s
- Autopilot for saving energy
- Necessity of the research of man-machine System
 - Developing a ship handling simulator, as one of the oldest ones in the world
- Developing standard mathematical model of ship manoeuvring

First Generation Ship Handling Simulator (1974)

- Feasibility study on instability criterion of human ability to control a VLCC (SR151, Japan)
 - Nomoto, K., Simulators from the naval architects point of view, Proceedings of MARSIM, Southampton, LIK 1978
 - T. Koyama, K. Kose and K. Hasegawa: A Study on the Instability Criterion of the Manual Steering of Ships (in Japanese), J. of the Society of Naval Architects of Japan (J.SNAJ) 142, pp.119-126, Dec., 1977

First Ship Handling Simulator in the world (Hiroshima University, 1970)

SR151 Ship Handling Simulator (1974)

Background and History of the Research (contin'd)

- Developing intelligent ship control systems including
 - collision avoidance
 - berthing/deberthing control
- Developing a tool for safety assessment in congested waterways
- Developing standardisation of mathematical model of ship manoeuvring in low speed and/ or in shallow water etc

Automatic Collision Avoidance

- Fuzzy Reasoning and Contro
 - A. Kouzuki and K. Hasegawa: Automatic Collision Avoidance System for Ships Using fuzzy Control (ir Japanese), J.KSNAJ 205, pp.1-10, June 1987
 - K. Hasegawa: Fuzzy Modelling of the Behaviours and Decision-Making of Ship Navigators, Proc. of 3rd International Fuzzy Systems Association (IFSA)Congress, pp. 663–666. Seattle, Aug. 1989
- Expert System for Multiple Ship Encounter
 - K. Hasegawa, A. Kouzuki, T. Muramatsu, H. Komine and Y. Watabe: Ship Auto-navigation Fuzzy Expert System (SAFES) (in Japanese), J.SNAJ 166, pp.445-452, Dec. 1989

Automatic Collision Avoidance Experiment

Automatic Collision Avoidance Experiment

Background and History of the Research (contin'd)

- Developing intelligent ship control systems including
 - collision avoidance
 - berthing/deberthing contro
- Developing a tool for safety assessment in congested waterways
- Developing standardisation of mathematical model of ship manoeuvring in low speed and/ or in shallow water etc

Automatic Berthing Experiment

Automatic Berthing Experiment

Background and History of the Research (contin'd)

- Developing intelligent ship control systems including
 - collision avoidance
 - $-\ \mathsf{berthing/deberthing}\ \mathsf{control}$
- Developing a tool for safety assessment in congested waterways
- Developing standardisation of mathematical model of ship manoeuvring in low speed and/ or in shallow water etc

Background and History of the Research (contin'd)

- Developing intelligent ship control systems including
 - collision avoidance
 - berthing/deberthing control
- Developing a tool for safety assessment in congested waterways
- Developing standardisation of mathematical model of ship manoeuvring in low speed and/ or in shallow water etc

Automatic Navigation in Slow Speed by Single-propeller Twin-rudder Ship

Automatic Navigation in Slow Speed by Single-propeller Twin-rudder Ship

Automatic Navigation in Slow Speed by Single-propeller Twin-rudder Ship

Automatic Navigation in Slow Speed by Single-propeller Twin-rudder Ship

Concluding Remarks

- Ship manoeuvrability and its prediction are long-time subject.
- It cannot be separated with human and autopilot behaviours and with environmental disturbances.
- New devises, new theories and new ideas to overcome these important issues are highly recommended to be searched by younger generation.