AIS活用の展望
—その概要と最近の応用例から—

正会員 小林英一* 正会員 長谷川 和彦**

1. AISの概要

AISはAutomatic Identification System（自動船舶識別装置）の略で、船舶が安全に航行できるこ
とをねらい、船舶の識別符、種類、位置、航路、速度、航行状態などの情報をVHF帯電波で自動的
に船舶間あるいは陸上局の間で送受信する船舶に装
備される機器である。2002年7月1日に発効され
た「1974年の海上における人命の安全に関する条
約（SOLAS74）」第Ⅷ章を受け、国内法では次の船
舶に対するこのAIS装置の搭載が義務づけられている。

(1) 国際航海に従事する300総トン以上の全て
の船舶
(2) 国際航海に従事する全ての旅客船
(3) 国際航海に従事しない500総トン以上の全
ての船舶

AISで送信されるデータには次のようなものに
分類される。

(1) 動的情報：位置情報（別途搭載されている
GPSで取得される緯度経度）、時刻（UTC）
航路（COG: 対地）、速度（SOG: 対地）、船
航位（ジャイロから）、回頭角速度（ROT）
※、航海の状態（航行中、アンカリング中、
接岸中、等）、傾斜角、ピッチ角
※利用できる場合

(2) 静的情報：MMSI番号、船名、呼び出し符
号（コールサイン）、IMO番号、航路、船名、
船の種類、測位（GPS）アンテナ、危
険物の種類

(3) 航海関連情報：喫水、目的港（港名）、入坑
予定時間（ETA: Estimated Time of
Arrival）、その他の航行情報（テキスト）

このSOLASで装備が規定される船はClass A
局と呼ばれVHF帯電波を使用し出力は12.5Wであ
るが、このほかに搭載義務のない小型船舶用の

Class B（出力は2W）と呼ばれる簡易型AISもある。
AIS情報の送信間隔は表1に示すとおりである
が、搭載義務が無い小型船舶については速力がかな
り速いものもあるにも関わらず、送信間隔が最小で
も30秒と長く、本来危険回避のための情報提供が
目的であるAISの導入主催から考えてなんらかの
改善が必要であろう。

表1 AIS動的情報の送信間隔（Class A）

<table>
<thead>
<tr>
<th>船舶の状態</th>
<th>送信間隔</th>
</tr>
</thead>
</table>
| 停泊中もしくは静止中、3ノット以上で動
かない | 3分 |
| 停泊中もしくは静止中、3ノット以上で動く | 10秒 |
| 0から14ノットまでで航行する船舶 | 10秒 |
| 0から14ノットまでで航行する変針中の船舶 | 3〜13秒 |
| 14から23ノットまでで航行する船舶 | 6秒 |
| 14から23ノットまでで航行する変針中の
船舶 | 2秒 |
| 23ノット以上で航行する変針中の船舶 | 2秒 |

表2 AIS動的情報の送信間隔（Class B）

<table>
<thead>
<tr>
<th>船舶の状態</th>
<th>送信間隔</th>
</tr>
</thead>
<tbody>
<tr>
<td>対地船速が2ノット以下</td>
<td>3分</td>
</tr>
<tr>
<td>対地船速が2ノットより大きい</td>
<td>30秒</td>
</tr>
</tbody>
</table>

2. AISの通信方式

AISは、1分間に2,250個のタイムスロットに分
割し、その1スロットを使ってITU勧告ITU-R
M.1371-12に定められたメッセージを送信する。
現在は、二つの波波帯を使って通信を行うので1
分間に4,500個のスロットをメッセージの送信に
使用することができる。スロットの管理は、多元接
続方式を採用しており、周辺の船舶から送られる
メッセージに影響を受けながら4,500個のスロット
をそれぞれの船舶が自己管理する。メッセージの
主な目的は、他船から送られてくるメッセージを欠
かさず受信するために、自船のメッセージ送信が他
船のメッセージ送信のタイミングと重ならないよう

* 神戸大学大学院海事科学研究科
** 大阪大学大学院工学研究科
にすることである。

航行中、最も多く使われる通信方式であるSOTDMAでは、自船の位置情報と次に送信に用いるスロットの予約情報を同時に送信する。このメッセージを受信した船は、送信元の船が次にどのスロットを使って送信を予定しているのかを知ることができるため、その予約されたスロットを避けて送信することができる。このようにSOTDMAでは、複数の船が同じスロットを使ってメッセージを送信しないような工夫がなされている。図1にSOTDMAの概念図を示す。

図1 SOTDMA方式によるAISスロット予約の概念図

図2のCase1では、船Aと船Bは互いの電波が受信できる場所に位置し、船Cは船Aと船Bの電波が届かない場所に位置している。この状況において、船Aと船Bは互いのメッセージを受信しうることができるが、船Cは船Aと船Bとはメッセージの交換は行えない。つまり、スロット番号6に見られるように船Aと船Cが同一スロットを使ってメッセージを送信しても不都合は生じない。

一方、図2のCase2（下の図）では、船Aと船B、そして船Bと船Cは互いの電波が受信できる場所に位置し、船Aと船Bは互いの電波が届かない場所に位置している。この状況においても、船Aと船Bは互いのメッセージを通信しあうことができる。また、船Bと船Cも互いのメッセージを通信しあうことができる。つまり、船Aと船Bは船Aと船Cの両船船とメッセージの交換を行うことができる。もし、スロット番号6に見られるように船Aと船Cが同一スロットを使ってメッセージを送信すると船Bの電波の状態により、いずれかのメッセージ、もしくは2者ともメッセージを受信できない。このような状態をメッセージの衝突（Collision）と呼ぶ。メッセージの衝突による通信エラーは、お互いの電波の強弱により、衝突して受信（Receive stronger message）あるいはどちらのメッセージも受信できない混信（Garble）に分けられる。メッセージの衝突が多発すると各船の情報伝達が遅れ、AISの運用に支障をきたす。

こうした状況をそのまま模倣し、与えられた海域の与えられた船舶交通流の中で、AISのスロットの占有状況やスロットの衝突、混信を分析できるのがAISシミュレータである。本システムを用いて、実際に、東京湾でのClassB AISの導入に関する検討が行われた。

実際には、送信局（船または陸上局）からの距離の2乗に比例するAISの通信パワーの減少に伴う通信エラーが見られ、橋などの障害物による通信エラーも存在する。実際に、通信パワーや受信エラー
の実態調査も行われている。今後ますます、AISの活用が進むにつれ、こうした受信エラーの改善なども課題のひとつと言える。

3. 船舶以外からのAISデータの受信

AISは航路の安全性確保・向上の観点から船舶に搭載される電波を送受信するシステムを本来指すが、海上を航行する船舶から発信される航行情報データが含まれる電波を受信専用装置を使い活用しようとする動きが活発である。代表的な受信装置の例を図4に示す。AISデータはこの装置からパソコンに逐次取り込まれるのが通例である。このような受信専用装置を活用した代表的なもの一つにMarine Traffic（http://www.marinetrack.com/ais/）がある。ここでは世界中の船舶の航行状況が示されている。これはインターネット接続のパソコンと、AIS受信装置をつなぎ、当該Webサイトで指示される手順を踏むとMarine TrafficにそのAIS受信装置で取得される船舶情報が載り、その情報をWebを介して世界に発信される。このWebサイトには検索機能もあり探そうとする船舶がどこにいるかも容易にわかる（図5はあるときの上海付近の様子である）。

また近年では小型実証衛星4号（SDS-4、2012年5月打ち上げ、高度800kmの周回衛星）の一つのミッションとして衛星搭載船舶自動識別実験（SPAE : SPace based AIS Experiment）が行われている。これは洋上船舶から送信されたAIS信号を衛星で受信し従来より広い範囲の船舶動態を把握しようとするものである。

(http://www.satnavi.jaxa.jp/spaise/gaiyo.html)

周回軌道と衛星情報時間の関係をすべての海域で船舶情報リアルタイムで把握することは難しいが、沿岸域から離れた陸上のAIS受信局では把握の難しい洋上航行船舶の情報が入手できるので、今後の技術発展が期待される。

4. AISデータを活用した研究

現在、AISは船舶の安全航行に寄与しているだけではなく、AIS受信装置や実船でのAISデータを活用した研究が数多くされている。日本船舶海洋工学会ではオーガナイズドセッションをこの年来、2回開催しているほか、日本航海学会などの関連学会でも解説や展示を含めて取り上げられているほか、研究論文も多い。ここでは、それらのいくつかを紹介する。

陸上局で受信されたAISデータをもとに、航海士へのアンケート調査を行い、図6に示すように、AISデータに基づいて航行船舶に関して自船・他船の航路、大きさ、航速など様々な因子を総合的に考慮して解析し航行の安全性を評価する試みがなされている。
また航行する船舶の投録による海底敷設のガスパイプラインの破損リスクの推定にAISデータを活用しようとする事例もある。これらは図7に示す海域でパイプラインの位置と航行船の種別や航行密度、過去の誤投録によるパイプライン破損事故の統計データなどから評価しようとするものである。

さらに、AISを将来の航行支援システムに応用する研究も始まっており、こうしたシステムが実際に活用される時代の近い。

また、変わったところでは、AISデータを用いて航行する船舶の操縦性指数（いわゆるRTKモニ）を推定する試みが行われている。変針を含むデータを用いて、AISデータには含まれていない航線の情報を実際に航路を推計する航路をその絶対値を探査し、操船のタイミングを非線形計画法を用いて求めた推定する方法である。これに関しては船の大きさや船種からの初期値を推定し、さらに、Kの比がほぼ一定になることを用いて求めていている。潮流や風の影響を含んだ船舶の運動を船体固有の操縦性能として同定している点など、まだ、改善を要するものの、AISデータを静的データである航路などのデータや動的データである航跡や船首方位以外のデータ取得に活用しようとしたものであり、AIS利用のひとつのが将来性を示したものと言える。

5. おわりに

AISの概要とAISを活用した研究を中心に紹介した。AISの活用はSOLAS74で義務づけられたことから急激に広まり、現在では、ほとんどの船舶が装備されていると言ったも過言ではない。多くの類似の設備がそうであったように、AISが整備されると常足って海難事故が激減するわけではなく、昨年1月にイタリアで起こったCosta Concordia号の船礁事故のように、事故は繰り返し、起こる。ここで、紹介したAISを活用した研究がこうした事故対策にどれだけ役立つかは別として、AISへの期待は大きい。また、本来の目的以外の用途も応用もすでに紹介した中からも出つつある。

神戸大学では世界の海事系大学を中心としたAISデータアーカイブネットワークを構築している。世界の主要な港湾海域でのデータが蓄積されている。大阪大学では、AISデータを操船シミュレータや航海海域シミュレータと呼ばれる訓練教育設備や安全性評価手法と組み合わせることにより、これまで、難しかったより現実的な海上交通状況の再現に取り組んでいる。

最後に、的な話をしてみる。3．で紹介したような新しいサービスやシステムも次々と始まっていく。国家情報のセキュリティのため、4台のコンピュータを電話回線を利用し、音響クラウドで統合して始まったインターネットだが、いまや、おじいちゃん、おばあちゃんの家の間にあるフォトフレー
ムへ動物園にいる猿の写真を携帯電話から指一本でリアルタイムで届けることができるまでに発達したように、もともとは船舶の安全な運航を支えるための道具であったAISが、近い将来には、誰でもが気軽にアクセスできるようになるであろう。そうすれば、コストやICタグ情報とAIS情報の合わせることにより、たとえば、イタリアから取り寄せた商品がいま、どの船どこにあるのかリアルタイムでチェックできる日も近いかもしれない。

法律で規定されている場合でも、あるシステムが普及するまでは、ある程度、通達が日本でさえ、パーカーのヘルメットや車のシートベルトが普及するのに約10年かかった。技術革新に至っては、数々の悲惨な事故が繰り返され、間違が重ねられて、ようやく、モラルとして定着した。その意味からは、AISの普及は鷹でも遠い。

重要な商品の運搬管理や安全の事故への対応、海賊や不審船対策などへの応用も新しいビジネスチャンスとなるであろう。その理由には、通信速度、密接、そして、セキュリティという通信装置として不可欠な要素技術のますますの発展が必要であるし、期待されているであろう。

最後に、誌面の都合上、すべての研究が紹介できなかったことをお詫びしたい。

参考文献
1) 災害通信研究会：AISシミュレータ、日本船舶海事工学会論文集、第8号、2007。
3) 災害通信研究会：AISシミュレータを用いたAIS通信の評価、Class B AIS搭載設備装置の影響、日本船舶会計学会論文集第117号、2007。
4) 福田淳司：AISの実海域実験報告、NAVIGATION、第15号、pp.73-78、2002。
5) 長谷川和彦他：災海域の受信記録に基づくAIS通信の整備と通信エリアの分析（仮題）、日本海学会議論文提出予定、2013。
6) 加納聪幸他：次世代ナビの概要とそのコンテンツ情報-AISデータを利用した海事状況、物流情報解析及び海洋情報及び海洋情報について、NAVIGATION、第178号、pp.28-34、2011。
7) 萩野市也：Class-B AISの紹介とAISの将来展望、NAVIGATION、第182号、pp.70-73。
8) 杉村浩一：AISとVTSの活用、計画と制御、Vol.50、pp.405-410、2011。
9) Soojin Hwang他：The Evaluation Method of Dangerous Score in Ship Navigation Using AIS Data、日本船舶海洋工学会論文集第10号、pp.271-272、2010。
11) Yeyes Mulyadi他：Estimate of Subsea Gas Pipeline Accident Consequence in the Madura Strait Using AIS Data、日本船舶海洋工学会論文集第15号、pp.291-294、2012。
12) 丸山人彦：東京湾北部における船舶交通に関する研究-AIS情報に基づした海上交通の解析、日本海学会議論文集第126回、第14号、pp.31-34、2012。
13) 黒本一也他：AISデータを活用した海上交通流シミュレーションについて、日本船舶海洋工学会論文集第14号、pp.31-34、2012。
14) 平尾好弘他：AISによる本州近海の船舶動態と衝突頻度の変化、日本海学会議論文集第125号、pp.43-46、2011。
15) 牧野秀成他：津波警報発令時における避難の対応、船舶の避難・避難行動に関する調査研究、日本海学会議論文集第125号、pp.191-197、2011。
16) Makino, H.他：Analysing Subject Ship Behaviour Recorded by AIS to Extract Tsunami Effect - In Case of The 2011 Tohoku Earthquake and Tsunami-、日本船舶海洋工学会論文集第14号、pp.27-30、2012。
17) 南原喜子他：AISを用いた協調型航行支援システムについて、日本船舶海洋工学会論文集第14号、pp.277-280、2010。
18) 南原喜子他：AISを用いた自動航行思想サプライシステムの構築、日本船舶海洋工学会論文集第14号、pp.35-38、2012。
19) 長谷川和彦他：AISを活用した航行確保システムに向けたフィジカルスタディ、日本船舶海洋工学会論文集第14号、pp.39-42、2012。
20) 野本謙作他：船舶の操縦性について（2）、造船協会論文集第101号、pp.57-66、2011。
21) Nakano, T.他：An Attempt to Predict Manoeuvring Indices Using AIS Data for Automatic OD Data Acquisition、日本船舶海洋工学会論文集第14号、pp.49-52、2012。