復元菱垣艦「浪丸」の実船実験における
高精度 GPS による船位、方位の計測

木下正生*2, 寺田幸博*2, 柿本英司*2, 正会員 一色浩*2, 正会員 柿本孝史*3, 正会員 長谷川和彦*4, 平田法隆*5, 正会員 小瀬邦治*5

High Precision GPS Measurements of the Position and the Direction of Restorated Higaki Kaisen Naniwa-maru at the Sailing Experiments in Osaka-bay

By Masao KINOSHITA, Yukihiro TERADA, Hideshi KAKIMOTO, Hiroshi ISSHIKI (Member), Takahumi ENOMOTO (Member), Kazuhiko HASEGAWA (Member), Noritaka HIRATA and Kuniharu KOSE (Member)

Higaki Kaisen which is the most popular Japanese sailing ship in Edo-era was restored by Osaka-city and was completed by Hitachi Zosen Corporation in July, 1999. Naniwa-maru, the name of the ship, is 29.9 m in length and 150 t in displacement. To test the sailing performance, experiments were conducted in Osaka-bay for two weeks in the same month.

To clarify the sailing performance, it is quite necessary to measure the ship position, speed and direction accurately. The high precision GPS has the accuracy of 2 cm, and is very suited for this kind of measurements. The measuring system using the high precision GPS and the results are discussed.

Keywords : Higaki Kaisen, Naniwa-Maru, Edo Era, GPS, Position, Direction

1. はじめに

江戸時代の代表的な帆船である菱垣艦が大阪市に よって復元建造され、平成11年7月に日立造船(株) において竣工し「浪丸」と命名された。同船は全長 29.9m、排水量150 tonで、できるかぎり当時と同じ材 料と工法を用いて建造されている。その帆走性能を確 かめるために、同年7月から8月にかけて大阪湾にお いて2週間だけ海上帆走実験が行われた。

帆走性能を求めるには、船の位置、速度、方位 を正確に計測することが極めて重要である。高精度

GPS は数 cm の精度が出来るので、このような目的には 最適である。そこで、主計測の他に、GPS 計測を担 当する副計測班がボランティア・グループとして作 られた。副計測班が実験に用いた計測システムと計測結 果を報告する。

2. 計測の計画

まず、GPS で計測する目的を述べる。計測は、本船(浪丸) と伴走船（レインボウ：桜井教授所有のクルー ス・ヨット）で行われた。伴走船において、対地速度を KGPS(Table1参照)で計測するとともに、対水速度を プロペラ式対水速度計で、船首方位を GPS ジャイロ Tans-Vector (Table1参照)およびフラックスゲートコ ンパスで計測する。このようにして得られた対地速度、 対水速度、船首方位から、潮流速度を求めめる。一方、 本船においても、対地速度を KGPS で計測し、伴走船 で計測した潮流を引いて、本船の対水速度を出す。以

—173—
Table 1 Various kinds of GPS system and their accuracy.

<table>
<thead>
<tr>
<th>Measurement type</th>
<th>Signal</th>
<th>Accuracy</th>
<th>Reference point</th>
<th>Worst case</th>
<th>Trimble's product name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>Code</td>
<td>with SA:15m without SA:100m</td>
<td>Not required</td>
<td>Geo. Explorer II</td>
<td>When used as DGPS, the accuracy is 5m</td>
</tr>
<tr>
<td>HDGPS +Reference pt.</td>
<td>Code</td>
<td>1m 0.05m/s</td>
<td>Required</td>
<td>ProBeacon DMS12RS DMS212H</td>
<td>High precision DGPS by carrier Phase</td>
</tr>
<tr>
<td>DGPS +Beacon</td>
<td>Code</td>
<td>10m</td>
<td>Beacon by MSA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDGPS +Beacon</td>
<td>Code</td>
<td>1m 0.05m/s</td>
<td>Beacon by MSA</td>
<td>Conventional DGPS +Beacon</td>
<td>High precision DGPS by carrier Phase</td>
</tr>
<tr>
<td>RTK (Online measurement)</td>
<td>Carrier phase</td>
<td>horizontal:2cm vertical:4cm</td>
<td>Electronic reference pt. (Sakai or Kumatori)</td>
<td>Single</td>
<td>4000SSI</td>
</tr>
<tr>
<td>Kinematic (Offline measurement)</td>
<td>Carrier phase</td>
<td>horizontal:2cm vertical:4cm</td>
<td>Required</td>
<td>4000SSI</td>
<td>highest precision 5mm</td>
</tr>
<tr>
<td>GPS gyro 1 (MRTK)</td>
<td>angle:0.1deg</td>
<td>Not required</td>
<td></td>
<td>MS750</td>
<td>Depends on the distance between antennas</td>
</tr>
<tr>
<td>GPS gyro 2</td>
<td>angle:0.1deg</td>
<td>Not required</td>
<td></td>
<td>TANS-Vector</td>
<td></td>
</tr>
</tbody>
</table>

上は、対水航跡図を出すときの話である。一方、定常航海時のデータは、主計測班では下記のように求めたことである。すなわち
(1) 本船と伴走船の相対速度ベクトルを、両方のHDGPS(Table 1参照)による計測結果から求める。
(2) 伴走船の対水速度をプロペラ式流速計で、船首方位をTans-Vectorで計測して、対水速度ベクトルを求める。
(3) 伴走船の対水速度ベクトルに、相対速度ベクトルを加えて、本船の対水速度ベクトルとする。

この方式では、潮流速度ベクトルを媒介していかない、相対速度ベクトルを使う方が、実際的であるようである。海上保安庁より許可された実験海域をFig. 3に示す。大阪湾のはは中央であるので、陸岸からの距離は10km以上あるので、以下に述べるRTK方式は採用できない。

Fig. 1 Naniwa-maru running at Osaka Bay.
実時間位置測定に HDGPS ピーコン受信機 1 台を積んだ。

本船上的 GPS 機材の配置の状況を Fig. 4 と Fig. 5 に示す。うわかんぬきと呼ばれる横通し部材の上に、上
に述べた受信機のアンテナを並べた。伴走船に対して
は、船首にポールを立てて、上下に KGPS と HDGPS
のアンテナを取り付けると共に、キャビン前方のハッ
チの上に Trans-Vector のアンテナを置いた。

Fig. 2 Naniwa-maru running at Osaka Bay.

Fig. 3 Experimental area admitted by Maritime
Safety Agency.

Fig. 4 GPS antennas on Naniwa-Maru.

Fig. 5 Arrangement of GPS antennas on
Naniwa-Maru.

計測精度に関して、主計測点より、位置は 10 m
程度、速度は 0.1 m/s、方位は 1 deg の精度が欲しいと
いう要求が出された。

そこで、各種の GPS とそれらの精度を調べ、そ
の結果を Table 1 に示す。その結果、各船には

高精度位置測定に KGPS 受信機 1 台
高精度船首方位測定に MRTK (Table 1参照)
受信機 1 組
実時間位置測定に HDGPS ピーコン受信機 1 台
を積むことにした。また、伴走船には

高精度位置測定に KGPS 受信機 1 台
高精度船首方位測定に Trans-Vector 1 台

計測ブロック図を、Fig. 6 に示す。KGPS の参照点
(reference point) は大阪大学工学部の曳航水槽の上に
設けられた。観測点との距離は約 40km である。本船お
よび伴走船で計測された KGPS のデータは 1 日の実験
終了時に、GPS 受信機からフロッピーディスクに移
されて、参照点のある大阪大学に持ち込まれた。そこ
で、参照点のデータと共に解析された。一方、KGPS
以外のデータは、主計測システムに直接渡された。

3. 計測結果

KGPS による計測結果を、Fig. 7～9 に示す。
4. 結言

高精度のGPSを用いることにより、本船および伴走船の正確な航跡および対地速度を求めることができた。また、GPSジャイロにより、船首方位も極めて正確に求めることができた。

計測結果をもと多角的に分析すべきであるが、ボランティア活動としては、計測で一杯であった。反省する次第である。

謝辞

この航走実験は、野本講作大阪大学名誉教授のご指導の下に、大阪市港湾局が日本財団の補助を受けて行ったものである。実験にあたって、（株）トリニプル・ジャパン、（株）日立造船情報システムには、機材の提供等で多大のご協力を頂いた。また、大阪大学工学部船舶海洋工学科の田代剛君を始めとする学生諸君には、計測作業及びデータ解析作業においてご協力を頂いた。深甚なる謝意を表します。主計測班の九州大学、桜井晃教授、金沢工業大学の増山豊教授を始めとする皆様とは、楽しく協同作業を進めることができました。心より、感謝申し上げます。

参考文献

1) ビーリングロット研究会、「菱垣巡船を海へ」ホームページ、http://bills.isis-u-tokyo.ac.jp/bigaki/
2) 野本講作：菱垣巡船復元船「浪華丸」航走実験速報、全国北前船セミナー。1999.
Fig. 9 Loci of Naniwa-maru and Rainbow on the 31th of July.

3) 野本隆作：浪華丸帆走実験の解析について, 姜垣廻船「浪華丸」帆走実験等関係者懇談会, 1999
4) 中井正弘：姜垣廻船「浪華丸」実験航海記, 大阪春秋, 96号, 1999.
5) 大阪港振興協会：姜垣廻船「浪華丸」帆走実験報告書, 1999.
7) 桜井晃, 東野伸一郎, 松原学, 増山豊：復元姜垣廻船帆走実験の計測システムについて, 日本航空宇宙学会西部支部講演会講演集, 1999.