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Summary

A new transient maneuver test designed to measure the hydrodynamic derivatives of a

maneuvering ship has been developed. These tests were carried out using the planar motion mechanism.
The forces acting on a model are decomposed into the added mass and the damping forces using linear

systems analysis. Experiment results are analysed by a new method using a transfer function
approximation and compared with the analysis by the Kramers—Kronig relations.

1. Introduction

A planar motion mechasism (P.M.M.) intro-
duced by Gertler (1959)' and Goodman
(1960)% is a device which forces an oscilla-
tory motion in a horizontal plane to a model
during being towed at constant speed. Van
Leecuwen (1964)%) and Motora and Fujino
(1965)* carried out the forced pure sway and
pure yaw tests to evaluate the hydrodynamic
forces and moments acting on an oscillatory
model. The experiment results indicate that the
hydrodynamic forces and moments are influ-
enced by the frequency of motion.

The theoretical approach for this frequency
dependence have been conducted by Cummins
(1962)° in free surface effects and by Brard
(1964)% in the development of a vortex
theory for a submerged maneuvering body.
Following their considerations, the frequency
dependence is found to come from the fact that
the hydrodynamic forces and moments acting
on a ship are influenced by her previous
motion. The influence appeared in the time
history and that in the range of frequency is
equivalent, if the motion is composed of various
amplitude and frequency sine waves. The same
is true for non—periodical motion. This is
shown by taking Fourier transform of the
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hydrodynamic force caused by a transient
motion where the motion will disappear after
reasonable time. A transient motion contains
energy which, in general, is distributed over a
range of frequency. Thus a single motion can
provide information about the hydrodynamic
forces at any frequency of interest. Frank
(1976)7 has proposed a new technique that is
a more efficient use of the planar motion
mechanism than the usual frequency—by—
frequency testing and reported the results of
some experiments employing the proposed
technique.

This paper is concerned with the technique
and the analysis of such experiments. The
authors will investigate an important rela-
tionship between the hydrodynamic deriva-
tives, which is called the Kramers—Kronig
relations. For this purpose, they have designed
a P.M.M. for transient maneuver tests and then
carried out captive model tests to investigate
the property of hydrodynamic forces acting on
a ship in transient state. The experiment
results are discussed based on linear systems
analysis. An approximation of transfer func-
tion is introduced for the analysis of complex
frequency response function obtained from the
experiments.

2. Equations of Motion
For a maneuvering ship with the body axes
located at the center of gravity, the equations of
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motion may be described as:

m(u—vr)=— fs[m,dS-i-X

m(v+ur)=

ff;mydsw 1)

— f plan,—ym, )dS+N

where m and I, denote the mass and moment of
inertia about the yaw axis of the ship ; # and v
the linear forward and swaying velocities ; 7
the angular yawing velocity ; p the hydrody-
namic pressure acting on the submerged sur-
face S ; n, and n, the components of unit normal
vectors pointing out of the ship’s surface; and
X, Y and N the external forces and yawing
moment.

The main problem is to evaluate the pressure
integrals on the right hand side of Eq. (1). The
hydrodynamic pressure acting on a maneuver-
ing ship is partly due to circulation around the
ship. This generates a vortex wake because the
circulation along a closed fluid circuit is null. It
would be interesting to investigate the trans-
port mechanism of vorticity from the boundary
layer into the wake. Unfortunately, a full
theoretical derivation is very difficult at the
present time. Alternatively, we have chosen an
experimental approach based on linear systems
analysis.

By assuming that perturbed velocities result
from a uniform forward velocity U, and since
the surge equation is not coupled to the sway
and yaw equations, one obtains linearized
equations of motion :

m(1')+Ur)+f plsway )n,dS
+ﬂ_p(yaw)n_‘dS=Y

Lr+ [[sp(sway)(xn‘

+ ffsp(yaw)(x"_v—ynz)dS=N (2)

—yn,)dS

where p(sway) and p(yaw) denote the linear-
ized pressure acting on a ship with pure sway
and yaw motions. Y and N are the external
force and moment.

3. Linear Systems Analysis to Evaluate
Pressure Integrals

The pressure integrals in Eq. (2) need to be
determined. However, we can treat them as a
“black box” in linear systems analysis, since we
are interested in the system’s input—output
behavior but not in the hydrodynamical back-
ground.

System response to a unit impulse §(t) is
known as the impulse response. In this case, the
input signal (¢ ) can be written as a convolu-
tion integral :

x(t)= f

for a linear time—invariant system whose
impulse response is g(t ). The output signal y
(t) corresponding to the input signal x(¢ ) is:

Yo (t—t)d T (3)

y(£)=G[x(t)]

b e
=[x

where G [ ] denotes the system transfer
operator.

Taking the Fourier transform of Eq. (4), one
obtains :

t)G[o(t—t)ld T

t)g(t—t)dr (4)

,0(1u)=5.)((u )@( w) (5)

where 2( « ) is a frequency response function
defined as

ﬂw)=ﬁ1y“k~wﬂ (6)

o)) =" [[at0)el= 1)

drk“wm
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z )e—jwrd T

L [_“’mx(

Xf_wg(t— t )e U= T gy (7)

Therefore, if one measures the time histories of
the input and the output signals, he can
evaluate the frequency response function as:

2o)= I w) _ yxetysxs

P e

Veks — Vs
+i <5l 2 (8)
where

9( @ ) =yc_iys ,
2w )=x,—ix,
Vel w )=f_my(t Jeos wt dt,
ys( w )=f:°y(t )Sil’l wt dt
1w )=f_wmx(t )Jcos wt dt,
x( w)=f:x(t )sin wt dt (9)

For causal systems, the Kramers—Kronig
relations between the real part Re[2( » )] and
imaginary part Im[2(w )] of the frequency
response function 2( w )=Re[£(w )]+i Im[2

Gl s
Re[4( w)]—~—f Mdk

(U_

Re[g(k)]

m[g(w)]=—— f — —dk (10

From Eq. (8) the input—output relation in the
frequency domain can be given as:

3
Imlélel] 5,
+Re[ 2( w)]f(w)=,9( w) (11

where ﬁ( w)=1iwi(w) is the Fourier trans-
form of the differential of x(¢ ) with respect to
time t.

Likewise, Re[2( w )] and Im[2( & )] can be
represented as the real part and imaginary part
of transfer function 2(s ) by setting s=iw. If
the transfer function is written as®:

k(s+4c ) (s*+2as+b?)
g(s)= R 5 2
s°+2 as+i3’

Re[2(w)] and Im[2( w )

(12)

] can be represented

as
Re[? w)]=
C[(b_ (ﬂ_w)+4waa]
(,? = & ) +4w a
sz[a( ,‘? =) )— a (bz_wz)]
P A, EDRRALE S e >
and
m(£(w)]
wp (bz_(uz)(,92°(u2)+4(uzaa
4 (*‘?2—102)2+4w2012
2"[0 ‘3’ —w )—a b — 2)] 14

(,3’ —w )4 a
The impulse response function is derived from
Eq. (12) as:

g(t)=ké (t)+k(c+2a—2a)d (1)

+k[ (02— p?)+2(c—2a )(a—a)]

Xe™ “*cos( pZ— a?)3t+k

szgz)—Z(ca +1-92—2a2)(a—a )
(= )72
I}

O it 41
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Xe~ *!sin( g2— a®)'"4 (15

Furthermore, the input—output relation in the
time domain can be represented as:

bx+k(c+2a—2a )x
+ﬁx( ¥ (t— 7 )dc=y(t) (16)

where g* (¢t ) is a normalized impulse response
function which results from elimination of the
singularities from g(t) in Eq. (15).

If the frequency response function 2(w) is
obtained experimentally, parameters a, b, ¢, k,
« and g in Egs. (13) and (14) can be
identified by using least—mean—squares
method. Thus, one can evaluate the pressure
integrals as a frequency response function 2
( @), a transfer function 2(s ), and an impulse
response function g(t )i

4. Transient Maneuver Test

One generally operates a P. M. M. so as to
make pure sway and pure yaw motions. How-
ever, in transient state, it is difficult to control
the P. M. M. such that drift angle coincides with
yaw angle of the model. To overcome this
difficulty, we have designed a P. M. M. which
gives pure sway motion and combined motion
of sway and yaw in a transient state. This is
shown in Fig. 1. This P. M. M. consists of a
lateral sliding bed for swaying and a vertical
shaft for yawing which are controlled by D. C.
servo—motors respectively. The vertical shaft
is attached to a model at the center of gravity so
that it is free from sinkage and trim. Maximum
swaying amplitude is 300 mm and the max-
imum yawing amplitude is 20 degrees. The
lateral force and moment acting on the model
are measured by a dynamometer mounted in
the model and the motions of swaying and
yawing by potentiometers mounted in the
lateral sliding bed. All data is recorded simul-
taneously in a microcomputer. Finally the
complex frequency response function can be
computed by taking the Fourier transform of
the motion and the force or the moment.

In the transient motion of pure sway mode
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Fig. 1 Planar motion mechanism for transient
maneuvering tests.

the model is controlled to move laterally in
impulsive motion while the center line of the
model is forced to point the direction of the
carriage’s motion. This eliminates, as a result,
yawing motion ; the model is limited to swaying
transient motion. The measured lateral force
and yaw moment are only related to sway
velocity and acceleration. For this mode, from
Eq. (2), one obtains:

mv + ﬂs p(sway )n,dS=Y(sway)

ﬂ‘P(SWay)(xn_‘.—ynx)dS=N(sway) 17

Taking the Fourier transform of Eq. (17):

ﬂ p(sway )n,dS S i)
i o e ety R
w)

()
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ﬁsﬁ(sway)(xn)-_Wx)ds I/\\/(sway)

() ()1

where 9( w ), Y(sway) and N(sway) are the
Fourier transforms of measured sway velocity
v(t), lateral force Y(sway) and moment N
(sway). An example of the experiments are
shown in Fig. 2.

-4.0 time (sec)

time (sec)

v(m/s)

o.os[/\
0.0

4..0 6.0
time (sec)

Fig. 2 Time history of transient sway test.

|_o.o 2.0
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Thus, the pressure integrals in frequency
domain can be evaluated as:

/]‘_‘_Iﬁ"(Sway)n}dS

_[ Y.(sway)v.+ Y, (sway v,
- 11(2-{-1)52

]s(w)

Y.(sway)v,—Y(sway)v, 1
a5 2 2
v." 4+ w

—M]I/.)( w )

/f; p(sway ) (xn,—yn, )dS

N.(sway Jv.+N,(sway v
= 3 3 U( w )
V" s

N.(sway )v,—N(sway)v, 1
o (sway) s 2( ¥ v, 0w 19
v, +vs w

where

vc=f_:v(t )cos wt dt,
vs=[j°mv(t )sin wt dt,
Yc(sway)=f:}’(sway)cos wt dt,
Ys(sway)=f_1}’(sway)sin wt dt,
Nr(sway)=f:N(sway)cos wt dt,

Ns(sway)=f:jN(sway)sin wt dt,
1=iwh(w) 20

From Eq. (19), the hydrodynamic deriva-
tives Y,(w ), No(w ), Ni( @ ) and added mass
m,( @) with respect to sway velocity and
acceleration in the frequency domain are given
as:

Y.(sway)v.+ Y (sway v,

Yolw)=

vr2+vsz
e 1 Y.(sway)v,—Y,(sway v,
mrm w )= e v52+v52
_ Ne(sway)v.+N,(sway)v,
Nv(“’)_ v,2+v52
1 N.(sway)v,—Y,(sway)v,
. (sway Jv,—Y,(sway) e

2 2
w Ve +vs

In the cases of combined motion of sway and
yaw, the motion are more complex. As well as
the model is controlled to move laterally, the
heading is controlled to move simultaneously in
the direction of the drift angle. Thus, the model
experiences yaw velocity and acceleration in
addition to sway velocity and acceleration. The
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measured forces and moments are related to
sway and yaw velocities and to accelerations.
Taking the Fourier transform of Eq. (2):

ﬂ;f)(sway)nyds
o]

[iwm+ Hw)

+[mU+ ff‘ﬁ(z?:))"yds J?( w)=Y(w)

_ff’ﬁ(sway)(xny—yn,)ds

w) 8w)
=N(w) 22

A A
where #(w ), #(w ), Y(w) and N(w ) are the
Fourier transforms of measured sway velocity
v(t ), yaw velocity 7(t ), lateral force Y (¢ ) and
yaw moment N(¢ ). An example of the experi-
ments in this mode is shown in Fig. 3.

Y (kq)

time (sec)

1.0
1.0 hN (kg=-m)
0 M ['\v/\ P g — |

200" 400 T 600
.10 time (sec)
0.1 vV (mis)
0 4
L 200 40 500
-0. lime (sec)

0

.00
LA/Vv time (sec)
-40

Fig. 3 Time history of transient combined motion test.

As before, the pressure integrals of pure yaw
can be evaluated as:

ff Pplyaw)n,as

Y:*r. Y. %,
[
[ 1 ®r.—Y.,*

e 1 o
72+72 . 7((0)
¢ s

/]’ﬁ(yaw)(xny—yn,)ds

_ [N En ANt
¥ r(2+'sz

N *r,—N*r, 1 9
e e

]m)

where

r(w )=f:°r(t )eos wt dt ,

r(w )=f:r(t )sin wt dt,

Yolw )=f:°)’(t Jeos wt dt,
Yo )=[_1Y(t )sin wt dt
N(w )=f:N(t )eos wt dt,
Ny w )=f_mwN(t )sin wt dt,
Y. *(w)=

Y lw)=Y,(w).(w)

—[m+m_v( w )]{uvs( (u)
Ys*( w )=YS( w )—Y,.(w )vs( w)

+[m +my,.( w)]wv(w)
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N*(w0)=Nw) =Nl )

— oNi(w)vs(w)
N*(w)=N{w)—Nlw (@)

+ wN;(w vl w) 24

From Eq. (23), the hydrodynamic deriva-
tives Y,, Y3, N, and the added moment of inertia
J, with respect to angular velocity and accelera-
tion in frequency domain are given as:

Y. *r.+ Y. ' 1

r(.z +r$2

mU+Y,(w)="

{4

1 Y. %Y T

Vil w )='('U_ By 'y‘_?_‘_—rsz "
( 1’\"“ g + AN'S * Ts
JV, w )_ r“2+rsz
1 ;\‘,.*rx—:\'s*r,. :
¥l )77 25

2 2
w 7.+

Experimental Results

Model tests were conducted, based on the
preceeding analysis. A model of a container
ship was used, and her dimensions and profile
are shown in Table 1 and in Fig. 4. The model
ship is towed at a velocity of 1.11 m/s or
Froude number of 0.224.

Table 1 Principal particulars of the ship and the model.

[tems Ship Model

Length (m) 115.0 2.5
Breadth (m) 19.0 0.413
Drait (m) 6.4 0.139
Displaced volume (m) 9859.0 0.101
Wetted surface area  (m) 2845.0 1.345
Block coefficient 0.705 0.705
Midship section coef. 0.970 0.970
Breadth/Draft ratio 2.97 2.97
Length/Breadth ratio 6.05 6.05
Model Scale — 1/46

ST

L lus

D

<

T

.

AR " 9 F.P.

Fig. 4 Body plan, and bow and stern profile of the ship
model.

From the time histories as shown in Figs. 2
and 3, the non—dimensional hydrodynamic
derivatives Y, m' +m,, N’ and N;' for sway,
and m'+Y,, Y7, N, I +iHdorsyaw |jare
determined through a few trials as shown in
Figs. 5 and 6, respectively. For all cases the
results are in good agreement Wwith those
obtained by the usual P. M. M. indicated by
circles in the figures.

o mux(L/e?

. p A »
Y/ =Y, /5 LAV N =N/ 5 1A

m, =m, /5 L1 3 e s 5t

o N
. ) L2 o
7 Z |0 o
q :
ar ol°°
=) L S § o 1 gt
0 0 w' 20 LT sl s 20
Ny o
- W o o PMM
o3 1 —— TRANSIENT
£ Z MANEUVER
g &1 1EST
E
|=220%0u004 |

1 1 1 LT 5
o VR B 0 w20
2 Fefe o PMM
n ——— TRANSIENT
o 2 MANEUVER
L N T1EST
[+]
o © 1 L
0 10 w’ 20 o 0 w20

Fig. 6 Results of transient combined motion tests.
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Discussion
From the previous sections, pressure integ-
rals in frequency domain are represented as:

ﬂ;ﬁ(sway ndS
=Y,,( w0 W w )+my( @ )3( w)

p(sway) (xn,—yn,)dS
I

)

=N,(w )W w )+N;( w v 26)

and
ﬂlﬁ( yaw )n,dS
=Y w)+Yi(w)w)
fff(yaW)(xny—yn,)dS
=N{ )W)+ () 27
Egs. (26) and (27) are rewriten into the

time domain by using Eq. (16). For example,
the first equation of Eq. (26) becomes :

/];t)(sway n,dS
=Y,(o0)v(t )+m,(c0)n(t)

+[ "=l o

where Y,(%0) and m,(o) are the damping
coefficient and the added mass of sway at the
infinite frequency, and g* (¢ ) is its normaliz-
ing impulse response function. For a causal

SyStem g
— f

Z2 ()
[Y,.( w )_Y,,(Oo)]COS wlt dw

1

e w [my( @ )—my(oo)]sin wl dw
T —o0

2 oo
—Tﬁ)[ Yo(w)—Y,(90)]cos wt dw

2 o \
——](; w[my(w)—my(o0)]sin wtdw 29
T

Fujino” has shown that the Kramers—Kronig
relation between damping coefficient and added
mass for a maneuvering ship can be given as:

1 (= Y,(k
my(w)—-my(oo)‘—'— T f—m v(;g.:k)dk
Vo(w) =1, (0) =" Wll) pii mori
- ST ) w—k '

However, it is rather difficult to calculate Eq.
(30), because exact values of damping coeffi-
cient and added mass cannot be obtained at the
infinite frequency. Thus, a transfer function
approximation is introduced to analyze experi-
ment results.

Assuming second order polynomials for both
the denominator and the numerator of the
transfer function just as Eq. (12) the damping
coefficient Y,( w ) and added mass m,( w ) can
be described as:

Yo(w)
el (1= o) (g7 o) +4oaa]
( ,‘92— 0 ) +4w a®
_ 2 w*la( [32'— w?)— a (b’— &’)]
(,‘3’2.- 0 )’+40°a”

=k

m+mw( (u)
(b*— wz)( [)’2— w2)+4 w’a a
( /?Z— w)’+4’ o’

=k

_rzﬁia( ‘32_ w’)— a (b= o?)|

> B S (
(,1’)’2_(uz)z'f“‘cuzaZ &)
and
lim Y,(w)=ke(b/p i
wr=()
lim m,( w )=k (32)

arec0

Y,(0) is the derivative experimentally deter-
mined from an oblique tow test, but other
parameters k, a, b, ¢, « and 3 are unknown.
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So, these parameters are identified from the
experiment results using least—mean—squares
method. Thus, one can directly evaluate the
compatibility of damping coefficient Y,(w)
and added mass m,( w ).

Fig. 7 shows this relation. The circles
represent the experiment results and the solid
lines are evaluated using Eq. (31). The results
are in excellent agueement. Eq. (31) seems to
be more useful than the Kramers—Kronig
relations, because one can determine and in-
vestigate damping and added mass coefficients
from the limited range of frequency. Calcula-
tion at infinite frequency are not required.

L0

Y‘;xloz

line /marx

Q

van Leeuwen (&)
Eg. (12)

Fujino eq.(IL6)(3)
Fujino eq.(IL5)(3)

& 2 .2
YV-Y,,/-;LU

a=3.73

L bless,7

k=8.47

a=2.486

©=0.357 g'=34.6

van Leeuwen (4)
€3. (12)

Fujino eq.(11.5)(3)
Fujino eq.(11.6)(3)

o PMM — Eq. (12)
ol
> e
] I8
z W/_
o | 1 o 1 1 1
0 10 20 w' 10 0 10 20 W 30
O- a=11.1 .bl=d44.4 .c=0.385 8%3.70 b'=19.6 c=0.877
T k=6.76 a=3.67 -al=l7.4 Y k=5.30  a=2.38  slerdas
ot 3M -5‘
E bl
& | 1 I o 99000000001y
4] 1o 20 w' 20 0 1.0 20 w0

Fig. 7 Kramers—Kroning relations.

We have used the same approach to re—
evaluated experiments by van Leeuwen. This is
shown in Fig. 8. The circles are results

obtained by van Leeuwen®, the one—dot chain -

lines are Fujino's approximated function”, the
two—dot chain lines are Fujino's calculation of
Eq. (30) using the approximation function
each other, and the solid lines are estimated by
Eq. (31). The approximate transfer function in
Eq. (12) accurately expresses the damping
coefficient and the added mass of sway. The
main difference between Fujino's approxima-
tion function and Eq. (12) is whether the same
set of parameters are used to represent the
properties of damping and added mass coeffi-
cients or not. In other words, both damping and
added mass coefficients are represented by the
same set of parameters in Eq. (12) as shown in
Eq. (31). Thus it is no longer necessary to
verify results by the Kramers—Kronig rela-
tions.

. 2
m,-m,/-z-L3

o

Fig. 8 Transfer function approximation of
hydrodynamic coefficients.

5. Conclusion

In this paper, we have presented a planar
motion mechanism technique for transient man-
euvers. Based on this technique captive model
tests were carried out. The experiment results
were analyzed in accordance with linear sys-
tems theory and a new approach using the
transfer function has been developed for inves-
tigating the relationship between damping
coefficient and added mass.
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