History, State-of-the-arts and Future Trend of Ship Manoeuvrability and Controllability

- Thirty Years Research Review -

Kazuhiko Hasegawa Osaka University Japan

MARTEC 201Dhaka, Bangladesh, Dec., 2010

Background and History of the Research

- Ship manoeuvring research in 1970s
- Autopilot for saving energy
- Necessity of the research of man-machine System
 - Developing a ship handling simulator, as one of the oldest ones in the world
- Developing standard mathematical model of ship manoeuvring

Ship Manoeuvring Model in 1980s

- Necessity to develop a model for new types of ships
 - MMG model (module type mathematical mode considering hull, propeller, rudder and their interactions respectively)
- · Still now several variation of MMG model exists
- Some extended MMG models applicable for twinpropeller ship, for shallow water etc. exist.

Ship Manoeuvring Model in 1970s

- · David and Schiff Model
- Abkowitz Model
- Nomoto's K-T Model
 - First order Model
 - Second order model
 - Second order non-linear model
- Necessity to develop a model for new types of ships

VLCCs

Background and History of the Research

- Ship manoeuvring research in 1970s
- Autopilot for saving energy
- Necessity of the research of man-machine System
 - Developing a ship handling simulator, as one of the oldest ones in the world
- Developing standard mathematical model of ship manoeuvring

First Generation Ship Handling Simulator (1974)

- Feasibility study on instability criterion of human ability to control a VLCC (SR151, Japan)
 - Nomoto, K., Simulators from the naval architects point of view, Proceedings of MARSIM, Southampton, UK 1978
 - T. Koyama, K. Kose and K. Hasegawa: A Study on the Instability Criterion of the Manual Steering of Ships (in Japanese), J. of the Society of Naval Architects of Japan (J.SNAJ) 142, pp.119-126, Dec., 1977

First Ship Handling Simulator in the world (Hiroshima University, 1970) The industry of the state of the sta

SR151 Ship Handling Simulator (1974)

Background and History of the Research (contin'd)

- Developing intelligent ship control systems including
 - collision avoidance
 - berthing/deberthing control
- Developing a tool for safety assessment in congested waterways
- Developing standardisation of mathematical model of ship manoeuvring in low speed and/ or in shallow water etc

Automatic Collision Avoidance

- Fuzzy Reasoning and Control
 - A. Kouzuki and K. Hasegawa: Automatic Collision Avoidance System for Ships Using fuzzy Control (in Japanese), J.KSNAJ 205, pp.1-10, June 1987
 - K. Hasegawa: Fuzzy Modelling of the Behaviours and Decision-Making of Ship Navigators, Proc. of 3rd International Fuzzy Systems Association (IFSA)Congres pp. 663-666. Seattle, Aug. 1989
- Expert System for Multiple Ship Encounter
 - K. Hasegawa, A. Kouzuki, T. Muramatsu, H. Komine and Y. Watabe: Ship Auto-navigation Fuzzy Expert System (SAFES) (in Japanese), J.SNAJ 166, pp.445-452, Dec. 1989

Automatic Collision Avoidance Experiment

Automatic Collision Avoidance Experiment

Background and History of the Research (contin'd)

- Developing intelligent ship control systems including
 - collision avoidance
 - berthing/deberthing contro
- Developing a tool for safety assessment in congested waterways
- Developing standardisation of mathematical model of ship manoeuvring in low speed and/ or in shallow water etc

Automatic Berthing Experiment

Automatic Berthing Experiment

Background and History of the Research (contin'd)

- Developing intelligent ship control systems including
 - collision avoidance
 - berthing/deberthing control
- Developing a tool for safety assessment in congested waterways
- Developing standardisation of mathematical model of ship manoeuvring in low speed and/ or in shallow water etc

Background and History of the Research (contin'd)

- Developing intelligent ship control systems including
 - collision avoidance
 - berthing/deberthing control
- Developing a tool for safety assessment in congested waterways
- Developing standardisation of mathematical model of ship manoeuvring in low speed and/ or in shallow water etc

Automatic Navigation in Slow Speed by Single-propeller Twin-rudder Ship

Automatic Navigation in Slow Speed by Single-propeller Twin-rudder Ship

Automatic Navigation in Slow Speed by Single-propeller Twin-rudder Ship

Automatic Navigation in Slow Speed by Single-propeller Twin-rudder Ship

Concluding Remarks

- Ship manoeuvrability and its prediction are long-time subject.
- It cannot be separated with human and autopilot behaviours and with environmental disturbances.
- New devises, new theories and new ideas to overcome these important issues are highly recommended to be searched by younger generation.