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Abstract

The traditional governing equations for the sway-yaw maneuvering motion are a set of
ordinary differential equations with constant coefficdents. But, as well known, the
mtegro—differential equations with mmpulse response fuinctions are more strict governing
equations that can handle the frequency dependence of hydrodynamic forces.

In this paper, the two types of equations are compared and used to calculate the

10° - 10° dg * zag maneuver in waves, and the dfferences of the solutions are discussed.

L INTRODUCTION

The maneuvering motion of a ship in waves, contains some difficulties from the
hydrodynamic pomt of view. The changes of yaw angle and forward speed result in the
change of encounter frequency of waves. As a result, the hydrodynamic forces exerted on
ship are varied comtinously.

Meanwhile, the response of a ship to the rudder deflection is very slow and it becomes
difficult to deterrmine the suitable frequency of hydrodynamic forces when we treat the
problems with the traditional ordinary differential equations.

A lot of researchers have pomted out that it is not correct to treat such problems with
differential equations of constant coefficients. They also have referred the integro—differential
equations usmg mpulse response fimctions of hydrodynamic forces. (1 - 5)

Fujino bas made sway-yaw integro-differential equation with impulse responses gotten
through the Fourier transformation of PMM data of addeded masses and damping coefficients
in wide range of frequency. And he compared the differences between the ordinary differential
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treatment and the integro—differential calculation, when the stepwise rudder is applied m both
cases. He showed the responses of the ship are almost same in both approaches.(6)

Perez also has made the sway-yaw-roll equation with linear impulse response functions
of wave exciting forces. He used the strip method to calculate the wave forces in frequency
domam, and later these are used to calculate the impulse response functons.(7)

In this paper, the hnear integro-differential sway-yaw equations with rudder deflection in
regular waves are derived, and the maneuvering motion of Todd's series 60 model is
calculated. The differences between the mtegro-differential equation and ordinary differential
equation are discussed by comparing the response of typical maneuver hike zig-zag test.

Here, the indirect method using Fourier transformation, is adopted to get the mmpulse
responses of radiation forces and wave exciting forces.

2. EQUATION OF SWAY-YAW LINEAR MOTION

Using the coordinate system of Fig.l, the sway—yﬁw equations with constant coefficients
are written as follows.

(m=Y)v=Yow+(mU-Y)r=Y,r=Ys5+YucCOSWL + Ve SINWoL

(1)
(Iu=N)r=-N,r=Ny—=N;v=Ny5+Nucosw i+ N, simws

I Yo

Fig.l Coordmate System

Meanwhile the strict sway-yaw equation can be built as the Volterra Functonal forms.
Here, the kemels are the impulse responses of the hydrodynamic forces.
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m(v+Ur)+ J-:QK.(t)v(t—t)dt+ J:QK,(T)r(t—t)d‘:= J‘imK;(T)8(t—1:)d‘:
+ —[:QK((t)((t—T)dt
(2)
tars [ Mlen(i-0des [ Milor(i-)ds= [ Mu)s(i-n)en

+ JiQM((t)((t—t)dt

Impulse response functions on the left side of eq.(2), having singulariies at <=0,
transformed mto eq.(3) which has only regular functions.
(m—Y'.(CD))\.’—Yv(CD)V—Y',(m)}‘+(MU—Yr(m))r+J:K;(t)v(t—-‘c)d'c+J:K‘,('c)r(t—r)d‘::Y,S

+J-:F;(1)L(t—1)dr

(3)

(La=N3(@)) =N, (@)r=N; (@) v+ No(@ v+ [ Milaili=)des [ Mi()r(i=v)de=Nis
+ [ TR -

In eq.(3), the mmpulse response functions due to rudder deflection are treated as constant,
because no avaliable data that can calculate the rudder impulse responses exist

J-:“,I{';(t)s(t—w:)a‘v.=SJ‘_Gn Ks(t)dt=5 - Y;

(4)

J:mMs(t)S(t—t)d‘c=8_[_:1&{;(1)&:8 Ny

3. CALCULATION OF IMPULSE RESPONSE FUNCTIONS

3.1 Impuise response functions of radiation forces

The dircet method to get the impulse responses of moving ship, is to solve the boundary
value problem in time domain But the procedure is very complicated and difficult. Another
way to get the mpulse response functions is using the Fourler transform of the frequency
responses of radiation forces. The latter method is indirect but simple.

In this paper, the PM.M. data of Todd's series 60 model by Van Leeuwen(8] are used to
calculate the mpulse responses due to sway velocity and yaw angular velocty.

That is,
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Ki(9)= - [T { 16)-1,(w))cosando (5)

= =L 7 (m-vi (@)= (m-7; ()} sinardo

x

K (1), M3(<), M;{() can be calculated in the same way.

Fig.2 shows the impulse response functons of the given model at Froude number 0.2.
Here, the added masses and damping coefficients are fitted with rational functions to get the
exact Fourier transformation. And, the impulse response functions gotten from Fourier cosme
transformation are exactly coincided with the results of Fourier sine transformation.
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Fig.2 Impulse Response Functions of Radiation Forces

3.2 Impulse response functions due to waves

The impulse response functions by impulsive wave with umt amplitude, can be calculated
through the Fourier transformation of the responses of model to the various strusoidal waves
i frequency domain. In this paper, O.SM.(Ordinary Strip Method) is used to calculate the
frequency reponses of wave forces of a given model
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Fig.3 Offsets of Series 60 ( Cy = 0.7 )

For the twenty-one 2-dimensional sections in Fig.3, the added mass and' wave making
damping coefficent are calculated by the Close—fit method(9].
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Fig.4 shows the response characteristics of sway force and yaw moment, by the regular
waves commg with encounter angle uw=150° and ampltude {.=1.0m.
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Fig.4 Frequency Responses of Wave Exciting Forces
Here, the impulse response functions by waves are

K1) = {%RA_I:HAQ)-eﬂb}

(6)

B I I BT RPN S o 5

M(1) = —%Rt{ J~°“’H~(0) - e™do)
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In eq(5), Hfe) and Hux(e) means the frequency response of sway force and yaw

moment , respectively. The impulse response functions gotten in such way, presented in
Fig5. '
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Fig.5 Impulse Response Functions of Wave Exciting Forces

In usual maneuvering motion, the heading angle changed successively and the encounter
angle of incident waves also varies contmously. The hydrodynamic forces of the ship by

waves are functions of encounter frequency e., but in this paper the authors neglect this

fact and the encounter angle is fixed at u=150° for the following calculations, to simplify
the problems.

4. EXAMINATION ON THE CALCULATION RESULTS

In this paper, subjects are restricted to the linear sway-yaw motion , so the authors
confined the simulations to the 10° - 10° Zg * zag maneuvers.

At first, the usual calculation by eq.(1) and the elabarate calculation through the eq.(2) in
calm sea, is smmulated and compared in  Fig.6 .

The hydrodynamic derivatives and the principal dimensions for the model, are listed on the
Tablel and Table 2, respectively.
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—— Simulation by Convolution Integral
Simulation by 0.D.E.
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Fig6 10° - 10° zg - zag with Rudder Deflection only

Table.] Linear Maneuvering Derivatives
at e=0, e=® (Fn = 0.2)

Derivative @ = 0 @ = o
n- W’ 0.0229 0.01542
'O - 0.0222 - 0.052552
Y+’ - 0.00039 0. 000186
a’- Y 0.0076 0.011
T2z - N& 0.0012 0. 00092
Nr - 0.0034 - 0.00933
W - 0.00048 - 0.000073
N - 0.0057 0. 0037
'O - 0.00211
Ng 0.001
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Table.2 Principle Dimensions of Model

Lep | 2.258a

B ' 0.323m

d 0.12%
] 65. 714kgf
Kee' 0.25

Runge-Kutta-Gill's method is used to stmulate the zg-zag motion. The time step is
dt = 0.01 sec, and the rudder is deflected in stepwise mammer. As in the Fig.6 , no visible
differences can be found between two calculations. l

Next, for the simulation of the zig - zag maneuver in regular waves, the wave exciting
forces are calculated by convolution integral and presented on the Fig.7 ~ Fig.8  Here, the
convo}ution_ integral was carried out for 5 seconds and time mterval 0.01 sec, in Simpson's
rule.

In the figures, dotted lmes mean the fitted values of wave forces to the smusoidal
functions. Later, these are used as the regular exciting forces in the ordinary differential
equation.
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Fig.7 Wave Exdting Force used in the Simulation
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Fig.8 Wave Exciting Moment used in the Simulation
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By doing this, the excting forces in the ordinary differential equation and n the

The 10° - 10° zig - zag smmilation results by eq.(1) and by eq.(2), in regular waves are
In the figures, we can see that the difference between two
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Fig9 10° - 10° zdg * zag in Regular Waves
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—— Simulation by Convolution Integral
—————— Simulation by O.D.E.
u=30°, 1,=0.0258 ,e=1.0 rad/sec
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Fig.10 10° - 10° dg - zag i Regular Waves

5. CONCLUSIONS

For the 2.258 m model of Todd's Series 60 (Ci=0.7), two governing equations of

maneuvering motion I waves, that is, the ordinary differential equation and the
mmtegro—differential equation, are examined from the pomt of linear physical system. The
results of examination are as follows.

(1) Confined to the linear maneuvering motion in waves, the usual constant coefficients
equation gives good agreement with the exact integro-differential equation.

(2) The calculation in this paper was for a model which has good directional stability and
ordinary hull form Therefore, the same calculaions must be carried out for the blunt or
directionally unstable ship ,to make the conclusion (1) more general

(3) The extension of present topic to the nonlinear maneuvering moton, such as turning in

waves, needs more strict considerations.
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