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ABSTRACT

The traditional governmng equations for the sway-yaw
maneuvering motion are a set of ordinary differential equations
with constant coefficlents. But, as well known, the
mtegro—differential equations with impulse response functions
are more sirict governing equations that can handle the
frequency dependence of hydrodynamic forces.

In this paper, the two types of equations are compared and
used to calculate the 10° - 10° zg ' zag maneuver in waves,
and the differences of the solutions are discussed.

INTRODUCTION

The maneuvering motion of a ship in waves, contains some
difficulties from the hydrodynamic point of view. The changes
of yaw angle and forward speed result in the change of
encounter frequency of waves. As a result, the hydrodynamic
forces exerted on ship are varied contimously.

Meanwhile, the response of a ship to the rudder deflection
is very slow and it becomes difficult to determine the suitable
frequency of hydrodynamic forces when we treat the problems
with the traditional ordinary differential equations.

A lot of researchers have pointed out that it is not correct
to treat such problems with differential equations of constant
coefficients. They also have referred the integro-differential
equations using impulse response functions of hydrodynamic
forces. (1 - 5)

Fujino has made sway-yaw integro-differential equation
with impulse responses gotten through the Fourier
transformation of PMM data of addeded masses and damping
coefficients in wide range of frequency. And he compared the
differences between the ordinary differential treatment and the
integro-differential calculation, when the stepwise rudder is
applied in both cases. He showed the responses of the ship are
almost same in both approaches.(6)

Perez also has made the sway-yaw-roll equation with
linear impulse response functions of wave exciting forces. He
used the strip method to calculate the wave forces in
frequency domain, and later these are used to calculate the
impulse response functions.(7)

In this paper, the linear integro-differential sway-yaw
equations with rudder deflection in regular waves are derived,
and the maneuvering motion of Todd's series 60 model is
calculated. The differences between the integro~differential
equation and ordinary differential equaticn are discussed by
comparing the response of typical maneuver like zg-zag test

Here, the indirect method using Fourer transformation, is
adopted to get the impulse responses of radiation forces and

wave exciting forces.

EQUATION OF SWAY-YAW LINEAR
MOTION

Using the coordinate system of Fig.l, the sway-yaw
equations with constant coefficients are written as follows.
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Fig.1 Coordinate System

Meanvwhile the strict sway-yaw equation can be built as the
Volterra Functional forms. Here, the kemnels are the impulse
responses of the hydrodynamic forces.
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Impulse response functions on the left side of eq.(2), having
singularities at t=0, transformed into eq.(3) which has only
regular functions.
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In eq.3), the mpuise response functions due to rudder
deflection are treated as constant, because no avaliable data
that can calculate the rudder impulse responses exist.
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CALCULATION OF IMPULSE RESPONSE
FUNCTIONS

1 Impulse response functions of radiation forces

The dircet method to get the impulse responses of moving
ship, is.to solve the boundary value problem in time domain.
But the procedure is very complicated and difficult. Another
way to get the impulse response functions is using the Fourier
transform of the frequency responses of radiation forces. The
latter method is indirect but simple.

In this paper, the PMM. data of Todd's series 60 model
by Van Leeuwen[8] are used to calculate the impulse
responses due to sway velocity and yaw angular velocity.

That is,
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K:(x), My (<), M; (<) can be calculated in the same way.

Fig.2 shows the impulse response functions of the given
model at Froude number 0.2. Here, the added masses and
damping coefficients are fitted with rational functions to get
the exact Fourier transformation. And, the impulse response
functions gotten from Fourier cosine transforrnation are exactly
coincided with the results of Fourier sine transformation.

IMPULSE RESPONSES
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Fig.2 Impulse Response Functions of Radiation Forces
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2 Impulse response functions due to waves

The impulse response functions by impulsive wave with
unit amplitude, can be calculated through the Fourier
transformation of the responses of model to the various
Sinusoidal waves in frequency domain. In this paper,
OSM.(Ordinary Strip Method) is used to calculate the
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frequency responses of wave forces of a given model.

Fig.3 Offsets of Series 60 ( Cy = 0.7 )

For the twenty-one 2-dimensional sections in Fig.3, the
added mass and wave making damping coefficent are
calculated by the Close~fit method(9].

Fig.4 shows the response characteristics of sway force and
yaw moment, by the regular waves coming with encounter
angle p=150° and amplitude {.=1.0m.
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Fig.4 Frequency Responses of Wave Exciting Forces
Here, the impulse response functions by waves are

Ket)= 2 Re( IomHKo) e}
. (6)
M(s) = %Re{ Jo Hilo) - e™da}

In eq(5), HAe) and Hu{e) means the frequency response

.Of sway force and yaw moment , respectively. The
impulse response functions gotten in such way, presented in
Fig.5.
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Fig.5 Impulse Response Functions of Wave Exciting Forces

In usual maneuvering motion, the heading angle changed
successively and the encounter angle of cident waves also
varies continously. The hydrodynamic forces of the ship by



waves are functions of encounter frequency o., but in this
paper the authors neglect this fact and the encounter angle is
fixed at w=150° for the following calculations, to simplify the
problems.

EXAMINATION ON THE CALCULATION
RESULTS

In this paper, subjects are restricted to the linear
sway-yaw motion , so the authors confined the simulations to
the 10° - 10° zig * zag maneuvers.

At first, the usual calculation by eq.(1) and the elaborate

calculation through the eq.(2) in calm sea, is simulated and
compared m Fig.6 .
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Fig6 10° - 10° zg - zag with Rudder Deflection only

The hydrodynamic derivatives and the principal dimensions
for the model, are listed on the Tablel and Table 2,
respectively.

Table.l ' Linear Maneuvering Derivatives
at o=0, o= (Fn = 0.2)

Derivative @ = 0 @ = o
o'~ Yo' 0.0229 0.01542
Yy’ - 0.0222 - 0.052552
| - 0.00039 0.000186 |
o’ - Yo’ 0.0076 0.011
[22"- N& 0.0012 0. 00092
Nr’ - 0.0034 - 0,00933
Ny - 0.00048 - 0.000073
N - 0.0057 0.0037 |
[ Y, - 0.00211 \
} Ny’ ) 0. 001 |
Table.2 Principle Dimensions of Model
™ Lpp 2.258m ]
P B 1 0.323m |
| d o129 |
t_l“" 65. 714kgf
Koo' 0.25 |

Runge-Kutta-Gill's method is used to simulate the g - zag
motion. The time step is df = 0.01 sec, and the rudder is
deflected in stepwise manner. As in the Fig.6 , no visible
differences can be found between two calculations.

HEADING ANGLE (DEG.)

Next, for the simulation of the 2ig°zag maneuver jn
regular waves, the wave exciting forces are calculated by
convolution integral and presented on the Fig.7 ~ Figg,
Here, the convolution ntegral was carried out for 5 seconds

and time interval 0.01 sec, in Simpson's rule.

In the figures, dotted lines mean the fitted values of wave
forces to the sinusoidal functions. Later, these are used as the
regular exciting forces in the ordinary differential equation.
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Fig.7 Wave Exciting Force used in the Simulation
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Fig.8 Wave Exciting Moment used in the Sirmulation

By doing this, the exciting forces in the ordinary dIffemnhal
equation and in the integro-differential equation become equal —

The 10° — 10° zig - zag simulation results by eq.(l1) anc_
by eq.(2), in regular waves are shown in Fig.d - Fig.10. Ir
the figures, we can see that the difference between two
calculations are very small e
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Figd 10° - 10° zig- zag in Regular Waves
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Fig.10 10° - 10° zig - zag in Regular Waves
CONCLUSIONS

For the 2.258 m model of Todd's Series 60 (C,=0.7), two
governing equations of maneuvering motion in waves, that is,
the ordinary differential equation and the integro—differential
equation, are examined from the point of linear physical
system, The results of examination are as follows.

(1) Confined to the linear maneuvering rootion in waves, the
usual constant coefficients equation gives good agreement with
the exact integro—differential equation.

(2) The calculation in this paper was for a model which has
good directional stability and ordinary hull form. Therefore, the
same calculations must be carred out for the blunt or
directionally unstable ship ,to make the conclusion (1) more
general.

(3) The extension of present topic to the nonlinear
maneuvering motion, such as tuming in waves, needs more
strict considerations.
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