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Abstract

The concept of linear system analysis is applied to the unsteady motion of a maneuvering ship for obtain-
ing the hydrodynamic forces acting on her. The theoretical and practical aspects of transient motion techni-
que are presented and discussed in detail.

1. Introduction

We shall consider the application of linear system analysis to the unsteady motion of a
maneuvering ship for obtaining the hydrodynamic forces acting on her.

The frequency response characteristics of a linear system may be measured in two fun-
damental ways, that is to say, using sinusoidal or transient excitations. The first technique is
commonly employed in the planar motion mechanism test for a ship model.” The latter techni-
que, applying a known transient motion to the model and observing the hydrodynamic forces as
the response, is the subject of this paper.

A transient motion contains energy which, in general, is distributed over a range of frequen-
cy. Thus a single test with a transient motion can yield information about the response of the
hydrodynamic forces at any frequency of interest.

In the following sections, the theoretical and practical aspects of transient motion technique
are presented. First, a mathematical model of the velocity potential for transient motion of a
ship is outlined by using the integro-differential equations of the Volterra’s type? which govern
the response to an unsteady motion. Then, the equations of motion are derived, separating the
effects of damping, added mass and hydrodynamic memory. Next, the captive model tests are
carried out based on the transient motion technique. Finally, the experimental results are veri-

fied to satisfy the Kramers-Kronig relation between damping and added mass coefficients.
2. Equations of Motion

The equations of motion for a maneuvering ship with sway and yaw motions in smooth wa-

ter may be, in general, described in the form;
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m(i— v')=ffzmxds+ X,

m(o+ ur)=[-£pn,ds+ ¥, )

L ¥ =ffp(.\'ny—yn,)ds+ N,
5

where m and 7, are mass and moment of inertia of a ship, and u, v and r are the linear veloci-
ties of x, y axis and the angular velocity about z axis in the co-ordinate system as shown in Fig.
1. In the right-hand side of equations, p is pressure acting on the wetted surface S of a ship
hull, and n,, n, are x, y component of unit vector respectively. X, Y and N are external forces

and moment acting on her.

- Fig. 1. Co-ordinate system and symbols.

The main problem here is the evaluation of the pressure integrals on the right-hand side of
Eq. (1).

The hydrodynamic pressure acting on a maneuvering ship hull is partly due to some circula-
tion around the ship. If so, this circulation around the body generates a vortex wake because
the circulation along a closed fluid circuit is null. It seems to be a scientific approach to investi-
gate the transport mechanism of vorticity from the boundary layer into the wake. Unfortunate-
ly, such a theoretical approach is very difficult up to the present. That is why we have chosen
here another experimental approach based on the linear system analysis.

Now, the dynamic pressure p (x, y, z; ) due to the ship motions in Eq. (1) is given by the

Bernoulli’s equation:

p= _P¢t+P(“—.W)¢x+,0(v+xr)¢_v——-%—p(l7¢)z, @)

where p is density of fluid, and ¢ and ¢, are velocity potential and its first-time derivative with
respect to 1.
Thus, it is necessary for us to describe the velocity potential for an unstcady motion of a

body. The essential tool for this problem is a time-dependent Green's function G (x, y, z; &, 7,
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&; 1) which corresponds to the impulse response function of a hydrodynamic impulse acting on
the surface of a body moving through a fluid unbounded at infinity.

This problem has been attacked by Cummins (1962)” and later Wehansen (1965)* has pro-
vided us a physical foundation in the analytical method originally introduced by Volterra
(1934).Y The Volterra’s method for the problem here starts out by applying the Green’s
theorem to the function ¢, (x, y, z; 7) and G (x, y, z; é, 7, &; +-1) in the region bounded by the
body surface S, the vortex wake and a large sphere of infinite radius.

Following this method, we obtain the velocity potential for an unsteady motion in the form;

(X, y, z;0)= 41—”/0! [ffac(a nnén &i— r)%q&, &,9,¢; r)dS] dr, 3)

where n is normal vector to be pointing out of the fluid and &, #, & and 7 are integral variables.

And also, we can rewrite Eq. (3) as follows:

1
P(x, _t',:;l)=4—”ffd».(5. n, & 0)G(xy,z2,€,0,8:.0)dS

[y 4)
W [ffsbn(é,n.{:r)G,(X.y,zzf.n,{: t—r)dS]dz-.
TJdo s
where ¢, and G, are first-time derivatives with respect to n and ¢.
The boundary conditions satisfied by ¢ (x, y, z; 1) are
$(x, 2, 2;0)=(x, ¥ 20)=0,
(5)
Bn(X, 3, 5 ) ons = unz+ vay+ r(xny— yng), for £ 0.
So that, the velocity potential ¢ (x, y, z; ) can be decomposed as follows:
t
d(x,y, 20 t)= up,+ vd,+ rd+ f u(t)ge (1— 7)dr
0
: A (6)
+f V(T )y (1— r)dr+f (T )pse (t— 7)dr,
0 o
where the new unknown functions ¢, and ¢y, satisfy:
i¢—” lons=n
a" on s LI
(for k=1, 2,3) (7)
a¢u | 270
an onsT Vs

where ny = n,, n, = n, and ny = (xn, —yn,).
Here, assuming the perturbation velocity «, © and r from a uniform forward velocity U, we
can linearize the equations of motion as follows:
13
mi= — My (% )ii— X,,(OO)u—f u(t) Xy(t—7)dr+ X,
0

&
m(D+ ur)=— my, (% )p— Yv(oo)v—f vir)Y, (i—7)dr
0

: 8
— Y3(00)i— )’r(oc)r—f () Ye(t—)dr+ Y, (8)
0
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t
I i= —Jz(w)i—N,(w)r—L r(r)N-(1—7)dt

t
— Ny(0)o— N,,<oo)u—j v(z) N (1= T)dr+ N,

where, being consistent with the small motion assumption, the non-linear terms on the left-hand

side of Eq. (1) have been dropped.

3. Transient Motion Technique
We have made up a transient motion mechanism, as shown in Fig. 2, which gives a transient
motion distributing into the frequency range of interest to a ship model. This mechanism can

force surge, sway and combined motion of sway and yaw.

Functicn
Generater

Planar Motion ?f%m -
&
Fhvle.| o | Yawng
Disk
J

G § ¥y
St 1.2

g | i vmt

: i ; : .

H H el e bl Fig. 2. Planar motion mechanism for transient
i u maneuvering tests.

The problem now consists of finding a method for evaluating the damping and added mass
coefficients as a function of the frequency. For this we shall need the Fourier transform of
equations of motion.

Fourier transform of Eq. (8) yields

[ Xulw)+ iw (m+ me(@N][ te (@)= its(w)] = Xc (w)— iXs(w),
[ Yolw)+ iw (m+ my(w)) [ vel(w)— vs(w)]
+[ Yr(w)+ iw Yi()] re(w) — irg(w)]= Ye(w)= iVs(w), 9)
[ No(w)+ iw Ns(@)][ve(w)— s (w)]
+[ Nr(@)+ iw (L4 Jz (@] [ re(w)— irs(@)] = Ne(w)— iNs (@),
where subscripts ¢ and s denote cosine and sine components of Fourier transform with respect

to w respectively. From the real and imaginary part of Eq. (9), we can derive the damping and

added mass coefficients for each motion as follows:
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(1) Transient surge tests

Xe(w)ie(w)+ Xs(w)ug(w)
ul (w)+ ui(w)

Xulw)=

g1 Xe(w)ug(w)— Xs(w) te(w)
w 4 (w)+ 1 (w)

m+ my (w)=

’

(2) Transient sway tests

Ye(w)Ve(w)+ Ye(w)vs(w)
Vo(w)= . .
Ve (w)+ Vs (w)
1 Yc(w)vs(w)_ Ys(w)vc(w)
m+my(w)=— 7 7 >
w Velw)t+vs (w)
: Ne(@)Ve(w)+ Ng(w)Vs(w)
Ny(w) = 3 s ;
Ve (w)+ Vs (w)
1 Ne(w)Vs(w)— Ne(w)ve(w)
Nelw) =~

w v (w)+vi(w)
(3) Transient combined motion tests

Y& (w)re(w)+ Y¥ w)rs(w)

Yi(lw)=
4 r(w)+ ri(w)
1 YX¥w)rs(w)— Y¥w)rd(w)
Vilw)=— 2 .
@ re (w)+ rs(w)
N (w)re(w)+ NE(w)rs(w)
Ne(w)= = 5
re (w)+ rs(w)
.N* 3 N*%
Iz-f-Jl(w):L c(CU)Z’.;(W) Izvs((l.))’c((u)
w re{w)+ rg(w)

where,

Y¥w)= Ye(w)— Yo(w)Ve(w)— ol m+ my(w)] vs(w),
Y¥w)= Ys(w)—Yu (0 ()t ol mtmy(w)]ve(w),

N¥w)=Ne(w)— Ny(@)Vc(w)— o Ni(w)Vs(w),

N¥(w)= Ng(w)— Ns(w)— Ny(w)Vs(w)+ o Ni(w)Vc (o).
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(10)

(11

(12)

(13)

Now, model tests have begn conducted, following the analysis mentioned above. A model of

a container ship, whose dimensions and profile are shown in Table 1 and Fig. 3 respectively,

was used for experiments. The model ship is towed at the velocity of 1.11m/s, or Froude num-

ber is 0.224.

The time history of a transient sway test is shown in Fig. 4. The results obtained from the

transient sway tests of several drift angles and from the conventional PMM tests are shown in

Fig. 5. Similarly, in Fig. 6 derivatives obtained from transient combined motion tests are shown.

For all cases the results are of good coincidence with those by the conventional PMM tests

marked by circles in the figures.
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Table 1. Principal particulars of the ship and the model.

Items Ship Model
Length (m) 115.0 2.5
Breadth (m) 19.0 0.413
Draft (m) 6.4 0.139
Displaced volume (m) 9859.0 0.101
Wetted surface area  (m) 2845.0 1.345
Block coefficient 0.705 0.705
Midship section coef. 0.970 0.970
Breadth/Draft ratio 297 2.97
Length/Breadth ratio 6.05 6.05
Model Scale — 1/46
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Fig. 3. Body plan, and bow and stern profile of the ship model.
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The experimental results are verified by the Kramers-Kronig relation. In a causal system,
there is a so-called Kramers-Kronig relation between added mass and damping coefficients. One

of them can be determined from the other by using the Hilbert transform described by Eq.

(14).
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Results of transient sway tests.
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Fig. 7. Kramers-Kronig relation.

In the case of sway motion, it follows;

| ) S8
my(w )— my(0 )= — —
rw Y- w— Kk

m(A)
Yo(w)—Y, (0)—~f S

w—k

dk,
(14)

Figure 7 shows this relation from the experimental results, where the circles represent the
experimental results and the broken lines are evaluated by Eq. (14). The evaluated results are
satisfactorily consistent with each other.

However, there are still unnegligible differences between the estimated values and the ex-
perimental results. These discrepacies are caused mainly by the truncated effect in the range of
frequency, because it is impossible to carry out the experiment up to the infinite frequency. To

overcome this problem, we will try another approach shown in the next section.

4. Transfer Function for Hydrodynamic Forces
In this section, we apply a transfer function approximation to the experimental results.

In a causal system, the impulse response function of the system is represented by in general

(=2 Coe ™" (15)

So the transfer function G (s) can be expressed by the Laplace trasform of Eq. (15) as

G s+ 8,
G(s)= =C —_—
T e | Sy (16)
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where a,, 8,, C,, and C are constants and the upper limit of p is finite.
Thus, the transfer function between velocity and hydrodynamic force is described as

F(s)= G(s)(u(s)+ bu(s)),
17
G(s)(1+ bs)u(s).

Here, we assume the second order Hurwitz polynomials for both the numerator and the de-
nominator of Eq. (16) and denote (1+bs) G (s) as G (s) again, Le.

a(l4bs)(1+2cds + d*s?)

G(s)= 18
b (14 2efs+ f*s?) (18)
We can apply the least-mean-squares method to identify parameters in Eq. (18).%
Rewriting Eq. (18) by using s=iw, it gives in a simpler form as
s m(a, b, cde fw)+ fn,(a, byc d e fiw) . (19)
dy(a,b,c,d, e, fiw)+ idi(a, b, e d e fiw)
Here we can get damping and added mass coefficient using the same set of parameters:
(In the case of sway motion)
Yt ng(w)dg (w )+ n(w)d (w)
MRS e )
(20)
— m(w)d(w)+n(w)dy(w)
m+ my(w)=

wldi (w)+d} (w)]

Similar relations can be easily derived for other derivatives.

These relations are more benefitable than the Kramers-Kronig relations of Eq. (14), because
we need only either added mass or damping coefficient in the frequency range of interest, but
not up to infinite frequency at all.

In Fig. 8 the circles show the experimental results of damping and added mass coefficients of
swaying motion obtained by van Leeuwen ® the one-dot chain lines are Fujino’s approximated
functions,” the two-dot chain lines are also Fujino’s calculation of the Hilbert transform using
the approximated functions each other,” and the solid lines are estimated by Eq. (18). Similar-
ly, the same analysis has been done for our experimental results which is as shown by the solid
lines in Fig. 7. The approximated transfer function of Eq. (18) expresses both damping and
added mass coefficients fairly well for both cases.
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5. Conclusion
In this paper, we have presented a new technique for obtaining the hydrodynamic coeffi-
cients of a maneuvering ship. The captive model tests were carried out based on the transient
motion technique. The experimental results are verified to satisfy the Kramers-Kronig relation

and a new method using the transfer function was proposed in this paper.
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