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Abstract 

     

    As one of the classical academic topics, hydroelasticity has been researched by many scholars 

in the field of naval architecture and ocean engineering. From the 2000s, the industrial importance 

has been increased due to enlargement in size of commercial ships. Accordingly, much 

investigation has been implemented by various organizations. Springing and whipping are well 

recognized as hydroelastic responses. In particular, the springing is known as a resonance 

phenomenon induced by harmonic incoming waves, which could occur not only by linear waves 

but also non-linear waves. The higher-order springing has been confirmed in various types of 

ships at several model experiments. On the other hands, most of the numerical studies has been 

conducted based on linear formulation with non-linear correction incorporated from integration 

on the instantaneous wetted surface of ship-hull surface until now.  

    In this thesis, a computer code is developed for numerical calculation of the non-linear springing 

of an elastic body with forward speed. Due to mathematical and numerical difficulties, the study 

is focused on the second-order springing problem by using higher-order boundary element method 

(HOBEM) in the perturbation scheme under the assumption of small wave slope.  

   Chapter 1 describes the background, review of the related past work, objective and outline of 

the present study, and then in Chapter 2, general mathematical formulations are described for the 

first-order and second-order boundary-value problems of a rigid/elastic body. To obtain the force 

and response of an elastic body, the generalized eigen-function expansion method is adopted, and 

several equations such as variation of the normal vector, mode-shape functions, and so on are 

derived by using continuum mechanics and directional derivative formulation. These variables up 

to second-order are applied to obtain first- and second-order body boundary conditions with 

body’s elastic deformation and several kinds of generalized forces on an elastic body.     

   In Chapter 3, to solve the boundary-value problems obtained, the time-domain Rankine panel 

method is introduced and discretization method for the boundary integral equation using HOBEM 

is presented. Various numerical schemes to calculate the derivatives of the velocity potential are 

given, and some schemes for implementing the time-domain Rankine panel method are explained, 

such as time-marching scheme, grid generation on the free-surface, numerical damping beach, and 

numerical filter for removing numerical instability. 

    In Chapter 4, the developed computer code has been validated step by step for each of different 

conditions. In monochromatic waves, the direct time-domain simulation based on Rankine panel 

method has been implemented for both rigid & elastic bodies with/without forward speed. Validity 
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of obtained results for the second-order forces and responses are discussed mainly through 

comparison with corresponding results obtained by other researchers. Furthermore, in Chapter 5, 

frequency-domain analysis in bichromatic waves without forward speed is conducted by using 

free-surface Green function HOBEM. Indirect method to calculate second-order velocity potential 

on an elastic body is introduced. Using semi-analytic solutions in published papers, the results of 

suggested equation are validated by showing good agreement. 

    In the final, obtained results in the present thesis are summarized together with future work.  



 
 

iii 

 

Contents 

 

1. Introduction .................................................................................................................. 1 

1.1 Research background ........................................................................................................... 1 

1.2 Objective and scope of study ............................................................................................... 3 

1.3 Previous researches (state of the arts) .................................................................................. 4 

1.3.1 Numerical study on hydroelastic problem .................................................................... 4 

1.3.2 Numerical study on second-order wave-body interaction problem .............................. 6 

1.4 Outline of dissertation .......................................................................................................... 9 

2. Mathematical formulation ........................................................................................ 11 

2.1 Introduction ........................................................................................................................ 11 

2.2 Generalized mode expansion method ................................................................................ 11 

2.3 Coordinate systems ............................................................................................................ 12 

2.4 Deformed surface of an elastic body .................................................................................. 12 

2.5 Boundary-value problem in monochromatic waves ........................................................... 14 

2.5.1 Free-surface boundary condition ................................................................................. 14 

2.5.2 Body-surface boundary condition ............................................................................... 15 

2.6 Generalized hydrodynamic force ....................................................................................... 16 

2.7 Equation of motion in generalized mode ........................................................................... 18 

2.7.1 Generalized inertial force ............................................................................................ 18 

2.7.2 Generalized gravity restoring force ............................................................................. 20 

2.7.3 Linear & second-order equations of motion ............................................................... 20 

3. Numerical implementation........................................................................................ 22 

3.1 Boundary integral equation (BIE) ...................................................................................... 22 

3.2 Higher-order boundary element method (HOBEM) .......................................................... 22 

3.3 Green’s function ................................................................................................................. 24 

3.4 Calculation of several derivatives in HOBEM ................................................................... 25 

3.5 Time-marching scheme ...................................................................................................... 27 

3.6 Type of grid on free-surface ............................................................................................... 28 

3.7 Numerical damping beach .................................................................................................. 29 

3.8 Numerical filter .................................................................................................................. 30 

4. Numerical study by time-domain analysis in monochromatic waves ................... 31 

4.1 Introduction ........................................................................................................................ 31 

4.2 Convergence study ............................................................................................................. 31 

4.2.1 Computational domain size ......................................................................................... 32 



 
 

iv 

 

4.2.2 Time step size .............................................................................................................. 34 

4.2.3 Mesh size ..................................................................................................................... 34 

4.3 Numerical study without forward speed (rigid model) ...................................................... 36 

4.3.1 Fixed body ................................................................................................................... 36 

4.3.2 Forced oscillating body ............................................................................................... 39 

4.3.3 Freely-floating body .................................................................................................... 42 

4.3.4 Summary ..................................................................................................................... 46 

4.4 Numerical study with forward speed (rigid model) ........................................................... 46 

4.4.1 Simulated ship model .................................................................................................. 46 

4.4.2 Linear diffraction & radiation problem of ship models .............................................. 48 

4.4.3 Freely-floating ship models ......................................................................................... 50 

4.4.4 Summary ..................................................................................................................... 54 

4.5 Numerical study without forward speed (elastic model).................................................... 55 

4.5.1 Simulated structural model.......................................................................................... 55 

4.5.2 Bottom-mounted elastic vertical cylinder ................................................................... 58 

4.5.3 Elastic floating barge ................................................................................................... 62 

4.5.4 Summary ..................................................................................................................... 67 

4.6 Numerical study with forward speed (elastic model) ......................................................... 67 

4.6.1 Linear hydrodynamic response of elastic Wigley1 model .......................................... 67 

4.6.2 The effect of flexibility on quadratic product forces for ship model .......................... 68 

4.6.3 The effect of forward speed and flexural rigidity on second-order excitation forces . 69 

4.6.4 Summary ..................................................................................................................... 71 

5. Numerical study by frequency-domain analysis in bichromatic waves ................ 72 

5.1 Introduction ........................................................................................................................ 72 

5.2 Mathematical formulation in bichromatic waves ............................................................... 72 

5.2.1 Boundary-value problem ............................................................................................. 72 

5.2.2 Wave Green function .................................................................................................. 74 

5.2.3 Generalized hydrodynamic force in bichromatic waves ............................................. 75 

5.3 Evaluation of second-order velocity potential force .......................................................... 76 

5.3.1 The incident wave part ................................................................................................ 77 

5.3.2 The body part .............................................................................................................. 78 

5.3.3 The free-surface part ................................................................................................... 79 

5.4 Numerical result and discussion ......................................................................................... 88 

6. Conclusions and future works .................................................................................. 94 

6.1 Conclusions ........................................................................................................................ 94 

6.2 Future works ...................................................................................................................... 96 

6.2.1 Improvement of frequency-domain analysis ............................................................... 96 



 
 

v 

 

6.2.2 Improvement of numerical model ............................................................................... 96 

6.2.3 Indirect method for second-order velocity potential force with forward speed .......... 97 

References ..................................................................................................................... 104 

Appendix A: Vector identity of normal vector variation on a rigid body .............. 111 

Appendix B: Vector identity of the inertial force on a rigid body .......................... 114 

 

 

 

 

 

 



 
 

vi 

 

 

Nomenclature 

 

   In this dissertation, both Greek and English alphabets are used as a notation of physical variables. 

Some of them are repeated at different chapter and if there is no additional explanation, each 

alphabet has following meaning. 

- Overdot means time derivative.  

 t : time 

 : wave elevation 

 : wave lamda 

k : wave number 

 : incident wave heading angle 

  : deep water wave number 

, ,I S R : incident wave & diffraction & radiation velocity potential 

,D B : disturbed (radiation + diffraction) velocity potential 

j : modal amplitude in the j-th mode. 

jh : modal vector in the j-th mode. 

H : second-order component of Euler angle tensor 

( , , )X X Y Z : position vector at inertial coordinates / field point vector in HOBEM 

'( ', ', ')X X Y Z : source point vector in HOBEM 

( , , )x x y z : position vector at body-fixed coordinates  

( , , )g g g gx x y z : centre of mass vector 

zN : center of neutral axis 
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A : wave amplitude 

EI : flexural rigidity 

GA : Shear rigidity 

wj : vertical displacement 

j : angular displacement 

G : Green’s function 

H : water depth 

U : forward speed of ship 

g : gravitational acceleration 

L : length of body 

( , , )i j k : basis vector in Cartesian coordinates 

m : body mass (kg) 

ms : sectional mass (kg/m) 

M : body mass tensor (kg) 

a :  Added mass tensor (kg) 

b : damping coefficient tensor 

C : hydrostatic restoring stiffness tensor 

K : structural stiffness tensor 

I : inertia tensor of body mass 

p : hydro- static and dynamic pressure 

 : encounter wave frequency 

n : natural frequency of body 

Te : wave period 

BS  : instantaneous wetted body surface
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FS : instantaneous free-surface 

0BS : mean wetted body surface 

0FS : mean free-surface 

DS : instantaneous bottom surface 

CS : instantaneous radiation surface 

i : imaginary unit  

  : Kronecker delta function  

Hn : Hankel function of the second kind 

Kn : Modified Bessel function of the second kind 

Jn : Bessel function of the first kind 

 : two dimensional gradient operator  ,
X Y

  
 
  

 

 : three dimensional gradient operator , ,
X Y Z

   
 
   
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Abbreviation 

 

If there is no additional explanation, capital letter is abbreviation of following words. 

 

HOBEM : Higher-Order Boundary Element Method 

CPM : Constant Panel Method 

VLFS : Very Large Floating Structure 

NWT : Numerical Wave Tank 

MEL : Mixed Eulerian Lagrangian 

FEM : Finite Element Method 

QTF : Quadratic Transfer Function 

RAO : Response Amplitude Operator 

TLPs : Tension Leg Platforms 

Fn : Froude number 

EUT : Enhanced Unified Theory 

RPM : Rankine Panel Method 

NSM : New Strip Method 

NK : Neumann-Kelvin  

WL : Water Line
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CHAPTER 1  

 

Introduction 

 

 

1.1 Research background 
 

 

Fig. 1 Trend on the size of commercial vessels for 50 years (1960s ~ 2010s)   

[source: jurnalmaritim.com]  

    One of continuous trends of the commercial vessel is enlargement of the size. Due to increase 

of the container traffic and economic feasibility, the ship’s size has been increased continuously 

from several decades ago. If the ship size becomes large, the length overall necessarily increases 

and 400m lengthy ships appear in the 2010s as shown in Figure 1. It makes the structural strength 

be reduced and the ratio between stiffness and weight of hull girder decreases. As a result, a ship’s 
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hull girder has relatively low natural frequency of wave induced vibration and the effect of wave 

induced vibration has been increased.  

    The effect by wave induced vibration which is also called hydroelastic response or high-

frequency vibration on hull girder has been confirmed by continuous investigation over the past 

decades. From the systematic investigation on several ships conducted by various ways, many 

researchers reported that the high-frequency vibration has about 30~60% of total fatigue damage 

on large vessels (ISSC, 2015; 2018) and its effect should not be ignored. Accordingly, hydroelastic 

response has been considered in earnest at the stage of ship design and the rule on the dynamic 

response has been also changed.  

    Among global hydroelastic response, slamming induced whipping and springing are well 

recognized. Whipping is a transiently large response which happens by impact loads like 

slamming and decays after few seconds. On the other hands, springing is a resonance phenomenon 

by harmonic incoming waves. It could happen not only linear waves but also non-linear waves 

where it is so called super-harmonic resonance. 

    These wave induced vibrations have been studied by mainly three ways; i.e. real ship 

measurement, the model test, numerical analysis. The detail investigations on the hydroelastic 

responses have been conducted at each method to clarify various uncertainties. 

     In real ship measurement, several variables on hydroelastic response of a real sea-state have 

been considered. Since a real ship has complex geometry, the uncertainty which could not be 

predicted in the ship model has appeared. As one of them, structure damping has been measured 

to predict the effect of ship’s high frequency vibrations. Since hydroelastic response generally 

happens at high-frequency region and the radiation damping is very small, the amplitude is 

relatively very sensitive to structural damping. From several reports, it has been confirmed that 

the hull’s steel has small structural damping than other materials on a ship. It also has different 

value depending on the each vibration mode and generally torsional bending has larger damping 

than vertical bending modes due to cargos loaded on a ship (ISSC, 2018).   

     In model experiments, many kinds of non-linear factors have been confirmed. One of them 

non-linear springing has been shown in the model test clearly. It has appeared in various types of 

ships at several experiments (e.g. Storhaug, 2009) and its effect was considerable. For instance, 

some of non-linear springing have had up to fifth-order in bending modes (Miyake et al., 2008) 

and in moderate sea states, second-order springing could become predominant than linear 

springing (Hong and Kim, 2014). It is also expected that if the ship has forward speed, non-linear 
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springing could appear easily because it happens near 1/n of natural frequency of a ship. It also 

means the response spectrum could increase considerably. 

    In numerical analysis, the hydroelastic response has been calculated on a 3-dimensional ship 

model with development of several panel methods. Not only global response but also local 

quantities located on main points such as hot spot region have been considered in detail. However, 

most solution is based on linear variable with non-linear correction incorporated from integration 

on the instantaneous wetted surface of ship-hull surface to analyse springing phenomenon.  

    The detail analysis on contribution of non-linear hydrodynamic force has been remain work. In 

the real sea state, there are many kinds of wave non-linear components. Especially the sum-

frequency wave loads could also be made by numerous combinations of wave frequencies and its 

non-linearity comes from body and free-surface non-linearity, respectively. Thus, it might be 

better for analysis of non-linear contribution to use numerical analysis.  

1.2 Objective and scope of study 
 

    In this research background, our final goal is to develop the numerical analysis for the 

calculation of the non-linear springing of an elastic ship with forward speed. In numerical study, 

the second-order is almost the highest-order what could be considered due to limitation of 

mathematical and numerical difficulty. Thus, we are focusing on second-order springing of an 

elastic body in this dissertation.  

    However, it is also quite complex problem which includes several difficulty such as second-

order wave-body interaction, elasticity, forward speed effect, structural modelling, etc. Thus, we 

conducted development procedure step by step from the initial stage. At each different condition, 

the developed code is first validated and it goes to the next step.   

    In hydroelastic problem, there are several important issues from both hydrodynamic and 

structural points of view. In this study, we are also focusing on mainly hydrodynamic aspect rather 

than structural aspect. Using relatively simple structural model, several fluid solvers based on the 

potential flow are used in both time- and frequency- domains. To consider hydroelastic response, 

some kinds of generalized forces and boundary conditions are re-derived and applied to the linear 

and second-order hydrodynamic problems of an elastic body. In the validation process, simple 

geometric body is mainly used to compare numerical result and non-linear hydroelastic response 

is discussed in these models. 
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1.3 Previous researches (state of the arts) 
 

    In this section, we introduce several previous researches in terms of both hydroelastic response 

and non-linear wave-body interaction because second-order springing includes all these issues. 

These topics are classical problems in naval architectures, thus huge amount of studies have been 

conducted by various research groups. Many more references could be confirmed other review 

papers (e.g. reports of ISSC or ITTC). We introduced only numerical study and also selected a 

few of them. The key issue of both hydroelastic response and non-linear wave body interaction is 

briefly described and at the last, numerical research on the non-linear hydroelastic response is 

introduced.  

1.3.1 Numerical study on hydroelastic problem 

 

Two-dimensional approach (strip theory) 

    Two-dimensional strip theory has been used widely due to its practicality and effective way as 

a seakeeping code. It is coupled with several structure solvers in both time- and frequency-domain 

to analyse hydroelastic response. Few published papers on two-dimensional approach are 

introduced briefly as follows: 

    Bishop and Price (1979) combined two-dimensional strip theory with FEM based on 

Timoshenko beam theory and calculated several kinds of linear hydroelastic responses using the 

mode superposition method. 

    Jensen and Pedersen (1978) developed second-order strip theory (SOST) which is based on 

linear strip theory of Gerristma and Beukelman (1972). In SOST, non-linear hydrodynamic 

coefficients and restoring force are obtained by using Taylor expansion based on hull’s slope on 

the waterline. The strip theory is also coupled with Timoshenko beam to obtain vertical bending 

moment at each linear and second-order. Vidic-Perunovic and Jensen (2005) extended SOST for 

the bichromatic wave condition. They calculated both sum – and difference – frequency wave 

loads and discussed the second-order effect on the bending moment at multidirectional waves.  

    Using the time-domain analysis, various types of non-linear forces such as slamming, green 

water impact, and etc. can be considered. Thus nonlinear effects on the ship response have been 

investigated by using the time-domain strip theory in both rigid and flexible ships.    
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    For instance, Fonseca and Guedes (1999) used time-memory effect function and considered 

non-linear effect in the time-domain. Xia and Wang (1997) used time-domain strip theory and 

calculated wave loads on the ship. Wu and Moan (1996) considered several non-linear forces such 

as slamming and non-linear restoring & Froude-Krylov forces on instantaneous wetted surface 

and Wu and Hermundstad (2005) suggested the semi-static solution for the high-mode which is 

difficult to be converged well.  

Three-dimensional approach (Panel method) 

    From the 1990s, many three-dimensional seakeeping codes with forward speed have been 

developed; these are based on the linear potential flow using several types of Green functions and 

have been coupled with Finite Element Method (FEM) or beam theory for the hydroelastic 

response. As a result, the discussion is moved to consider both global & local quantities and more 

exact consideration of complex geometry of ships. 

    Newman (1994) calculated linear hydrodynamic force and response of an elastic body by using 

CPM and generalized mode expansion method. He showed that several mathematical formulations 

could be used instead of eigenvalue solution for modal vector and also derived generalized 

hydrostatic restoring stiffness on an elastic body. Huang and Rigg (2000) derived more improved 

hydrostatic restoring stiffness by using concept of continuum mechanics. Later, it is found that 

one term (pressure variation) is missing in Huang and Rigg (2000) and exact linear generalized 

hydrostatic restoring stiffness is confirmed by Malenica et al. (2009), and so on. 

    Malenica et al. (2003) developed hydroelastic code based on FEM and wave Green-function in 

the frequency-domain and their method is applied to the time-domain simulation by using 

retardation function. The validation process is also conducted by comparing with result of the 

experiment. Using segmented flexible barge, vertical motion of several points in regular waves 

are measured. The RAO result shows that vertical bending effect is well predicted in numerical 

simulation. 

    Senjanovic et al. (2007) also calculated not only vertical bending mode but also horizontal and 

torsional bending modes. The developed code is also compared with the experiment on flexible 

barge at different wave angles in both regular/irregular waves (Remy et al., 2006). 

    Although VLFS is not of interest in this study, hydroelastic response of VLFS has been 

conducted continuously by many researchers especially in Japan as reviewed by Kashiwagi (2000) 
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and Watanabe et al. (2004). Both linear and second-order forces have been considered by using 

several numerical methods such as zero-draft assumption, generalized modes method and so forth. 

    Ijima et al. (2008) used three-dimensional potential flow solver and FEM. They calculated both 

global and local quantities of symmetric & anti-symmetric vibration modes and also included non-

linear effect from quadratic product of linear quantities and instantaneous wetted surface. 

    Kim et al. (2009, 2013, 2014) developed springing analysis code based on their three-

dimensional Rankine panel code named WISH. They have developed different approaches such 

as direct coupling between potential solver and several structure solvers in the Cartesian and 

generalized coordinates, respectively.  

    Although many kinds of three-dimensional codes have been developed, most codes are 

adopting linear solution and as used in two-dimensional hydrodynamic codes, weakly non-linear 

variables are corrected by considering non-linear Froude-Krylov and restoring forces. (e.g. 

Kashiwagi et al., 2015; Kim and Kim, 2014). 

 

1.3.2 Numerical study on second-order wave-body interaction problem 

 

    Second-order wave-body interaction has been researched mainly on the stationary structures. 

The non-linear wave force is generally smaller than linear wave force in moderate sea state. 

However, it dramatically increases as wave amplitude increases thus it could become more 

important in harsh environments. The non-linear force could also coincide with resonance at high-

frequency or low-frequency; e.g. vertical loads on TLPs, horizontal response of moored vessels. 

Not only wave exciting force but also local quantities such as pressure, wave run-up in second-

order have been also studied for better design of offshore-structure at operating and survival 

conditions. 

    The numerical study on second-order hydrodynamic force has been conducted by using mainly 

two ways. First is to use perturbation approximation in the frequency-domain with the weakly 

non-linear assumption. In this method, it is particularly important and difficult to calculate second-

order velocity potential force thus many researches have been conducted to obtain exact second-

order velocity potential by solving second-order boundary-value problem (Ogilvie, 1983). 

Another way is to solve initial-value problem on instantaneous boundary condition by using time-

domain simulation. Numerical wave tank (NWT) based on semi-Lagrangian or MEL approaches 

on  fixed and floating bodies has been developed by many researchers on both 2D/3D bodies (e.g. 
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Ferrant, 1998; Cointe et al., 1990; Tanizawa, 1995; Wu and Taylor, 2003; Kashiwagi et al., 1998; 

Koo and Kim, 2004). However, it generally needs re-meshing and evaluation of influence matrix 

at each time step to consider non-linearity of body & free-surfaces. Thus it should need a lot of 

time and stable treatment to keep the code.  

    As a combined method, the perturbation method is applied to time-domain analysis. In this 

method, linear and second-order velocity potentials are calculated by solving each boundary 

condition at each time step. Although it could not consider fully-nonlinear effects, it has advantage 

that it can consider linear & second-order wave forces and needs only once evaluation of influence 

matrix without re-meshing scheme.  

    Some of published papers on second-order wave body interaction by frequency/time-domain 

simulations based on perturbation method are introduced as follows: 

Frequency-domain analysis on a rigid model 

    Molin (1979) showed that second-order velocity potential could be solved by separating the 

locked and free wave components. He also showed that second-order radiation condition is 

satisfied and suggested indirect method to obtain second-order velocity potential force by using 

only linear quantities.  

    Kim and Yue (1989, 1990) calculated second-order velocity potential by using ring source 

Green function on an axis-symmetric body. Their solution is known as a first complete solution 

of second-order velocity potential and QTF is also calculated by using indirect method in 

bichromatic waves. They discussed the effect of body and free-surface non-linearity, respectively.  

It is confirmed that the free-surface effect is important especially on sum-frequency wave forces. 

    Using bottom-mounted vertical cylinder, Newman (1990) derived asymptotic solution of 

second-order velocity potential. He regarded non-homogeneous component as an added 

oscillating pressure on free-surface and showed that far-field value of free-surface non-

homogeneous term makes several properties of second-order unsteady wave & pressure. It is also 

shown that second-order free-surface effect is stronger at the double frequency summated by same 

frequency than summation of different frequency components. 

    Chau and Taylor (1992) derived special Green function which satisfies second-order boundary 

condition of bottom-mounted vertical cylinder and derived semi-analytic solution of second-order 

velocity potential based on eigen function expansion method. Their method is extended to third-

order diffraction problem by Malenica and Molin (1995) and similar ways are also applied to 
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various conditions such as truncated vertical cylinder, multiple-column, porus cylinder, etc. (e.g. 

Huang and Taylor, 1996; Malenica et al., 1996; William and Li, 1994). 

    Kim (1991), Lee (1995) developed the numerical calculation of QTF for general floating body 

by using constant panel method (CPM) based on wave Green function and Choi et al. (2001) 

calculated second-order velocity potential force by using indirect method based on HOBEM in 

the frequency-domain. 

Time-domain analysis on a rigid model 

    Isaacson and Cheung (1991, 1992) solved second-order diffraction problem in 2D & 3D bodies 

using perturbation time-domain simulation. Issacson and Ng (1993, 1995), Teng et al. (2002), Bai 

et al. (2003) also solved second-order wave force in forced oscillating 2D & 3D bodies. Duan et 

al. (2015a, 2015b) developed different BEM, so called second-order Taylor expansion BEM, to 

solve second-order diffraction/radiation problems. They also showed that their method is effective 

for higher-order potential flow problem. 

    Skourup et al. (2000) solved second-order wave force with/without a current and Buchmann et 

al. (1998) discussed the second-order wave run-up of vertical cylinder with result of fully-

nonlinear waves in a current. 

    Shao and Faltinsen (2010, 2012, 2014) bring up the physical problem on the higher-order 

derivative of velocity potential with sharp corner. They also showed that the slow convergence of 

velocity potential’s derivatives and developed so called body-fixed coordinate method in 

perturbation time-domain simulation based on HOBEM. Instead of using Taylor expansion on the 

body boundary condition, they obtained the force and boundary condition in the frame of body-

fixed coordinate system without derivative of velocity potential. They presented that their method 

could be applied to second-order boundary value problem of general body with/without forward 

speed and ship motion & added resistance with forward speed where there are several higher-

order derivative of velocity potential.  

    Wu and Taylor (1994), Hong and Nam (2011) used FEM instead of BEM to analyse non-linear 

wave-body interaction in the time-domain. 

Frequency/time-domain analysis on an elastic model 

    We introduced numerical investigation on second-order wave force with rigid body assumption. 

However, there are relatively few researches which consider both non-linear hydrodynamic and 
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elasticity. As a last section, some of study on the non-linear hydroelasticity problem are introduced 

as follows:  

    Wu et al. (1997) and Chen et al. (2003) calculated generalized quadratic product of linear 

quantities on an elastic body in regular and irregular waves. They considered elasticity by adding 

the effect of elastic response to the normal and position vectors, respectively. Park et al. (2018) 

revised Wu’s method and calculated added resistance of an elastic ship with forward speed. 

    The mean drift force on VLFS was also conducted by using near – and far-field approaches by 

Kashiwagi (1998) and Utsunomiya et al. (2001) based on zero draft assumption, respectively.  

    Choi (2004) derived the generalized second-order hydrodynamic force and calculated mean 

drift force & moment of an elastic barge by using HOBEM based on wave Green function and his 

approach is applied to analysis of the floating fish cage which is composed of multiple elastic 

torus (Choi and Yeo, 2009).  

    Recently, the second-order hydrodynamic force including second-order velocity potential is 

considered on an elastic body. Choi (2013) calculated second-order hydrodynamic force and 

response of bottom-mounted elastic vertical cylinder in semi-analytic way based on eigen function 

expansion. Malenica et al. (2018) calculated numerically second-order velocity potential force of 

an elastic body based on commercial software HydroSTAR.  

    However, it is difficult to find the numerical study on the second-order springing of an elastic 

body with forward speed with the full consideration of elasticity & hydrodynamics until now. 

 

1.4 Outline of dissertation 
 

    Outline of dissertation is as follows: 

   In chapter 2, general mathematical formulations to solve boundary-value problem of a 

rigid/elastic body are described. Several boundary conditions and generalized forces on an elastic 

body are derived with consideration of body deformation based on perturbation scheme.  

    In chapter 3, numerical implementations used in fluid-domain solver are introduced. The basis 

of HOBEM is described and the discretization method of the boundary integral equation is 

presented. The Green function adopted in BEM is defined and various numerical schemes to 
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calculate derivative of velocity potential are also given. Several necessary schemes to implement 

time-domain Rankine panel method are introduced in the last section. 

    In chapter 4, the direct time-domain simulation is used to study on the rigid/elastic models in 

monochromatic waves with/without forward speed. The developed time-domain computer code 

is validated at several different conditions (with/without forward speed and rigid/elastic body) and 

applied to the second-order springing in limited condition. From the obtained result, discussion 

on perturbation time-domain simulation is conducted.  

    In chapter 5, the frequency-domain analysis is implemented to study on a simple elastic body 

model in bichromatic waves without forward speed. Several additional formulations are 

introduced for consideration of bichromatic waves. The detail formulation to calculate second-

order velocity potential force is described and a few results are compared with semi-analytic 

solution as a validation process.  

    In the final chapter, the conclusion of this study and future works are summarized. 
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CHAPTER 2  

Mathematical formulation 
 

 

2.1 Introduction 
 

    In this chapter, the general mathematical formulation for the calculation of linear & second-

order forces and responses are described on an elastic body. The fluid is assumed to be inviscid 

and incompressible with irrotational motion. Then with the potential flow theory, the Laplace 

equation becomes governing equation. 

0                                                               (2.1) 

    With assumption of weakly-nonlinear several quantities such as velocity potential, wave 

elevation, motion, force, and so forth are perturbated based on wave slope. The maximum order 

of physical quantities is second-order. They are expressed in this form.  

                                                      (1) 2 (2) 3O                                                    (2.2) 

                                                           (1) 2 (2) 3O                                                    (2.3) 

                                                  (1) 2 (2) 3F F F O                                                  (2.4) 

                                                

2.2 Generalized mode expansion method 
 

    In the analysis of fluid-structure interaction, generalized eigen-mode expansion method is one 

of classic ways to consider the hydroelastic response on an elastic body (Newman, 1994). Both 

rigid and elastic body motions are calculated simply by extending the total number of modes. The 

mode-shape function can be obtained by solving eigenvalue problems of structure solvers such as 

the beam theory or Finite Element Method (FEM) with satisfied boundary conditions. The total 
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response is calculated by summation of the modal vector multiplied by its amplitude. It is as 

follows: 

                 
1

N
j

j

j

h 


                                                           (2.5) 

    It is known that any function which satisfies geometric boundary condition could be adopted 

for the modal vector. This approach could also be applied to multi-body analysis in the generalized 

modes.  

2.3 Coordinate systems 

 

Fig. 2 Earth-fixed, inertial, body-fixed coordinate systems 

 

    In the analysis to follow, as shown in Fig. 2, we use both body-fixed coordinate system and 

inertial coordinate system with steady translation at velocity U along the X axis. Following 

classical ways, several approximations for boundary conditions, forces, and so forth are conducted 

on the inertial coordinates.  

 

2.4 Deformed surface of an elastic body 
 

    In this study, we are considering elastic body dynamics and several physical variables are re-

defined in the generalized mode to include the effect of an elastic motion. As a first procedure, 

linear and second-order normal vector variations which consider both rigid and elastic body 

motions are expressed by using the concept of continuum mechanics. 

    The normal vector of deformed surface could be approximated by using normal vector at initial 

state with displacement (Huang and Rigg, 2000). It is expressed in this form. 

( )TNds J ndS -1
F                                                      (2.6) 

Here, J: Jacobian, F: Deformation gradient, :n Deformed normal vector, N : Initial normal vector, 

ds: Deformed surface, dS: Undeformed surface 
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If the position vector at each mode is expressed by 

                                          X x                                                              (2.7) 

    1 22 (2) 3( )O                                           (2.8) 

Here, (2) is displacement obtained by quadratic product of linear displacements  

Deformation gradient tensor could be written by substituting above equations. 

     

   

1 1 1

1 2 3

2 2 2

1 2 3

3 3 3

1 2 3

(1) 2 (2) (2) (1) 2 (2) (2) (1) 2

1,1 1,1 1,1 1,2 1,2 1,2 1,3 1,3

                                                    

1

  

X X X

x x x

X X X

x x x

X X X

x x x

          

   
 
   

   
  

   
   
 
    

     



F

 

     

     

(2) (2)

1,3

(1) 2 (2) (2) (1) 2 (2) (2) (1) 2 (2) (2)

2,1 2,1 2,1 2,2 2,2 2,2 2,3 2,3 2,3

(1) 2 (2) (2) (1) 2 (2) (2) (1) 2 (2) (2)

3,1 3,1 3,1 3,2 3,2 3,2 3,3 3,3 3,3

1

1



           

           

 
 
       
 
       
 

        (2.9) 

 

After inversing and transposing the deformation gradient tensor, it multiplies with Jacobian. So 

then, it is rewritten by matrix form. 
 

 

 

 

    

(1) (1) (1) (1)

2,2 3,3 2,1 3,1

1 (1) (1) (1) (1)

1,2 1,1 3,3 3,2

(1) (1) (1) (1)

1,3 2,3 1,1 2,2

(2) (2) (2) (2) (2) (2) (2) (

2,2 3,3 2,2 3,3 2,1 2,1 3,1 3,1

2

1

( ) 1

1

        

TJ

    

    

    

       





    
 
     
 
    
 

      



F

    

    

2)

(2) (2) (2) (2) (2) (2) (2) (2)

1,2 1,2 1,1 3,3 1,1 3,3 3,2 3,2

(2) (2) (2) (2) (2) (2) (2) (2)

1,3 1,3 2,3 2,3 1,1 2,2 1,1 2,2

(1) (1) (1) (1) (1) (1)

2,2 3,3 2,3 3,2 2,3 3,1 2,

2        

       

       

      



 
 
       
 
 

        

 



(1) (1) (1) (1) (1) (1)

1 3,3 2,1 3,2 2,2 3,1

(1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

1,3 3,2 1,2 3,3 1,1 3,3 1,3 3,1 1,2 3,1 1,1 3,2

(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

1,2 2,3 1,3 2,2 1,3 2,1 1,1 2,3 1,1 2,2

    

           

         



  

  

 3

(1) (1)

1,2 2,1

O 

 

 
 

 
 
 

       

(2.10) 

This could also be expressed by using following vector form (Choi, 2004). 
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0 0 0

2(1) ( ) ( )
B B B

B
S S S

S
Nds O O O                                      (2.11) 

(1)O ndS                                                        (2.12) 

       (1) (1)( )
T

O n n dS                                                (2.13) 

        

 (2) (2) (2) (2)

2
(1) (1) (1) (1) (1) (1)( )

, ,

T

n n

O dS
n

y z z x x y

   

      

           
        

      
        

                   (2.14) 

    The defined normal vector variation is applied to the derivation of several generalized 

formulation which will be explained later. These expressions for the normal vector derived in the 

generalized mode correspond with classical equations for the rigid-body motion. The vector 

identity between generalized mode equation and classical expression is described in Appendix A. 

 

2.5 Boundary-value problem in monochromatic waves  
 

    Boundary-value problem is considered to obtain velocity potentials. In the forward speed 

problem, velocity potential and wave elevation are decomposed into several components. They 

are as follows:  

B I S     ,  
I S                                               (2.15) 

where suffix B means the basis flow  

 The basis flow is taken as the double-body flow, which is expressed by a sum of uniform flow 

and steady disturbance flow as follows: 

B UX                                                          (2.16) 

where   denotes the double-body velocity potential. 

 To solve the boundary-value problem, the boundary conditions should be described. The 

kinematic and dynamic free-surface and the body boundary condition on the instantaneous surface 

are written as follows: 

2.5.1 Free-surface boundary condition 
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    The kinematic & dynamic free-surface boundary conditions on instantaneous surface are 

expressed in this form. 

                          0               on  ( , , )Z Z x y t
t

  
 
      

                    (2.17) 

                 21
              on  ( , , )

2
g U Z x y t

t
     

 
          

                 (2.18) 

Both kinematic and dynamic free-surface boundary conditions are approximated on the still water 

surface ( 0Z  ) by taking Taylor expansion. They are as follows: 

               
( ) ( ) ( ) ( )

( ) ( )
m m m m

m ms s I I
s I mV V f

t Z t Z

   
 

    
        

    
                     (2.19) 

           
( ) ( )

( ) ( ) ( ) ( )
m m

m m m ms I
s s I I mV g g V h

t t

 
   

  
         

  
                    (2.20) 

where 

2 (1) (1) (1) (1) 2 (1) 2
(1) (1) (2)

1 22 2 2
,   f f

Z X X Y Y Z Z

    
  

        
     

      
 

(1)
(1) (1) (1) (1)

1 2

1
0,   

2
h h V

Z t


   

  
        

  
 

and     V U i    

2.5.2 Body-surface boundary condition 

 

   The kinematic body boundary condition on the instantaneous surface is expressed in this form. 

                                     on  SBds N ds
N





 


                               (2.21) 

Substituting the deformed normal vector defined in Eqs. (2.12~14) into kinematic body boundary 

condition Eq. (2.21), linear and second-order generalized body boundary conditions with forward 

speed are derived as follows:  

        
(1) (1)

(1) (1) (1) (1)
T

s In V V n V n
n n

 
   

 
               

                             (2.22) 



 
 

 

CAHPTER2 : Mathematical formulation 

 

 

- 16 - 

 

        
 

(2) 3 3
(2) (2) (1) (1) (2) (2) (1) (1)

(2)
(1) (1) (1) (1) (1)

(2) (2) (2) (2)

1
( )
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s
k l

l k k l

T
I

V V n
n x x

V n n
n

n

V


       


    

   

   
         

   


             

      
 



(1) (1) (1) (1) (1) (1)  
, ,

T

n

n
y z z x x y

     

   
       
      

        

        (2.23) 

Calculating the rotational motion by both rigid and elastic bodies, as shown in Appendix A,  
(2)  

could be obtained and becomes equal to xH  in terms of the second-order expansion of Euler-

angle matrix in case where only the rigid-body motion exists. It is also noteworthy that both 

linear and second-order boundary conditions have several terms which exist only for an elastic 

body; e.g. the divergence of displacement 
(1)  in the linear boundary condition. In the first-

order body-boundary condition, we can also find that the second term on the right-hand side of 

Eq. (2.22) corresponds to mj-terms in the seakeeping problem. 

 

2.6 Generalized hydrodynamic force 
 

The hydrodynamic force acting on a body is defined with generalized mode in the following 

form (Newman, 1994): 

        
B

j

j

S

F p h N ds                                                  (2.24) 

    To calculate the generalized hydrodynamic force, the inner product of mode shape and normal 

vector on the body surface should be obtained. Huang and Rigg (2000) calculated the inner 

product and multiplied it by the hydrostatic pressure to calculate the linear hydrostatic stiffness of 

an elastic body. It can also be expanded up to second-order on the mean surface. Choi (2004) 

derived second-order inner product by taking Taylor expansion on mode-shape function and 

generalized normal vector defined in Eqs. (2.12-14). In this thesis, the variation of modal function 

is defined by directional derivative and it is coupled with generalized normal vector. The derived 

inner product could be expressed as follows:  

0 0 0

2(1) ( ) ( )
B B B

B

j

S S S
S

h Nds O O O                                 (2.25) 
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 
(0)

(1) j jO h n dS h ndS                                             (2.26) 

    
(1)

(1) (1) (1)( ) j j j jO h n dS h h h ndS                                    (2.27) 

 

   

   

(2) (2) (2) (2)

(2)
2 (2) (2) (1) (1)

(1) (1) (1) (1) (1) (1)

( )

, ,

j j

j j j

j

h h

O h n dS h h ndS

h
y z z x x y

   

      

     

 
      
 
 

           
 
       

           

       (2.28) 

In the present study, the generalized hydrodynamic force for the forward speed problem is 

derived by considering the change in the pressure on the body surface. The linear external force 

is expressed as follows: 

   

  

0

0

(1)
(1) (1) (1) (1)

3

(1) (1) (1)

1

2

1
        

2

B

B

j

j

S

j j j

S

F g V V V h n dS
t

V gz h h h ndS


   

   

 
         

 

  
              

  





       (2.29)  

Here, we can calculate the hydrostatic coefficient by evaluating the directional derivative for the 

displacement. The definition of derivative is written by 

 
0

d
F

d 


 
                                                        (2.30) 

After adding the linear gravity restoring force, the hydrostatic coefficient on an elastic body is 

obtained as follows:  

      
0 0

3 3C

B b B

j i i j i j j i i j

ij s

S V S

g h h ndS g h h dV g z h h h h h h ndS                                   

(2.31) 

This hydrostatic coefficient can be shown to be the same as other hydrostatic formulations for an 

elastic body (Malenica et al., 2009). In the second-order, the hydrodynamic force could be 

decomposed into several components by a typical way. They are as follows: 

(2) (2) (2) (2)

j j jj p res qF F F F                                                   (2.32) 
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         
0

(2)
(2) (2)

j

B

jS I
p S I

S

F V h n dS
t


 



 
     

 
                                   (2.33) 

           (2) (2)C
jres ij iF                                                       (2.34) 
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        

 

  
       

  





       

(2.35) 

 

2.7 Equation of motion in generalized mode 
 

2.7.1 Generalized inertial force 

 

Several generalized forces should be included to derive the equation of motion for the 

hydroelastic response. As the generalized force on the body, the inertial force shows the relation 

between inertia of the body mass and external force. Using the conservation of momentum, the 

inertial force of the body mass for the translational and rotational motion is expressed as follows 

(Newman, 1977): 

          '

b

s T R

V

F x dV                                         (2.36) 

         '

b

s T R

V

M X x dV                                      (2.37) 

where T : translational acceleration, R : rotational acceleration 

In the generalized mode, these inertial forces can be redefined as follows: 
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         
b

j

j s t

V

F h dV                                               (2.38) 

j

th  is the transformed modal vector where each position is described at inertial coordinates.  

The non-linear inertial force could also be approximated by taking perturbation series in the 

following form. 

   (0) (1) (1) (2) (2)

b

j j

j s t t

V

F h h dV                                     (2.39) 

After collecting the terms of each order, the first- and second-order inertial forces are expressed 

as follows: 

   (1) (0) (1)

b

j

j s t

V

F h dV                                               (2.40) 

   (2) (0) (2) (2) (1) (1)

b

j j

j s t t

V

F h h dV                                  (2.41) 

Here, 
(0) (2)j

th   becomes the time derivative of a dyadic product between the body-mass inertia 

and the angular velocity which include quadratic inertial force when the mode shape is rotational 

motion (Ogilvie, 1983). The vector identity between Eqs. (2.37), (2.41) on a rigid body and the 

quadratic inertial force for rotational motion is described in Appendix B. The linear inertial force 

can also be expressed by using the mass matrix which is defined by the inner product of each 

mode-shape function (Newman, 1977). 

         (1) (1)Mij j iF                                                      (2.42) 

   M

b

i j

ij s

V

h h dV                                              (2.43) 

By substituting the mode shape (1~6 modes; translation and rotation) into Eq. (2.43), we can 

confirm the classic mass matrix. 

   1 2 3, , , ,h h h i j k ,    4 5 6, , , ,h h h i j k x                               (2.44) 
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 
 

  
 

 
 
  

                               (2.45) 

where  ij s ii ij i j

V

I x x x dV    

 

2.7.2 Generalized gravity restoring force 

 

The body could have the gravity restoring force due to rotation in case that the mode shape has 

variation. This force could be written in the generalized mode as follows (Malenica et al., 2003): 

   
j

b

m s j

V

F g h k dV                                                (2.46) 

This can also be approximated up to second-order by using perturbation series, and the results can 

be written as 

    (1) (2) (1) (2)

j j j

b

m m m s j j

V

F F F g h h kdV                                  (2.47) 

 (1) (1)

j

b

j

m s

V

F g h kdV                                             (2.48) 

   (2) (2) (2)

j

b

j j

m s

V

F g h h kdV                                      (2.49) 

In the linear wave-body problem, the force is proportional to the displacement and therefore it 

is usually included in the restoring stiffness of both rigid and elastic bodies (Senyanovic et al., 

2007). In the second-order force, the first term means the force by pure second-order displacement 

and it is usually included in the second-order restoring coefficient.  

 

2.7.3 Linear & second-order equations of motion 
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    From Newton’s equations, both first- and second-order equations of motion in the generalized 

mode can be derived by considering several generalized forces already described together with 

structural stiffness. The motion equations in the i-th direction are written as follows: 

      1 1 12 (1)

1

M K C ex

i

N
i

ij ij ij ij ij j ex

j

a i b F e
  



      
                                                (2.50) 
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F e F e h h g h k dV
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    



     
 

         




         (2.51) 

where 
, ,p q ex

  is the phase angle of each external force, Here, the external moment should be 

described based on the origin of body-fixed coordinates. 

 

 



 
 

 
CAHPTER3 : Numerical implementation 

 

 

 

- 22 - 

 

 

CHAPTER 3  

 

Numerical implementation 

 

 

 

3.1 Boundary integral equation (BIE) 
 

    In 3-diemnsional wave-body interaction, the boundary integral equation with potential flow 

assumption has been used widely. Its basic form is expressed as follows: 

  

( )
( ) ( ) ( )( , )

( ) ( ) ( ) ( ) ( , ) ( )

T T

m
m m S

S S

Q QS S

QG P Q
C P P Q dS Q G P Q dS Q

n n


 


 

                  (3.1)                                                                                                       

where P = (X,Y,Z) means a field point; Q = (X’,Y’,Z’) means a source point; C(P) means the solid 

angle at the field point P; ST is entire computational domain (SF+SB+SD+SC).  

 

 

3.2 Higher-order boundary element method (HOBEM) 
 

    Boundary integral equation could be solved analytically or numerically by numerous ways. In 

the light of a general geometry of body model, numerical integration is conducted with Green 

function which is called boundary element method (BEM). In this study, the boundary integral 

equation is discretised numerically by quadrilateral panel to solve boundary-value problem. At 

first, the integral domain is segmented into each quadrilateral panel. It is written by 

( )
( ) ( )

1 1

( )( , )
( ) ( ) ( ) ( ) ( , ) ( )

T T

j j

mN N
m m S

S S

j jQ Qe e

QG P Q
C P P Q dS Q G P Q dS Q

n n


 

 


 

 
             (3.2) 

In HOBEM, the velocity potential is approximated to summation of the value at each node by bi-

quadratic shape function in the panel. It is expressed in this form. 
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9
( ) ( )

1

( , )
i

m m

S i S

i

N u v 


                                                  (3.3) 

where 
iN  is shape function 

 

Fig. 3.1 Mapping from inertial coordinates to local coordinates on a panel 

 

Here, the velocity potential could be interpolated in the local coordinates which was mapped from 

inertial coordinates (See Fig. 3.1). In this coordinates, each shape function has following form. 
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   
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       (3.4) 

 

Substituting Eq. (3.3) into boundary integral equation Eq. (3.2), each integration is composed of 

shape function and velocity potential on the node with Green’s function. It is as follows: 
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The integration of shape function with Green’s function can be obtained provided geometry of all 

boundaries is given. Thus, velocity potential can go out from the integration. It is written by   

9
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1 1
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
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
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                         (3.6) 

    The evaluation of integration is conducted by using different ways depending on strength of the 

singularity. The detail description of evaluation for each integration and solid angle of HOBEM 

is described in Zhang (2018). 

 

3.3 Green’s function  
 

    In potential flow solver, several kinds of Green’s function have been used. In time-domain 

simulation, we adopted Rankine source as a Green’s function. It is defined in this form. 

1 2

1 1
( , )G P Q

R R
                                                        (3.7) 

where       
     

     

2 2 2

1

2 2 2

2

' ' '         

' ' ' 2

R X X Y Y Z Z

R X X Y Y Z Z H

      

       

 

The bottom condition is automatically satisfied by adding image source R2. Using symmetric 

property of body geometry and velocity potential, only half-domain in total surface is considered 

for the simulation. After applying boundary conditions to the integral equation and collecting 

unknown and known values at each boundary on the left- and right-hand sides respectively, a 

matrix form is obtained in the following form: 
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where A and B mean influence matrices which include an integral over a discretised panel in terms 

of the Green function together with shape function, respectively. The velocity potential is obtained 

by solving Eq. (3.8) at each boundary in the perturbation series. 

 

3.4 Calculation of several derivatives in HOBEM 
 

    In the perturbation method, several spatial derivative of velocity potential should be calculated. 

Many kinds of method have been suggested to obtain derivative of velocity potential. It is well 

known that the first derivative could be conducted by using derivative of integral equation without 

any difficulty. It could also be obtained by using shape function because the velocity potential is 

approximated by mathematical formulation in HOBEM. First derivative of velocity potential is 

expressed in this form. 

1
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n n n

 

 

 
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     
     
     

                                              (3.9) 

    On the other hands, it is relatively difficult to obtain second derivative of variable than first 

derivative of it. If double differentiation for the integral equation is conducted, the singularity is 

much more increased in Green’s function and numerical error is expected due to hyper singularity. 

To increase the accuracy of second derivative quantities, other methods have been suggested based 

on boundary integral equation.  

    For instance, using desingularized BEM and geometry of a body model, first derivative of 

velocity potential is obtained and then differentiation for the boundary integral equation is 

conducted to obtain second derivatives of velocity potentials(e.g. Shao, 2010). Similar way is also 

applied on Dirichlet type formulation (Chen and Malenica, 1996; Lee et al., 2017). In this method, 

first derivative of velocity potential is substituted to Dirichlet type equation and it is differentiated 

to obtain second derivative of velocity potential.  

    In case HOBEM is adopted, second derivative of shape function could be used directly as same 

with calculation of first derivative quantities. There are two types of formulation on second 

derivative as used in Choi et al. (2001) and Kim (1996). They are as follows: 
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                (3.11) 

 

 The accuracy in second derivative variables on the ship hull surface is checked by using a 

simple Rankine source (1/ 4 R ) where the source and field points are arbitrarily located on and 

outside the body surface. Two numerical results obtained by Eqs. (3.10-11) and the analytic 

solution for the second derivative of Rankine source on the line of hull surface are depicted in Fig. 

3.2.  

 In the calculation, the numbers of body-surface division used in the X- and Z-directions are 

48 and 8, respectively. It can be seen from this figure that both numerical methods provide good 

agreement with analytic solution, but judging from the results, the first equation (3.10) provides 

more stable result than the second equation (3.11). Thus we adopted the first equation in our 

simulation. These results suggest that when the velocity potential has smooth value, the second-

derivative of velocity potential could be obtained accurately by using the shape function in 

HOBEM.  
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Fig. 3.2 Comparison of second derivatives at source point between numerical methods and analytic 

solution 

 

    It is known that spatial derivative on the free-surface makes numerical instability in Rankine 

panel method. In the ship forward speed problem, derivative for X-direction on a free-surface is 

calculated by using 3-point upwind scheme which gives more stable solution in the forward speed 

problem. It is as follows: 
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

 
                                             (3.12) 

where Xi and i  mean the X-coordinates and velocity potential at the i-th node with assumption 

(X1 = 0). 

 

3.5 Time-marching scheme 
 

    In the time-domain simulation, initial-value problem should be solved. Physical quantities of 

next time step is predicted by using present values. In our simulation, the explicit Runge-Kutta 

4th-order method is adopted. Unsteady velocity potential and wave elevation are updated on free-
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surface and body boundary conditions at each time step after determining the coefficients of 

Runge-Kutta. It is expressed in this form. 

        1 1 1 1 3 4

1
, , 2 2

6
n n n n k k k k t                                         (3.13)  

where 
nk : coefficients for Runge-Kutta fourth-order, n : present time step 

    In the freely-floating body, the calculation of unsteady displacement and velocity of a body 

model are obtained by using 4th-order Runge-Kutta-Nystrom method. They are expressed in this 

form (Koo and Kim, 2004). 
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Using obtained acceleration in the equation of motion, velocity and displacements are updated 

every time step.  

   In the initial time steps, Ramp function ( ) is applied over the several wave periods (Te) to 

prevent sudden increase of a response. The function is written by 
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                                  (3.16) 

 

3.6 Type of grid on free-surface 
 

    In Rankine panel method, panel mesh exists on both body and free-surface boundaries. The 

free-surface mesh has two kinds of shape (See Fig.3.3); i.e. oval and rectangular types of grid. 

Each shape has advantage and disadvantage.  
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Fig. 3.3 Top view of computation region and panels on the oval/rectangular type free-surface 

 

It is known that generally the oval type grid is more efficient and on the other hands, the 

rectangular type grid needs more number of mesh but it is more stable than oval type grid. In our 

simulation, axis-symmetric body is calculated on the oval type free-surface and other general 

bodies such as ship, barge models are simulated on rectangular type of grid.  

 

        

Fig. 3.4 Numerical damping beach at each free-surface type 

 

3.7 Numerical damping beach 
 

    In time-domain simulation, the radiation condition is satisfied by using numerical damping 

scheme to prevent making reflected waves. The general damping zone of each type of grid is 

shown in the Figure 3.4. In the zero forward speed problem, the artificial damping is installed the 

edge of free-surface. On the other hands, a ship model with forward speed has damping beach 

only edge of horizontal direction and downstream region on the free-surface. In damping zone, 

the artificial damping is added on kinematic free-surface boundary conditions. It is as follows: 
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and is strength of damping and LR is the length of damping zone 

 

3.8 Numerical filter 
 

    Simulations of wave-body interaction could have various instabilities especially on the free-

surface. As one of the instabilities, the free-surface has the so-called saw-tooth behaviour. Using 

a low-pass filter is a simple way to prevent this kind of instability. However, the numerical filter 

could affect the result if the strength and operation frequency are high. In this simulation, the 

three-point low-pass filter (Shao and Faltinsen, 2010) is applied to the wave elevation to reduce 

the effect of a filter. The equation adopted is as follows: 

 

 1 11 2j j j jc c c                                                   (3.18) 

 

where j is a node number of collocation point used in the numerical filter and  is a new wave 

elevation after filtering. The strength of numerical filter (c) is decided by considering the wave 

period and time step size, and the value of c is fixed equal to 0.025 in all simulations. Numerical 

filter is operated once per 10 time steps for the linear wave elevation and once per 5 time steps for 

the non-linear wave elevation.  
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CHAPTER 4  

 

Numerical study by time-domain analysis in monochromatic 

waves  

 

 

4.1 Introduction 
 

    In this chapter, direct time-domain simulation by using developed HOBEM code and modal 

approach is implemented for the analysis of the wave-body interaction at different situations of 

monochromatic waves. Since the second-order springing of an elastic body is complex to be 

solved directly, the numerical simulation is conducted step by step. 

    In chapter 4.2, necessary convergence study is introduced before numerical calculation. The 

generalized mode approach is applied on both rigid and elastic bodies. In chapter 4.3, the wave-

body interaction of a rigid body without forward speed is conducted and it is extended to forward 

speed problem in chapter 4.4. In the last, the numerical study is applied on an elastic body 

without/with forward speed in chapter 4.5 & 4.6, respectively.  

 

4.2 Convergence study 
 

    Convergence study is important for the validation of new code and it should be performed 

systematically. Before conducting numerical calculation, convergence study is conducted on 

hemisphere, vertical cylinder in zero forward speed problem and Wigley1 model in forward speed 

problem. As one of the most important factors in time-domain Rankine panel method, 3 

components are considered for convergence study such as computational domain size, time step 

size, mesh size (He and Kashiwagi, 2014).  
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4.2.1 Computational domain size 

 

    Convergence study for the length of free-surface domain is implemented. During this study, 

both first-order and second-order quantities are confirmed for computational domain size. The 

free-surface length is one of the important parameters which could affect the simulation results. 

Especially there are additional forcing terms composed of several quadratic products in the 

second-order free-surface boundary condition. It is known that the exact evaluation of free-surface 

integral in the second-order boundary-value problem is crucial and difficult work. In the present 

research, we adopted a simple Rankine source as the Green function with rectangular/oval type 

free surface which is shown in Fig. 3.3. It makes the free-surface integration readily be evaluated. 

However, the region of integration is definite, thus sufficient extent of the free surface should be 

given.  

   In all cases in zero forward speed problem, length of damping zone size is fixed on half of total 

free-surface length on oval type free-surface. Figure 4.1 is the second-order hydrodynamic force 

at different free-surface domain size. This figure shows that the result is different depending on 

computational domain size. It seems that enough length of free-surface should be adopted. During 

this study, over 2.0 wave lambda of free-surface length is used for simulation in case oval type of 

grid is chosen.   

 

 

Fig. 4.1 Sensitivity of second-order hydrodynamic force to free-surface length for hemisphere 
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Fig. 4.2 Top view of computation region and rectangular panels on free surface 

 

Fig. 4.3 Second-order hydrodynamic force at different free-surface length (wave frequency: 5.5 rad/s, 

at Fn = 0.2) 

 

    In the forward speed problem, we checked both longitudinal and lateral lengths of the free 

surface from the ship model. Figure 4.3 is the second-order hydrodynamic force when different 

free-surface lengths are used. The left figure shows the influence of the longitudinal free-surface 

length (a) defined in Fig. 4.2, and likewise the right figure shows the influence of the lateral free-

surface length (b). The result shows that the second-order velocity-potential force (Fp) has 

continuously small oscillation depending on the longitudinal free-surface length and the quadratic-

product force (Fq) composed of linear solutions does not change. On the other hand, the lateral 

free-surface length does not give any effect on both quadratic-product force and second-order 

velocity-potential force. From these confirmations, we adopted 1.5 for the values of (a) and (b) as 

the free-surface length. Here, a numerical damping beach for satisfying the radiation condition is 
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installed for 0.5 and 1.0 wave length ( ) in the lateral and longitudinal directions, respectively, 

from the edge of free-surface region. 

 

4.2.2 Time step size 

 

    Large time step makes numerical result be unstable and it may not give convergent result. Fig. 

4.4 shows second-order hydrodynamic force at different time step size. Compared to the free-

surface length, it does not show large sensitivity. However, there is little difference between results. 

In this study,  t/Te = 200 is used for all cases. 

 

Fig. 4.4 Sensitivity of second order hydrodynamic force to time step for hemisphere 

4.2.3 Mesh size 

 

Table 4.1 A list of number of body and free-surface panel 

Model No. of Body panel No. of Free-surface panel 

Test Mesh1 75 270 

Test Mesh2 120 400 

Test Mesh3 300 900 

Hemisphere 300 900 

Vertical circular cylinder 400~1000 1000~1200 
 

        It is well known that the second-order forces are more sensitive to the number of panels on 

both body and free-surface boundaries. The sensitivity test at a short wave region is conducted 

with different panel size. In the higher-order boundary element method (HOBEM), body and free-

surface boundaries share several nodes on the intersection waterline. Thus, the increase in the 

number of body-surface panels also increases the number of free-surface panels. Table 1 shows a 

list of number of mesh used in convergence study at zero speed problem and Fig. 4.5 is the result 
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of second-order hydrodynamic force at different mesh size. It shows fast convergence for panel 

mesh and Mesh3 gives enough convergent result for second-order hydrodynamic force. In this 

study, 300 body panels and 900 free-surface panels are used for hemisphere in half domain and 

more many number of mesh is used for vertical circular cylinder to remove an error by mesh 

problem.  

 

Fig. 4.5 Sensitivity of second order hydrodynamic force to mesh size for hemisphere 

 

Fig. 4.6 Second-order hydrodynamic force at different number of panels (wave frequency: 5.5 rad/s, 

at Fn = 0.2) 

In the forward speed problem, effect of panel mesh is more sensitive than zero forward speed 

problem. The result of second-order hydrodynamic force at different number of panels is denoted 

on figure 4.6. The left is the result of quadratic-product force of linear quantities (Fq). It shows 

that 40 panels for the longitudinal direction gives almost converged result. However, in the right 

figure for the second-order velocity-potential force (Fp), the result is not converged even with 40 

panels in the longitudinal direction. Since the second-order velocity potential is influenced by the 

free-surface and body-surface panels and both boundaries include second-derivatives of the 
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velocity potential which have crucial effect on accuracy, the force is much more sensitive to the 

number of panels on the boundaries. Although we could not obtain fully converged result on the 

second-order velocity-potential force, we used a large number of panels with where the quadratic-

product force shows a converged result.  

4.3 Numerical study without forward speed (rigid model) 
 

    As a first validation process, linear & second-order hydrodynamic forces for the rigid body 

motion are confirmed by comparing with classical results. In zero forward speed problem, wave-

body interaction at different conditions such as fixed & forced oscillating & freely floating are 

simulated and the numerical result is discussed.  

4.3.1 Fixed body 

 

1) Hemisphere 

 

Fig. 4.7 The amplitude of linear surge & heave exciting forces for fixed hemisphere (H = 3a) 

    A fixed hemisphere is studied for sum-frequency hydrodynamic force in the second-order. The 

water depth is H=3a (a: Radius of hemisphere) and before comparing with sum-frequency 

hydrodynamic forces, linear quantity is first checked. Figure 4.7 is surge and heave linear wave 

exciting forces for fixed hemisphere. It shows a good agreement with result of another frequency-

domain in-house code.  

    The second-order diffraction problem on a fixed hemisphere is studied by several researchers. 

In this study, the result of Kim and Yue (1990), Shao and Faltinsen (2010) are compared with the 

present result. As mentioned in chapter 2, second-order hydrodynamic force could be divided two 
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components at diffraction problem. First component is caused by second order velocity potential 

(Fp). Another component is quadratic product of linear quantities (Fq).  

 

Fig. 4.8 The amplitude of sum-frequency surge & heave forces for fixed hemisphere (H = 3a) 

    Figure 4.8 is non-dimensional amplitude of surge and heave sum-frequency hydrodynamic 

force on a fixed hemisphere. It shows second-order velocity potential component is substantial in 

sum-frequency hydrodynamic force. Especially short wave length region, contribution of second 

order velocity potential becomes larger. Both second-order velocity potential and quadratic 

product of linear quantities forces show a good agreement with other papers.  

2) Vertical cylinder 

 

    Vertical cylinder is frequently used for the validation study of developed code in hydrodynamic 

field because there are many kinds of solution in both linear and non-linear variables. The eigen-

function expansion method is particularly often used for different situations such as bottom 

mounted or surface piercing column, multi-column, and so forth. Present numerical result is 

compared with that of bottom-mounted and truncated vertical cylinders. 

        First, fixed truncated vertical cylinder which has same draft (d) with radius (a) is considered 

and water depth (H) is chosen to 2 radius (a). The linear wave exciting and drift force results are 

compared with that of Kinoshita et al. (1997), Shao (2010). In Kinoshita et al. (1997), the result 

is obtained by numerical method based on BEM. Figure 4.9 is the amplitude of non-dimensional 

surge and heave linear wave exciting forces and shows a good agreement with other results. In 
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sequence, Figure 4.10 is the amplitude of non-dimensional surge drift force. It also shows a good 

agreement overall frequencies.  

 

Fig. 4.9 The amplitude of linear surge & heave wave forces for vertical circular cylinder (H=2a, d=a) 

 

Fig. 4.10 The amplitude of surge drift force for vertical circular cylinder (H = 2a, d = a) 

    The double-frequency force in the second-order quantities is also confirmed on a bottom-

mounted vertical cylinder. The result is compared with that of Kim & Yue (1990), Choi (2013). 

In Kim and Yue (1990), the result is obtained by ring source Green function semi-analytically. In 

Choi (2013), the velocity potential is obtained by using eigen-function expansion and the 

integration of surface is conducted by semi-analytic way. The left and right in Figure 4.11 show 

the sum-frequency force of draft(d)/radius(a) are 4 and 10 bottom-mounted vertical cylinders, 

respectively. All kinds of second-order forces show a good agreement with other results.  
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Fig. 4.11 Second-order hydrodynamic forces on rigid vertical cylinder (d/a is 4 and 10) 

    From the numerical study of diffraction problem, we could confirm that the second-order 

hydrodynamic force on a fixed body could be calculated with good accuracy by using time-domain 

HOBEM. 

4.3.2 Forced oscillating body 

 

1) Hemisphere 

    As already shown in diffraction problem, a first-order quantity is confirmed before obtaining a 

second-order quantity. Added mass and damping coefficients are obtained by using forced 

oscillating body. Using orthogonal property of trigonometric function, time-domain results are 

transformed to hydrodynamic coefficients (e.g. Zhou et al., 2013). This procedure is briefly as 

follows: 

    The total force acting on the body surface can be written in this form (Koo and Kim, 2006) 

( )i ij j ij j ij jF t a b c                                                     (4.1) 

After multiplying hydrodynamic force with either acceleration or velocity, the integration over 

the one period is conducted. It is as follows: 
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In forced oscillating simulation, body has sinusoidal acceleration, velocity, motion such as 

2cos ,  sin ,  cosj j j j j jA t A t A t                                        (4.4) 

Substituting Eq. (4.4) to Eq. (4.2) and (4.3), the added mass and radiation damping coefficient 

could be determined by orthogonal property of trigonometric function. It is as follows: 

2
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1
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ij i

j

c
a F t tdt

A


  
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0

1
( )sin

eT

ij i

j

b F t tdt
A




                               (4.5) 

As a numerical model, a hemisphere is also chosen for added mass and radiation damping 

coefficients. The results are compared with analytic solution (Hulme, 1982). Fig. 4.12 and Fig. 

4.13 denote surge, heave added mass and radiation damping coefficients. They show a good 

agreement with analytic solution. 

 

Fig. 4.12 Non-dimensional surge added mass & radiation damping coefficients of a hemisphere  
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Fig. 4.13 Non-dimensional heave added mass & radiation damping coefficients of a hemisphere    

2) Truncated vertical cylinder 

        Truncated vertical circular cylinder is also chosen as a second-order radiation problem. The 

water depth (H) is 1.5 radius (a) and draft (d) is set on 0.5 radius (a). Teng et al. (2002), Duan et 

al. (2015b) used same model for comparison of second-order hydrodynamic force under forced 

oscillating body. Second-order hydrodynamic force of radiation problem is also decomposed into 

two components; i.e. Fp and Fq as same with diffraction problem. Fig. 4.14 and Fig. 4.15 show 

double-frequency vertical hydrodynamic forces due to harmonic oscillating heave and surge 

motions. Each component of second order hydrodynamic forces is compared with that of other 

published papers. Overall results show favourable agreement in both surge and heaving body. 

 

Fig. 4.14 Sum-frequency heave hydrodynamic force due to second order velocity potential (Fp) & 

quadratic product of linear quantities (Fq) on a forced oscillating heaving cylinder  
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Fig. 4.15 Sum-frequency heave hydrodynamic force due to second order velocity potential (Fp) & 

quadratic product of linear quantities (Fq) on a forced oscillating surging cylinder 

        However, the problem including second derivative of velocity potential have been one of 

difficult numerical problems. It is well known that linear seakeeping analysis of a ship with 

forward speed has second derivative of double body velocity potential so called mj-term and 

second-order radiation problem of stationary structure also has second derivative of unsteady 

velocity potential on body boundary condition. Accuracy problems of second derivative quantities 

have been brought by several researchers (e.g. Zhao and Faltinsen, 1989; Nakos, 1990; Shao and 

Faltinsen, 2010). Thus, many different schemes have been developed to avoid calculation of 

second derivative itself. In the forward speed problem, Tuck’s theorem is generally used to avoid 

second derivative of double body velocity potential (Ogilvie and Tuck, 1969). In second-order 

radiation force, similar mathematical formulation is also suggested. For example, Teng et al. 

(2002), Lee (1995) obtained second-order unsteady velocity potential without second derivative 

of velocity potential on body surface by taking Stokes theorem on boundary integral equation. 

Shao and Faltinsen (2010) also used body-fixed coordinate method not to perform the Taylor 

expansion on body boundary condition. They also insisted that if the structure has sharp corners 

with interior angle less than 180 degree, the second derivative of velocity potential in Bernoulli 

equation fails to converge due to singularity of the flow.  

    Although the second derivative quantities on body boundary could make a little error, the effect 

seems not so large at least in the second-order force of the forced oscillating body. Other 

hydrodynamic forces could also be obtained with good accuracy in time-domain Rankin panel 

method. 

4.3.3 Freely-floating body 

 

    As a last section, the motion and force of a freely-floating body has been considered. In the 

direct time-domain simulation, a freely-floating body continues to drift for wave-direction in 

horizontal motions because there is no restoring force for these motions. In this study, soft spring 

is installed at surge, sway, yaw motions to prevent continuous drift of a body. The steady state 

result of the horizontal motion is obtained after several period of the simulation by using Fourier 

transform. It is well known that duration period of Ramp function at initial time make different 

drift of horizontal motion. Fig. 4.16 shows the comparison of the horizontal motion with different 

duration period of Ramp function without soft spring. It shows long duration time of Ramp 
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function could reduce the drift of a freely-floating body. Fig. 4.17 shows the comparison of the 

horizontal motion with different period  of soft spring. Here, low period means strong restoring 

force which could be confirmed at the following definition.  

2

( )

(2 / )

i i
i

s

m a
c

T


                                                          (4.6) 

 where Ts : Period of soft spring 

Since large strength of soft spring affects the result of horizontal motion, it should be careful to 

choose for strength of it. 

 

Fig. 4.16 Comparison of horizontal motion with different duration period of Ramp function 

 

Fig. 4.17 Comparison of horizontal motion with different soft spring period 

    As a validation model, a freely-floating hemisphere is adopted again. The water depth is set on 

1 wave lambda ( ) and numerical results are compared with that of Pinkster (1980) and the 

experiment result of Kudou (1977). In this simulation, time derivative of velocity potential in 

hydrodynamic force is calculated by two methods. First method is using finite difference scheme 

(backward) for the velocity potential. Second method is obtaining so called acceleration potential 

by using BEM solver for the time derivative of velocity potential simultaneously. Boundary-value 

problem for time derivative of velocity potential is solved by using Eq. (4.7) and body boundary 

condition is re-obtained on acceleration potential.  
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 

                                     (4.7) 

(1)

t n n                                                               (4.8) 

In both methods, iteration loop for hydrodynamic force & acceleration is not used. Figure 4.18 is 

surge, heave RAO on a freely-floating hemisphere. It shows that second method is more similar 

with result of Pinkster (1980). Because of improved linear quantities, the mean drift force also 

shows more similar result with experiment data as shown in Fig 4.19.  

 

Fig. 4.18 Surge and heave response amplitude operator of freely floating hemisphere (H = ) 

 

Fig. 4.19 Surge mean drift of freely floating hemisphere (H = ) 

    Next, double-frequency hydrodynamic force is also calculated at the same condition with 

diffraction problem. The result is compared with semi-analytic solution of Kim and Yue (1990) 

and another in-house frequency-domain code which is based on wave Green function HOBEM. 
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Figure 4.20 shows the second-order force from quadratic product of linear quantities (Fq) on a 

freely-floating hemisphere. Left and right figures mean surge and heave direction forces, 

respectively. Although there is a little difference near the resonance, overall results agree well 

with other semi-analytic and frequency-domain results. 

       

Fig. 4.20 Quadratic product of linear quantities (Fq) on freely-floating hemisphere. Left figure means 

surge direction force and right figure is heave direction force (H=3a) 

    The contribution of second-order velocity potential (Fp) in the second-order hydrodynamic 

force is also compared with frequency-domain in-house code whose detail will be explained at 

next chapter. Fig. 4.21 shows that the second-order velocity potential force at each surge and heave 

direction. In the left figure, the surge force shows a good agreement each other. On the other hands, 

heave direction force shows remarkable difference near resonance region. 

           

Fig. 4.21 Non-dimensional total second order velocity potential force (Fp) on freely-floating 

hemisphere. Left figure means surge direction force and right figure is heave direction force (H=3a). 
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There might be possible two reasons of the difference except inaccuracy of linear quantities. 

The first is numerical inaccuracy in the second derivatives of velocity potential which needed in 

the second-order body boundary condition as mentioned previous section. The second-derivative 

term is coupled with body motion on second-order boundary condition. In the light of the fact that 

difference dramatically increases as body motion increases, second derivative quantities on body 

surface seem sensitive. Another reason may be due to truncated free-surface region adopted in the 

Rankine panel method. This truncated free-surface problem was not prominent in the second-

order diffraction/radiation problems of fixed or forced oscillating body simulations.  

4.3.4 Summary      

 

      From the study of a rigid body at zero forward speed, it seems that second-order velocity 

potential could be obtained with good accuracy in diffraction problem. When the body has motion, 

there exists second derivative of velocity potential and it causes an error in second-order 

hydrodynamic force. Especially in the freely-floating condition, an error could appear near 

resonance region due to inaccuracy of second-derivative on body boundary condition and strong 

coupling of non-homogeneous components on free-surface boundary. It is also confirmed that the 

acceleration potential could improve the result of free-body simulation and the calculation of 

second-order velocity potential force.  

 

4.4 Numerical study with forward speed (rigid model) 
 

    The forward speed problem with rigid body assumption is considered in this section. Using 

previous researches conducted by experiment or another numerical simulation, the validation 

study of developed code is implemented on a rigid ship model.  

4.4.1 Simulated ship model  

 

    The ship model considered in forward speed problem is slender & blunt modified Wigley 

models (Kashiwagi, 2013) and Wigley1 model (Journee, 1992) whose hull shape has relatively 

simple as shown in Figure 4.22. They can also be expressed in a mathematical form with the 

following equation: 

 



 
 

 
CAHPTER4 : Numerical study by time-domain analysis in monochromatic waves 

 

 

 

- 47 - 

 

            

            

Fig. 4.22 Slender and blunt modified models   

 

1) Slender modified Wigley & Wigley1 ship model 

      
4

2 2 2 2 8 21 1 1 0.2 1 1                                             (4.9) 

2) Blunt modified Wigley ship model 

      
4

2 2 2 4 2 8 21 1 1 0.6 0.2 1 1                                        (4.10) 

where  2 / ,  2 / ,  and /x L y B z d      

 

Principal dimensions of the ship model are shown in Table 4.2. The Froude number (Fn) is 

fixed to 0.2 in all simulations and 0.3 is additionally considered on the Wigley1 model.  

 

    Considering numerical accuracy in the body boundary condition which includes several 

higher-order derivatives of double body velocity potential, we adopted the so-called Neumann-

Kelvin assumption in all simulations. Hence, the double body velocity potential and its 

derivatives are not included in this study. 
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Table 4.2 Principal dimensions of ship models 

Principal dimension 
Blunt modified 

Wigley 

Slender modified 

Wigley 
Wigley1 

Length (L) 2.5 m 2.0  m 3.0  m 

Breadth (B) 0.5  m 0.3  m 0.3  m 

Draft (d) 0.175  m 0.125  m 0.1875  m 

Center of gravity (OG) -0.03  m -0.0404  m -0.0175  m 

CB 0.635 0.56 0.563 

 

4.4.2 Linear diffraction & radiation problem of ship models  

 

       Before obtaining motion response, diffraction/radiation problems are considered on 

slender/blunt modified Wigley models. Figures 4.23 and 4.24 are hydrodynamic coefficients and 

wave exciting forces of blunt modified Wigley ship and Figure 4.25 and 4.26 are same variables 

of slender modified Wigley ship. These results are compared with that of experiment and 

numerical result of EUT (He and Kashiwagi, 2014). Figures show that time-domain HOBEM 

results give a good agreement with other results. 

 

Fig. 4.23 Heave added mass & damping coefficient of blunt modified Wigley ship (Fn = 0.2) 
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Fig. 4.24 Wave exciting force of blunt modified Wigley ship (Fn = 0.2, β = 180o) 

 

Fig. 4.25 Heave added mass & damping coefficient of slender modified Wigley ship (Fn = 0.2) 

 

Fig. 4.26 Wave exciting force of slender modified Wigley ship (Fn = 0.2, β = 180o) 
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4.4.3 Freely-floating ship models  

 

    Using the equation of motion, motion response of Wigley ship models is calculated. After 

obtained acceleration in the equation of motion, velocity & motion of a ship model are calculated 

by using Runge-Kutta-Nystrom method at each time step. Artificial spring is installed to avoid 

continuous drift phenomenon. Long duration of Ramp function period at initial time steps is also 

used to reduce drifting for horizontal direction. 

    First, the motion responses of both slender & blunt modified Wigley models are calculated and 

compared with other result of the experiment and different numerical results such as EUT, NSM, 

3-D RPM as shown in Kashiwagi (2013).  

    Fig. 4.27 is the surge, heave, pitch motion responses of blunt modified Wigley model. It seems 

that HOBEM gives fair agreement with other results but vertical motions are relatively 

underestimated at low frequency regions. 

    Figure 4.28 is same kinds of motion response in slender modified Wigley model. In heave 

motion, HOBEM result is more similar with that of A=0.025m experiment than A=0.01m case. In 

the heave & pitch motions, present result has better agreement with that of 3-D RPM than blunt 

model’s response case. Referred RPM code adopted double body flow assumption, thus it seems 

that slender modified Wigley ship has smaller effect of steady disturbed potential than blunt 

modified Wigley ship. 

 

 

Fig. 4.27 Motion response of blunt modified Wigley model [Surge,Heave,Pitch] (Fn = 0.2, β = 180o) 
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Fig. 4.28 Motion responses of slender modified Wigley model [Surge,Heave,Pitch] (Fn = 0.2, β = 180o) 

 

    At the last, Wigley1 model is used as a validation. This model has the most slender hull shape 

among numerical models in this study. Vertical motions are compared with that of experiment 

(Journee, 1992) and other 3-D RPM codes in time-domain (Shao and Faltinsen, 2012; Joncquez, 

2009).  

 

    Figure 4.29 and 4.30 show motion responses at different Froude number 0.2 and 0.3, 

respectively in head waves. We could confirm that the vertical motions increase as forward speed 

increases. It also seems that NK assumption slightly overestimates the motion responses near 

resonance especially due to simplified mj-terms without steady disturbed flow effect. 

 

Fig. 4.29 Motion response of Wigley1 model [Heave, Pitch] (Fn = 0.2, β = 180o) 
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Fig. 4.30 Motion response of Wigley1 model [Heave, Pitch] (Fn = 0.3, β = 180o) 

    Using linear variables, quadratic product of linear quantities could be calculated and the steady 

force can be obtained by measuring the average value of it. As a validation of quadratic forces, 

the steady force is compared with published data. In particular, the surge steady force is called 

wave induced added resistance which has been particularly researched in the seakeeping problem 

by many researchers.  

    From the several decades, numerous methods to predict exact added resistance of a ship have 

been suggested. Since the steady force could be calculated by not only pressure integration but 

also momentum conservation theorem which is so called far-field method, several formulations 

to calculate steady force in waves have been developed. For instance, Maruo (1960) derived the 

formulation of steady force by using far-field method based on Kochin function. Gerritsma and 

Beukelman (1972) suggested radiated wave energy method based on momentum conservation 

theorem. Using Parseval’s theorem, Kashiwagi (1995) also derived similar formulation in the 

frame of far-field method and calculated wave induced steady force based on enhanced unified 

theory (EUT). Using wave elevations near the ship hull, the added resistance is calculated by 

Okushu (1980) in the cylindrical coordinate system. Kashiwagi (2013) suggested general 

formulation of unsteady wave pattern analysis in Cartesian coordinate and measured wave pattern 

in experiments.  

    In Kashiwagi (2013), he compared several methods and discussed some components of added 

resistance in waves. His results are compared with present time-domain simulation based on 

pressure integration method in generalized modes. As same with zero forward speed problem, the 

translational mode is substituted to modal vector in generalized mode’s formulation. 
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    Figure 4.31 shows wave induced added resistance of two modified Wigley models. Left figure 

is the result of slender modified Wigley model and the right figure is that of blunt modified Wigley 

model. In slender model, it shows favourable agreement with other results though it is 

underestimated than others. However, blunt model shows rather poor agreement with other results. 

It seems that the underestimated vertical motion might be one of main reason and steady flow 

effect is larger than slender models as same with the linear motion response case.  

 

Fig. 4.31 Added resistance of slender & blunt modified Wigley model (Fn = 0.2, β = 180o) 

 

    In the last, the steady force for rigid body motions of Wigley1 ship model is compared with 

experiment and another time-domain RPM results (Joncquez, 2009) in different forward speed. 

 

 

Fig. 4.32 Steady force of Wigley1 model [Surge, Heave, Pitch] (Fn = 0.2, β = 180o) 
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Fig. 4.33 Steady force of Wigley1 model [Surge, Heave, Pitch] (Fn = 0.3, β = 180o) 

 

        Figure 4.32 and 4.33 show the steady force at Froude number 0.2 and 0.3 in head waves. 

Present simulations show a little smaller value than other results especially near resonance region. 

One of reason might be come from the inaccuracy in calculation for the second derivative of 

unsteady velocity potential on body surface. Thus, we denoted the result without second-

derivative of unsteady velocity potential together in figures. The existence of second derivative of 

unsteady velocity potential reduces the value of surge direction force and other heave and pitch 

direction forces increase especially near resonance region in this model. If we considers the fact 

that these ship models are relatively slender and we are using NK assumption, we could figure out 

that the difficulty of exact calculation of second-order force with forward speed as discussed by 

previous researchers (e.g. Shao and Faltinsen, 2012; Lee et al., 2017).  

 

4.4.4 Summary      

 

    In NK assumption, several simple ship models are used in the validation process. The motion 

responses show a good agreement except rather blunt ship model and overestimates peak values 

near resonance frequency in slender models. The mean drift force is also confirmed by calculating 

quadratic product of linear quantities. The results show favourable agreement in slender models 

and rather poor agreement is confirmed in blunt models. It is confirmed that second derivative of 

velocity potential is more sensitive in forward speed problem though the ship hull is simple and 

slender. More detail study should be given for estimation of second-order hydrodynamic force 

with forward speed by using various methods. 
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4.5 Numerical study without forward speed (elastic model) 

 

    From this section, we consider the responses of an elastic body. Before solving forward speed 

problem, the numerical study is conducted on zero forward speed problem. Since there are many 

other researches on stationary body, the developed codes are compared with these published 

results. After structural model what used in this study is introduced, numerical results on fixed 

and floating bodies are calculated and discussed. 

 

4.5.1 Simulated structural model 

 

The floating body is treated as a simple beam to calculate the hydroelastic response. The Euler-

Bernoulli & Timoshenko beam equations are used for the structure model. Since the head wave 

condition is considered, only the vertical bending mode is included as the elastic responses. Hence, 

the modal vector can be defined as follows: 

 1 2 3,   0,   
jj N j j

j

w
h Z Z h h w

X


    


                                     (4.11) 

1) Euler-Bernoulli beam theory 

    The dynamic Euler-Bernoulli beam equation could be written in this form. 

2 4

3 3

2 4s

d d
m EI f

dt dX

 
                                                  (4.12) 

    Using the method of weighted residuals, the beam equation could be transformed to following 

equation.  
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             (4.13) 

Using defined modal mass and stiffness matrices, Eq. (4.13) could be summarized in this form. 

1

( ) ( ) ( )
n

ij j ij j i

j

M t K t F t 


                                                 (4.14) 

From the equation, the mode shape of the beam model could be obtained by solving the eigen- 

value problem. The homogeneous solution of Euler-Bernoulli beam can be readily obtained by 
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assuming the free-free end condition and the time harmonic oscillation. The final symmetric and 

anti-symmetric mode shapes can be expressed as follows: 

   2 2
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j j
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q q
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 
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                                         (4.16) 

where q is the non-dimensional coordinates (2X/L) , and j=0 and 1 denote the rigid modes; 

namely heave and pitch motions, respectively. The factor j (which is the j-th eigenvalue related 

to the elastic natural frequency) can be calculated numerically, satisfying the following eigen-

value equation (Newman, 1994). 

( 1) tan tanh 0j

j j                                                 (4.17) 

The modal mass and stiffness matrices can be obtained from the sectional mass (ms). In this 

study, the sectional mass and flexural rigidity are assumed constant along the ship length (L). In 

this case, the modal mass and stiffness matrices are simply expressed in the following form. 
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2) Timoshenko beam theory 

    Considering shear stress in section area, the rotation in-plane at each section could be 

considered. Timoshenko beam equation is derived by taking into account the shear effect for 

Euler-Bernoulli beam. 
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Fig. 4.34 Comparison of Euler-Bernoulli beam and Timoshenko beam 

     Using force & moment equilibrium and constitute equation of Timoshenko beam, free-free end 

dynamic Timoshenko beam equation could be written in this form (Jensen, 2001). 

2
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                                  (4.21) 

where visco-elastic stress-strain relationship is assumed, µ is shear coefficient, ʋ is structural 

damping, r is radius of gyration. 

    Using modal superposition method, both vertical & angular displacements in Timoshenko beam 

model could be expressed by summation of modal function and amplitude. It is as follows: 
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To obtain modal function at each mode, orthogonality and normalization of modal functions are 

used for eigenvalue analysis. The following orthogonal relation is given as follows: 
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Substituting Eq. (4.22) and (4.23) to Eq. (4.20) and (4.21) and using orthogonal relation Eq. (4.24) 

and (4.25), the equation of motion could be expressed as follows (Jensen, 2001): 
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                                (4.26) 

If each cross-sectional variable has different value, the modal function is generally calculated by 

using FEM. In this study, Stodola method is used to obtain the modal function (Jensen, 2001).  

4.5.2 Bottom-mounted elastic vertical cylinder 

 

Table 4.3 Principal dimensions of bottom-mounted elastic cylinder 

Principal dimensions Original model Present model 

Radius of cylinder (a) 10 m 1  m 

Draft of cylinder (d) 200  m 20  m 

Water depth (H) 200  m 20  m 

Distributed mass (md) 0.322   108  kg 0.322   105 kg 

Concentrated mass (m0) 0.643   108  kg 0.643   105 kg 

Flexural rigidity (EI) 0.211   1014 kg m3/s2 0.211   109 kg m3/s2 

 

    To confirm the excitation force for the elastic response, we performed several computations for 

an elastic vertical cylinder with superstructure. The model used to calculate the linear and second-

order horizontal deflections in (Newman, 1994; Choi, 2013) is selected in the present simulation. 

The principal dimensions of this model are 10 m in radius (a), 200 m in draft (d) and flexural 

rigidity is EI/m0 H
3= 0.41 s-2. Summation of the mass distribution (md) is half of submerged mass 

and a concentrated mass (m0) is added on the top of the cylinder.  

    In our simulation, the radius (a) of model is non-dimensionalized, thus it has 1.0 as described 

on the Table 4.3 This elastic cylinder has free-fixed condition at each edge and its mode shape is 

demonstrated in the Figure 4.35. Described mode shape is obtained by using Jacobian polynomial 

function which is admissible since it satisfies geometric boundary condition. The equation is 

expressed as follows: 
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Fig. 4.35 The mode shape of a bottom-mounted elastic cylinder 

    Both of the linear and second-order forces and responses are calculated for the elastic cylinder. 

In addition, linear quantities and their quadratic-product force are obtained. These results are 

compared with semi-analytical results obtained by the eigen function expansion method (Choi, 

2013).  In the zero speed problem, the quadratic product of linear quantities of each mode could 

be decomposed into four components. They are as follows: 
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Figure 4.36 shows the result of each component in the quadratic product of linear quantities 

for the first mode and we can confirm good agreement with semi-analytical and present numerical 

results at each component. Summation of three components in Eq. (4.29) and the second-order 

velocity-potential force are also shown in Fig. 4.37. The left figure is the quadratic-product force 

and the right figure is the second-order velocity-potential force. The summation of each 

component of quadratic-product force has a good agreement with semi-analytic solution. However, 

the second-order velocity-potential force by the time-domain simulation shows that the difference 

increases as it approaches near linear resonance wave frequency where a noticeable 

underestimated force is obtained compared to semi-analytical solution.  

 

Fig. 4.36 Component of quadratic product force of the first mode (I, II, III from the left)  

We deduce possible reasons why the results are different from semi-analytical solution except 

inaccuracy of linear quantities. It is almost same with the previous conclusion of rigid body 

dynamics for freely-floating body. The first is numerical inaccuracy in the second derivatives 

needed in the second-order body boundary condition. Another reason may be due to truncated 

free-surface region adopted in the Rankine panel method.  
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Fig. 4.37 The second-order forces due to quadratic product of linear quantities (Fq, left figure) and 

second-order velocity potential (Fp, right figure) of the first mode      

   

Fig. 4.38 Comparison of second-order added mass (A11) and damping coefficient (B11) of the first 

mode 

 

Fig. 4.39 Comparison of linear and second-order hydroelastic responses of the first mode  

    To obtain the second-order response, second-order hydrodynamic coefficients are calculated. 

Using the forced oscillating simulation with second-order motion, the second-order added mass 

and damping coefficients are obtained. Fig. 4.38 shows an example of the added mass and 

damping coefficients of the first mode, which are in good agreement with semi-analytical 

solutions. Using the motion equation, linear and second-order hydroelastic responses are obtained. 

The left and right figures in Fig. 4.39 are the linear and second-order hydroelastic responses of the 

first mode, respectively. The linear results show a good agreement with each other. The second-

order response shows a little different value only near the resonance due to difference in the 

second-order external forces. The second-order resonance is confirmed near half of the natural 
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frequency but the response amplitude operator (RAO) is relatively very small in this mode overall 

wave frequencies.  

4.5.3 Elastic floating barge 

 

 

 

Fig. 4.40 Elastic barge model from side and plan view and shape of first floater 

 

Fig. 4.41 Plan view of Malenica (left) & Remy (right) model 

 

    Deformable stationary barge is used to confirm the numerical result on a floating elastic body. 

Two experiments for same barge model have been performed by Malenica et al. (2003) and Remy 

et al. (2006). In this dissertation, we call each model used in experiment Malenica and Remy 

model, respectively. The shape of barge model is shown in Figure 4.40. The barge is composed 

of 12 floaters which have 0.19 m length, 0.6 m breadth, 0.25 m depth and 0.12 m draft. Each floater 

has 0.015 m gap to prevent collapse of bodies so the total length of model is 2.445 m. The first 

floater has slightly modified.  
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   Structural part is a little difference due to connector of body. In Malenica model, floater is 

connected by two steel plates which have 6 mm   50 mm size. In Remy model, plates are changed 

to a steel rod which has 10 mm   10 mm size to consider both vertical and torsional bending 

modes as shown in Figure 4.41. Principal dimension of structure part is described in Table 4.4. In 

the experiment, each section’s front part has optical sensor, thus the displacement is measured on 

top of a floater by these sensors. 

Table 4.4 Principal dimension of each barge model 

Principle dimension Malenica model Remy model 

Mass (m) 171.77 kg 

Center of Gravity (KG) 0.128 m 0.163 m 

Radius of Gyration (Kyy/L) 0.294 

Flexural rigidity (EI) 360.5 Nm2 175 Nm2 

 

1) Malenica model 

    Among the hydroelastic response, vertical displacement of Malenica model in head wave is 

calculated at 1,3,5,7,9,11 sections (See Fig. 4.40). The result is compared with experiment and 

numerical result of Kim et al. (2009). They calculated the results by using direct coupling with 

time domain Rankine panel and one-dimensional FEM.  

    The vertical RAOs of each point are denoted in the Figure 4.42. The result of different beam 

model shows almost same value except resonance region and Timoshenko beam model gives a 

little smaller resonance frequency. However, both results show a good agreement with experiment 

and another numerical result. In this model, the resonance region of vibration was not measured 

at experiment. Although the resonance frequency of two-node vibration has almost same 

frequency around 8.5 rad/s, the result shows that there is some difference near resonance 

frequency.  



 
 

 
CAHPTER4 : Numerical study by time-domain analysis in monochromatic waves 

 

 

 

- 64 - 

 

 

 

Fig. 4.42 Comparison for vertical displacement of each point for Malenica model (head waves) 

 

2) Remy model 

    In Remy model, the experiment is implemented several times in both regular and irregular 

waves with different heading angles. The average of results at irregular waves are given after using 

Fourier transformation. As conducted in Malenica model’s experiment, the motion is measured 

on top of each floater but measured point 11 moves to section 12. In this study, head wave’s 

vertical displacement is selected in the experiment result. Since there is also only averaged value 

in Remy et al. (2006), we used experiment data denoted in Kim et al. (2009) and their numerical 

is also compared together. The comparison of RAO result is shown in Figure 4.43. It seems that 

present result shows favourable agreement with other results overall frequencies. However, the 

numerical result is sensitive near resonance region. 

    In this experiment, resonance frequency of elastic response is included in measured frequency 

of experiment. Euler beam model’s result shows that there are some differences with experiment 

especially near 7.5rad/s due to difference of resonance for elastic response. In Timoshenko beam, 

natural frequency is slightly moved to lower frequency region for both models thus it gives more 

similar results near resonance region. However, numerical results are overestimated at resonance 

frequency. The difference is larger at both tips of barge model than other sections. In both tips of 
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barge, there exist several vertical modes simultaneously and two-node vertical mode is also 

relatively large. Hence, the vertical displacement is more sensitive than other sections. The reason 

of difference might be come from not exact hydrodynamic modelling and structural damping.  

    As a validation process of developed generalized modes, the second-order quantities are 

additionally calculated. However, it is difficult to find the sum-frequency result in second-order 

hydrodynamic force. The mean drift force is considered as a comparison variable and the 

flexibility effect is confirmed. 

    If there is no elastic motion, it could be calculated by classical second-order formulation so 

called Pinkster formulation on stationary structure (Pinkster, 1980). The generalized mode 

formulation is first confirmed with Eq. (4.29) and another numerical result (Park et al., 2016) on 

a rigid body assumption. Figure 4. 44 shows the surge mean drift force of barge model. Left figure 

shows that generalized mode formulation has a perfect agreement with classical formulation as 

proven in Appendix A. Right figure also shows that each component also gives a good agreement 

with another numerical result. 

   

 

Fig. 4.43 Comparison for vertical displacement of each point for Remy model (head waves) 
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Fig. 4.44 Mean drift force of floating rigid barge (head waves) 

    In Fig. 4.45, both Malenica model (EI=360.5Nm2) and Remy model (EI=175Nm2)’s surge mean 

drift forces are compared with that of rigid body model. In low frequency region, the result shifts 

to high frequency region when the flexural rigidity decreases due to reduction of relative vertical 

wave elevation by hydroelastic response as shown in the right figure. In high frequency region, 

the result increases drastically near resonance region due to excitation of elastic response. We 

could also confirm component 4 is slightly increased than rigid body overall frequencies due to 

hydroelastic response.  

     

Fig. 4.45 Mean drift force of an elastic barge at different flexural rigidity (Malenica and Remy model) 

and comparison of component 1, 4 on Remy model 
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4.5.4 Summary      

 

    In the zero forward speed problem, the hydroelastic response of an elastic body is calculated. 

Linear hydroelastic response is obtained with good accuracy in both bottom-mounted cylinder and 

very flexible floating barge models. However, the motion is little sensitive near resonance region 

and overestimated than experiment’s results. To improve the response near resonance, more exact 

modelling should be conducted. The mean drift force on elastic barge is also checked. The 

generalized mode formulation shows a good agreement with classical equations. The effect of 

elastic response on mean drift force is also well confirmed.  However, the second-order velocity 

potential force at free-motion does not show good agreement as same with rigid body motion case.  

 

4.6 Numerical study with forward speed (elastic model) 

 

    As a final step, numerical study on hydrodynamic force with consideration of both elasticity 

and forward speed is conducted. The flexibility and forward speed effect on linear & second-order 

hydrodynamic force are discussed. 

 

4.6.1 Linear hydrodynamic response of elastic Wigley1 model 

 

    Several linear hydrodynamic responses of an elastic Wigley1 ship model in head waves are 

calculated by changing the flexural rigidity. Three structure models are artificially determined to 

confirm the hydroelastic response. 

Fig. 4.46 Linear responses in heave, pitch, and two-node vertical bending mode of Wigley1 ship model 

in head waves (Fn = 0.2) 
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    Figure 4.46 shows linear vertical responses in head waves at three different modes. Another 

time-domain result using Neumann-Kelvin assumption (Joncquez, 2009) and experimental results 

(Journee, 1992) are also included in this figure. The right figure for the 2-node vertical bending 

mode shows that the elastic ship with EI=200 Nm2 has resonance phenomenon at wave frequency 

5.5. The other heave and pitch motions are influenced near the frequency of elastic resonance 

especially in the heave motion, and also we can see slight decrease in amplitude as the flexural 

rigidity decreases except at resonance region.  

 

In the linear wave-body interaction, we can see the body boundary condition (Eq. (2.22)) has 

a divergence term of displacement (1)  which only exists in a deformable body. We confirmed 

the effect of this term for the linear response in head waves. However, there is almost no change 

in the linear response with/without this divergence term, and therefore it seems that this term has 

no substantial effect on the hydrodynamic response. This divergence term exists as shown in Fig. 

4.47 but the value is too small (about 0.1% of total value in linear body boundary) to affect the 

response.   

 

 

Fig. 4.47 The divergence of displacement in the linear body boundary condition 

 

 

4.6.2 The effect of flexibility on quadratic product forces for ship model  

 

The effect of flexibility on the quadratic product of linear quantities is checked for a freely-

floating body. Double frequency wave forces are obtained by changing the flexural rigidity of the 

ship model. Fig. 4.48 shows that all forces at three different motion modes decrease as the flexural 

rigidity decreases except around the region of resonant wave frequency and the effect of flexibility 

is relatively small on two-node vertical bending mode.  
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Fig. 4.48 Double frequency wave loads by quadratic product of linear quantities (Fq) for heave, pitch, 

and two-node vertical bending of Wigley1 ship model in head waves (Fn = 0.2) 

In the force due to quadratic product of linear quantities, the steady force can be calculated by 

taking the time average of the force. Fig. 4.49 shows the steady forces in surge, heave, and pitch 

of the ship model. In this figure, computed results for the rigid model by another time-domain 

simulation using the Neumann-Kelvin assumption (Joncquez, 2009) and the measured results only 

at surge (Jouernee, 1992) direction are also included as same with rigid body case. The surge 

steady force, which is called the added resistance in waves, shows the same tendency as double-

frequency forces discussed earlier with regard to the effect of flexibility. We can see also from 

this figure that the heave steady force increases as the flexural rigidity decreases in a low 

frequency region and the effect of flexibility for the pitch steady moment is relatively small.  

 

Fig. 4.49 The steady force for surge, heave, and pitch of Wigley1 ship in head waves (Fn = 0.2) 

 

4.6.3 The effect of forward speed and flexural rigidity on second-order excitation 

forces  

 

Due to uncertainty in the calculation of second-order velocity potential on a freely-floating 

body in the Rankine panel method, we fixed unsteady rigid body motions. The generalized second-
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order velocity-potential force for the two-node vertical bending mode is calculated with elastic 

mode response.  

 

In this condition, the forward speed effect is checked by changing the Froude number from 

0.12 to 0.20. The left figure in Fig. 4.50 shows that the velocity-potential force increases as the 

Froude number increases in the low-frequency region but the force changes little in short-

wavelength regions. In the same condition, the effect of flexural rigidity is also confirmed. The 

right figure of Fig. 4.50 shows that the second-order velocity-potential force increases as the 

flexural rigidity decreases due to the increase of elastic response.  

 

The total second-order forces with different flexural rigidity are shown in Fig. 4.51. It seems 

that the effect of flexibility on the quadratic-product force is larger than that on the second-order 

velocity-potential force. As shown in the right figure, the quadratic-product force for a very 

flexible ship becomes much larger than the velocity-potential force near the resonance region. 

Considering the flexural rigidity of usual ships, however, it could be deduced that the second-

order velocity-potential force is predominant on the generalized non-linear excitation force for 

hydroelastic response. 

 

Fig. 4.50 Second-order velocity-potential force for two-node vertical bending of Wigley1 ship model 

in head waves with different forward speed and flexural rigidity (unsteady rigid body motion is fixed) 
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Fig. 4.51 Double-frequency wave loads for two-node vertical bending of rigid (left), EI = 500 (middle), 

and EI = 200 (right) Wigley1 ship model in head waves (Fn = 0.16, unsteady rigid body motion is 

fixed) 

4.6.4 Summary 

 

    The linear and second-order hydrodynamic forces and responses with forward speed on an 

elastic body are calculated. In the linear motion, the divergence term which only exists in elastic 

body has no substantial effect and the vertical rigid motion is influenced by elastic bending mode. 

In the second-order, several quantities are checked by changing forward speed, flexural rigidity 

and so forth. The effect of flexural rigidity on second-order force is similar with zero forward 

speed case. The importance of second-order velocity potential force is also confirmed. However, 

it is calculated with some limitation of Rankine panel method on the free body motion in waves. 

Thus, much further investigations should be conducted in detail. 
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CHAPTER 5  

 

Numerical study by frequency-domain analysis in bichromatic 

waves  

 

 

5.1 Introduction 

 

     In this chapter, wave-body interaction of an elastic body is extended for bichromatic waves 

without forward speed. The steady state assumption is adopted additionally thus frequency-

domain analysis is performed by using wave Green function in HOBEM. Several mathematical 

formulations to calculate second-order hydrodynamic force in bichromatic waves are explained 

additionally in the chapter 5.2. Among second-order hydrodynamic forces, detail way to calculate 

second-order velocity potential force is considered in chapter 5.3. In the last, several numerical 

results in bichromatic waves are demonstrated. 

 

5.2 Mathematical formulation in bichromatic waves  
 

5.2.1 Boundary-value problem 

 

    As mentioned in chapter 2, boundary condition should be defined to solve boundary-value 

problem. Provided that bottom and radiation conditions are automatically satisfied, other 

instantaneous free-surface and body boundary conditions in stationary structure are written as 

follows: 

 
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In bichromatic waves, the linear velocity potential is defined in this form. 

 
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    The solution of linear velocity potential is very well known and can be obtained by using 

numerous analytical, numerical ways. In the frame work of weakly non-linear assumption, each 

variables such as velocity potential, motion, force, etc. is approximated on the value of mean 

surface in perturbation series. Using Taylor expansion, the second-order boundary conditions are 

approximated on each mean surface. They are expressed in this form. 

1) Free-surface boundary condition 
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2) Body-surface boundary condition 

0
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    In the frequency-domain analysis, the second-order velocity potential can be decomposed into 

three parts as same with linear wave-body interaction problem. It is as follows: 

(2) (2) (2) (2)

I S R                                                    (5.6) 

Among several components, scattering velocity potential contains all non-homogeneous terms on 

both free- & body- surfaces. Thus its boundary condition is expressed in this form.  
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The non-homogeneous component makes second-order boundary-value problem be difficult to be 

solved. Especially non-homogeneous component on the free-surface is regarded as an added 

oscillating pressure and makes several property of second-order velocity potential (Newman, 

1990).  

5.2.2 Wave Green function 

 

    Before calculating second-order quantities, linear velocity potential should be calculated 

exactly. In the frequency-domain, it is obtained by using HOBEM based on wave Green function. 

As well known, the wave Green function has several kinds of form. After conducting the eigen-

function expansion on the water depth, the wave Green function could be expressed by series 

expansion (John, 1950). It is as follows: 
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where 
2 tann ngk k h    

Substituting the wave Green function to the integral equation, the velocity potential on the body 

& free-surface boundaries could be obtained in this form. 
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5.2.3 Generalized hydrodynamic force in bichromatic waves  

 

    Several second-order quantities in bichromatic waves are decomposed into sum- and difference 

– frequency components. They are as follows: 
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   In the second-order wave-body interaction problem, difference frequency components are 

important for several situations such as slowly varying force on the moored vessels or low-

frequency resonance phenomenon. In this study, however, we are focusing on springing problem 

thus the sum-frequency components are only considered.  

    As described in chapter 2, each force is redefined by using inner product of modal vector and 

pressure in the generalized modes. We can rewrite it in this form.  

 (2)

B

i

ijl jl
jl

S

F p h N ds                                             (5.15) 

Approximating the pressure and inner product on mean body surface, the second-order 

generalized force could also be obtained in bichromatic waves. Using the classical way, the 

second-order hydrodynamic force is analysed by summation of three following forces.  

(2) (2) (2) (2)

ijl ijl ijlijl p q resF F F F                                                 (5.16) 

                                       
(2) (2)

ijlres ik kjlF C                                                             (5.17) 

                                          
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(2) (2)
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i

p j l

S

F i h n dS                                                (5.18) 
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(5.19) 

Second-order boundary-value problem should be solved to obtain second-order restoring (Fres) & 

velocity potential force (Fp). On the other hands, another force (Fq) consists of linear quantities. 

 

5.3 Evaluation of second-order velocity potential force 

 

    Instead of solving second-order boundary condition, the second-order velocity potential force 

could be calculated by using only linear quantities. Molin (1979) suggested so called indirect 

method by applying the Haskind relation to the second-order boundary condition. This method is 

starting from the following integral equation. 

0

B F

i s i s
s i s i

S S

dS dS
n n n n

   
   

 
       

      
      

                       (5.20) 

Here, bottom and far-field radiation conditions are satisfied and become zero. 
i is so called 

assistant velocity potential which satisfies following boundary conditions 

 
2

0            on 0i
j l i g Z

Z


  


 

    


                           (5.21) 

0
              on Si

i Bn
n

 



                                      (5.22) 

Substituting second-order boundary condition into Eq. (5.20), the second-order scattering velocity 

potential has following relation  
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                          (5.23) 

Thus, the sum-frequency scattering velocity potential force can be expressed in this form 
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i Q dS i Q Q dS
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              (5.24) 

This formulation includes several non-homogeneous components and it should be evaluated by 

both body and free-surface integration. It has been decomposed into several components (Kim 

and Yue, 1990). They are as follows: 

   
0 0
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 
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i i I
p BB I i F F i
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i
f i h n dS Q Q dS
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 
0B

i

BB i B

S

f i Q dS                                                   (5.26) 

Each component shows the contribution from non-homogeneous terms of body & free-surface 

boundaries. The detail evaluation of each integration is explained at following sections. 

5.3.1 The incident wave part 

 

    The second-order incident wave velocity potential could be obtained by satisfying the free-

surface boundary and sea bottom (Z=-H) condition. As a result, it could be obtained analytically 

(Bowers, 1980) by substituting the linear incident wave velocity potential on the following free-

surface boundary condition.  

2 (2) (2)

2
     on 0

I

I I
Fg Q Z

t Z

  
  

 
                                      (5.27) 

where
(1) (1) 3 (1) 2 (1)

(1)

2 2

1
 2  

I

I I I I
F IQ g

t g t t Z Z

      
      

     
 

After solving above equation with sea bottom condition, the second-order incident velocity 

potential is derived in this form. 



 
 

 
CAHPTER5 : Numerical study by frequency-domain analysis in bichromatic waves 

 

 

 

- 78 - 

 

 
   cos sin(2)

cosh

2 cosh

j l ik X Y

I jl lj

A A k Z H
ig e

k H

 
  




   




                             (5.28) 

where 
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j lk k k    

5.3.2 The body part 

 

    The body surface integration is expressed by using symmetric form. It is as follows: 

   
0 0

1

2 jl lj

B B

i

BB i B B B i

S S

f i Q dS i q q dS                                           (5.29) 

The body part includes integration of body non-homogeneous component. In non-homogeneous 

term, there is one second derivative of velocity potential. Using shape function of HOBEM, we 

could evaluate second derivative value accurately provided the geometry is not so complex. 

Another way is to use following Stokes theorem to avoid the calculation of second-derivative 

itself.  

    
0BS WL

F F NdS F Tdl                                       (5.30) 

where T is unit tangent vector 

 On an elastic body, the second derivative of velocity potential term is expressed in this form.
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(5.31) 

Thus, the body surface integral could be rewritten without second derivative. It is as follows: 
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        (5.32) 

This modified integral form of the body part could be conducted numerically without any 

difficulty. 

5.3.3 The free-surface part 

 

    The free-surface integration is the most difficult part to be evaluated and important in second-

order velocity potential force. As a first step in evaluation of free-surface integral, the radius (Rs) 

which does not have the local-wave is determined (See Fig. 5.1). Next, each region is integrated 

by different methods. In the near-field region (
Sr R ), the integration is conducted numerically 

and in the far-field region (
Sr R ), the integration is approximated mathematically by using series 

expansion and defined functions. The detail method is described as follows:  

 

Fig. 5.1 The division of free-surface integral region (Top view)  

1) Integration of near-field free-surface  

    The free-surface integral of near-field is computed numerically. The free-surface integral is 

expressed by using symmetric form.  
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Using free-surface boundary condition i.e. 
(1)

(1)j

j jv
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
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, free-surface integral could be written by  
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    (5.34) 

In this integral, there is also a second derivative term of velocity potential. Using 2-dimensional 

Gauss theorem on free-surface as used in Kim (1991), second derivative term could be removed.  

(1) (1) (1)
(1) (1)2

2

(1) (1)(1) (1) (1) (1)
(1)                               

F sin

Fin

l l l
j i j X Y i

S WL R

j jl l l i l i
i j

S

dS n n dl
Z X Y

dS
X X Y Y X X Y Y

  
   

      
 

 



 


   
   

   

         
                

 



           

(5.35) 

Thus, the free-surface integral could be rewritten in this form 
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(5.36) 

2) Integration of far-field free-surface   

    In the far-field free-surface region, the integration has infinite region and the integrand has 

value in the far-field region due to slowly decaying property, thus direct numerical integration is 

very difficult to give good accuracy. Instead of numerical integration, we could evaluate free-

surface integral by using far-field approximation of several linear variables.  
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    Before conducting series expansion, velocity potential is expressed mathematically by using 

asymptotic formulation. The incident wave velocity potential is approximated by using Fourier-

Bessel expansion in this form.  
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The disturbed velocity potentials can be obtained by solving following integration.  
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To evaluate the integration, the wave Green function in far-field is first approximated in this form 
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To expand above equation, Graf’s addition theorem is used in a Fourier-Bessel series. As a result, 

the field and source points are separated in the Green function. It could be rewritten by 
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After substituting Eq. (5.40) into Eq. (5.38), radiation & diffraction velocity potentials could be 

expressed by using generalized Kochin function (Bn). It is as follows: 
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    Using defined variables, far-field free-surface integration has been conducted by numerous 

integration ways. In this study, we evaluated the integral by using same way suggested by 

Newman (1991). Since we used indirect method, the far-field variable of assistant velocity 

potential which is expressed as C is simply added on the equation. In this dissertation, we just 

repeat the evaluation procedure of far-field free-surface integration in Newman (1991) and more 

detail explanation is written in the paper. The far-field integration is divided into three components 

as follows: 
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Fout
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S

Q Q Q dS                                                  (5.42) 

To simplify the procedure of integration, only disturbed velocity potential (QFBB) is first considered. 

The free-surface integral could be rewritten in the cylindrical coordinate system. It is as follows:  
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Substituting defined far-field variables into Eq. (5.43), it is expressed in this form. 
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 (5.44) 
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Using following recurrence relation of Hankel function, it is rewritten by 
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(5.46) 

Since the variable is described in cylindrical coordinate system, the free-surface integral could be 

evaluated by separating integration variables; i.e. azimuthal and radial directions. Thus the 

equation could be rewritten by 
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(5.47) 
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Here, upper & lower lines in parenthesis (BBC) mean cos  & sinu u   components, respectively 

and integration of trigonometric function for the azimuthal direction is defined in this form. 

      
2

,,

0

cos cos cos u m n mnuu m n

u

m n u d




      





   
                              (5.48) 
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                                (5.51) 

 

where integration which includes odd number of sin function has no value due to symmetric 

property. 

After few mathematical manipulations with defined variables, it could be expressed simpler form. 

It is as follows: 
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where       2 2 2 2 2jl j l l l j j j l l jk v k v v v           and  jl j l j lk k     

    In this step, let us consider integral of radial direction in detail. One of difficulty in free-surface 

integral is come from infinite interval of radial direction. As shown in Eq. (5.52), the integration 

of radial direction is composed of triple product of Hankel functions. It could be defined in this 

form. 

     
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mnu m j n l u k

R

F H k H k H k rdr  


                                      (5.53) 
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    Since this integral has oscillating and slowly decaying properties, the integrand exists at the 

very far region from the body. It is very difficult to evaluate integration accurately by using direct 

numerical integration. Instead of using numerical integral, numerous ways such as series 

expansion are suggested by many researchers. For instance, Newman (1991), Malenica et al. 

(2018) used complex analysis and conducted numerical integration with exponential function in 

complex region. Kim and Yue (1989) used series expansion based on recurrence relation of 

Fresnel integral. Chau andTaylor (1992) developed approximation method using another series 

expansion with minimum error. Choi et al. (2001) developed new analytic solution on radial 

direction after stationary phase approximation on azimuthal direction. In this study, we also used 

same series expansion of Chau and Taylor (1992). The asymptotic formulation of Hankel function 

of the second-kind using series expansion is written as follows: 

     
0

2
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m p
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C
H x e i

x x
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p


 
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Using above asymptotic formulation, integration which includes triple product of Hankel function 

could be expressed as follows (Chau and Taylor, 1992; Choi, 2013): 

   
 
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         (5.55) 

Chau and Taylor (1992) suggested the maximum series number Nm = m/2+2 to make minimum 

error of summation. In this study, Nm = m+5 is used as a maximum number and the approximation 

is conducted on Hankel function of the second-kind.  The remained integral is evaluated as follows 

(Chau and Taylor, 1992): 
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where EN is a truncation error and it is known that the great number (N) has maximum within  

 j l k sk k k R n   .  

However, if argument of Hankel function is less than Bessel-order, it could have large imaginary 

value thus asymptotic form could make some error. In this study, we did integration numerically 

by using Clenshaw-Curtis integration until argument of the function is larger than Bessel-order. 

As a validation test, the evaluation of Eq. (5.53) [The test is conducted on Hankel function of the 

first-kind] using asymptotic formulation and Clenshaw-Curtis integration is conducted. The result 

is denoted in the Table 5.1 where the integration interval is from 10 to 11 and wave numbers are 

1.0. This table shows that asymptotic expansion has little difference with another result at large 

Bessel-order and Clenshaw-Curtis integration has a good agreement in all Bessel-orders. 

Table 5.1 Comparison of integration which has triple Hankel funciton integrand in finite interval 

m n u 
Chau and Taylor 

(1992) 

Asymptotic expansion 

(Present) 

Clenshaw-Curtis 

(Present) 

1 2 3 (0.001886,0.003742) (0.001886,0.003742) (0.001886,0.003742) 

5 3 6 (-0.006758,0.002120) (-0.006758,0.002120) (-0.006758,0.002120) 

9 9 12 (-0.011812,-0.034072) (-0.011812,-0.034072) (-0.011812,-0.034072) 

11 11 14 (0.109891,0.000471) (0.109891,0.000472) (0.109891,0.000471) 

14 9 17 (-0.361132,0.022987) (-0.361132,0.022982) (-0.361132,0.022987) 

12 12 15 (-0.040433,-0.246565) (-0.040430,-0.246566) (-0.040433,-0.246565) 

13 13 17 (-0.240852,0.712168) (-0.240862,0.712162) (-0.240852,0.712168) 

 

In Eq.(5.42), there are three types of quadratic forcing term on the free-surface. As used in 

disturbed velocity potential, the incident wave velocity also could be expressed by using Bessel 

function or summation of Hankel function and its conjugates. They are defined in this form. 
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Using these defined equations, all free-surface integrals of far-field region are expressed as a series 

expansion in this form.  
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(5.61) 

This series summation should conduct  m n u   number of calculations. It could be reduced by 

using orthogonal property of already defined integral of trigonometric functions. As shown in Eqs. 

(5.59-61), there are four types of combination made by integration of trigonometric functions. 

Their results are as follows: 

     , ,mnu mnu m n u n m u    

                                           (5.62) 

        , ,umn num m n u n m u    

                                           (5.63) 

        ,mnu mnu u m n   

                                                        (5.64) 

           ,umn num u n m   

                                                        (5.65) 

 

This combination shows that this series expansion exists only where u=m-n; u=n-m; u=m+n as 

expressed in Figure 5.2. 
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Fig. 5.2 Combination of series numbers which satisfy azimuthal direction of the free-surface 

integration (each direction in the plot means respectively m,n,u) 

Using symmetric property of trigonometric function, finally free-surface integral could be 

expressed in this form. 
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(5.66) 

where    , , 1, 1, 1, 1,mn jl m n m n jl m n m n m n m nU F F F F      
       

               , , 1, 1, 1, 1,mn jl m n n m jl m n n m m n n mV F F F F      
       

              , , 1, 1, 1, 1,mn jl m n m n jl m n m n m n m nW F F F F      
       

 

5.4 Numerical result and discussion 
 

    To validate the developed numerical code and formulation in the generalized mode, the 

validation could be conducted for the rigid body motion whose numerical results are obtained by 
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substituting translational mode into modal vector. Thus second-order generalized hydrodynamic 

forces for rigid body motion are compared with other results obtained in published paper and each 

contribution of non-linear body and free-surface part is also confirmed in sequence.  

    Second-order hydrodynamic force on a fixed and freely-floating hemisphere is calculated. The 

result is compared with semi-analytic solution of Kim and Yue (1990) and another frequency 

domain solver MLINHYDH which is based on wave Green function HOBEM (Choi et al., 2001). 

In this simulation, boundary radius (Rs) on free-surface is 10 m at all frequencies. 

 

Fig. 5.3 Comparison of surge & heave second-order hydrodynamic forces on a fixed hemisphere (H 

= 3a) 

    Figure 5.3 is the comparison of second-order hydrodynamic forces of a fixed hemisphere and 

each figure means surge and heave forces. In all results, quadratic product forces show a good 

agreement. On the other hands, the second-order velocity potential force shows a little difference 

in surge direction force. In the fixed body, second-order velocity potential force almost obtained 

from the contribution of free-surface non-linearity and the difference might be come from erupt 

change of surge radiation velocity potential on free-surface as described in Choi et al. (2001).     

    In sequence, the second-order hydrodynamic force is analysed on the freely-floating body. 

Provided that the floating body has motion, the non-linearity come from both body and free-

surface effects, thus each effect is analysed in detail.  

    Figure 5.4 shows surge & heave second-order hydrodynamic force from quadratic product (Fq) 

and body non-linear effect in second-order velocity potential force (FBB). From the obtained results 
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where the value is large near linear resonance region, it seems that both non-linear forces are quite 

influenced by the linear motion response. All results could be obtained with good accuracy. 

    Figure 5.5 shows total second-order hydrodynamic force (F) and free-surface non-linear effect 

(Fp-BB) in second-order velocity potential force at each direction (surge & heave). In numerical 

results, heave force shows a good agreement but surge direction force also shows a little difference 

due to free-surface non-linear parts. The reason of difference might be severe oscillation of surge 

radiation velocity potential on free-surface as same with fixed body. In the high-frequency, 

second-order velocity potential has large value on this model. 

 

Fig. 5.4 Comparison of surge & heave second-order hydrodynamic forces on a freely-floating 

hemisphere (Fq & FBB) 
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Fig. 5.5 Comparison of surge & heave second-order hydrodynamic forces on a freely-floating 

hemisphere (Fp-FBB & Total force) 

     

    This oscillation in surge direction on free-surface can be confirmed by integration on different 

range of near-field free-surface region. Figure 5.6 shows that the integration of different ranges 

(radius of free-surface: 3, 5, 10 m, See right figure) changes the second-order velocity potential 

force considerably over all frequencies. 

             

Fig. 5.6 Surge second-order velocity potential force at different range of near-field free-surface range 

     

    As mentioned in previous section, the free-surface integration should be evaluated up to quite 

far region. The comparison study is conducted by changing the radius range in Eqs. (5.55) and 

(5.57-68). The far-field free-surface integration is evaluated numerically up to finite region and 

mathematically by asymptotic value of infinite radius range. Figure 5.7 shows that that the real 

part converges at very far-field region. On the other hands, imaginary part is continuously 

oscillating depending on radius range. It means the integrand of free-surface integral exists at the 

very far-field region and also shows that the integration should not be cut at some range.   
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Fig. 5.7 Comparison of far-field free-surface integration at different radius range (va = 1.0) 

     Using same model and condition, the second-order hydrodynamic force is calculated in 

bichromatic waves.  

   Figure 5.8 shows the quadratic product of linear quantities at surge and heave direction. As 

shown in previous figures, this force has large value near linear resonance region. In the freely-

floating hemisphere, there is only one resonance by heave motion. This resonance effect 

influences stronger to heave direction force directly than surge direction force. Similar tendency 

is also confirmed in non-linear effect of body on second-order velocity potential force as shown 

in Figure 5.9. 

 

Fig. 5.8 Comparison of surge & heave quadratic product of linear quantities forces (Fq) in 

bichromatic waves 
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Fig. 5.9 Comparison of surge & heave body non-linear effect on second-order velocity potential force 

(FBB) in bichromatic waves 

  

Fig. 5.10 Comparison of surge & heave free-surface non-linear effect on second-order velocity 

potential force (Fp-BB) in bichromatic waves 

   Figure 5.10 is free-surface non-linear effect on second-order velocity potential force at each 

direction. It shows that it has large value at high-frequency region in both direction forces, thus 

the contribution of second-order velocity potential becomes large in this frequency. In figures, we 

could confirm that diagonal values in QTF matrix are generally larger than non-diagonal terms. 

The combination of same frequency usually has larger value than that of combination of large 

different frequency. This phenomenon is also shown mathematically on bottom-fixed vertical 

cylinder (Newman, 1990). It is also known that this tendency is much larger at difference-

frequency forces thus evaluation of QTF without free-surface integral has been suggested by using 

several approximations depending on the combination of frequencies (Hauteclocque et al., 2012).   
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CHAPTER 6  

 

Conclusions and future works 

 

 

6.1 Conclusions 
 

    Using generalized mode expansion method and higher-order boundary element method 

(HOBEM) in the potential flow assumption, linear & second-order hydrodynamic forces and 

responses of rigid/elastic body are considered. The normal vector variation and body boundary 

condition are re-defined by using continuum mechanics to consider elastic effect of body surface. 

Several generalized force including inertial, gravity restoring forces are also derived to obtain 

hydrodynamic response. Using relatively simple shape’s body and structural model, several linear 

& second-order hydrodynamic variables are checked in numerous conditions. In chapter 4 and 5, 

obtained numerical results are discussed in monochromatic /bichromatic waves, respectively.       

    They are summarized as follows: 

    In chapter 4, direct time-domain simulation is conducted based on Rankine panel method. 

Several hydrodynamic forces and responses are obtained by using generalized formulation 

with/without forward speed step by step.  

    In the zero forward speed problem of a rigid body, several second-order forces including 

second-order velocity potential are calculated. The linear and second-order velocity potential 

forces without forward speed are well estimated in diffraction/radiation problem. In the freely-

floating condition, however, the second-order velocity potential force does not show good 

agreement with other results.  It might be come from inaccuracy by second derivative of velocity 

potential and truncated free-surface region.   

    In the forward speed problem of a rigid body, several Wigley models which have relatively 

simple shape are studied on the linear and second-order force from linear quantities. In the slender 

models, the linear results show good accuracy with other results except little overestimated value 
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near resonance. On the other hands, blunt model shows generally underestimated vertical motions 

due to simplified mj-term and accordingly the added resistance is also quite underestimated. The 

mean drift force is checked as a validation study for all models, the sensitivity on second-

derivative of velocity potential could be confirmed. Non-linear force with forward speed should 

be investigated more by using various methods as a future work.  

    In the zero forward speed problem of an elastic body, the hydroealstic responses of bottom-

mounted flexible cylinder and floating barges are calculated in a validation process. The linear 

and quadratic force results show a good agreement with that of bottom mounted cylinder. But 

second-order velocity potential force also shows some difference especially near resonance region. 

The reason might be same with rigid body motion case. The barge model’s response of several 

points is calculated and compared with other results. In both models, overall response results show 

a good agreement and it is rather sensitive near resonance region. The mean drift force is also 

checked by using generalized formulation and the reduction of surge mean drift force is confirmed 

due to decrease of relative vertical wave elevations as well known.  

    In the forward speed problem of an elastic body, several quantities are checked by changing 

forward speed, flexural rigidity and so forth. In the linear motion, the divergence term which only 

exists in elastic body has no substantial effect. In the second-order, the effect of forward speed 

and flexural rigidity is checked. The importance of second-order velocity potential force is 

confirmed well. However, it shows some limitation of calculation for second-order velocity 

potential force in Rankine panel method on the free body motion in waves.  

    In chapter 5, bichromatic wave condition is considered without forward speed. Frequency-

domain analysis is conducted in steady state assumption by using wave Green function. To 

calculate generalized second-order velocity potential force, indirect method is adopted instead of 

solving second-order boundary-value problem. The force formulation is re-defined by generalized 

formulation as conducted in chapter 4. Several numerical results are compared with other semi-

analytic solutions on a fixed/freely floating hemisphere. The results show a good agreement each 

other without particular difficulty.  

    On the freely-floating hemisphere, several non-linear effects are discussed. Quadratic product 

of linear quantities and body non-linear components in second-order velocity potential force are 

strongly influenced by linear motion. On the other hands, free-surface non-linearity has large 

value in high-frequency.  
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    In bichromatic waves, body and free-surface non-linearity in combination of several 

frequencies are also well confirmed on a rigid body. The strong coupling at double frequency 

force could be also confirmed as same with vertical cylinder model.   

    Although only rigid body mode is considered as a validation, it could be extended to calculate 

wave excitation force for elastic motion if the modal vector is simply changed to elastic mode. 

 

6.2 Future works 

 

6.2.1 Improvement of frequency-domain analysis 

 

    In this study, the second-order hydrodynamic force on an elastic body is only considered by 

using indirect method. As well known, however, several local quantities could be calculated after 

obtaining second-order velocity potential. It could be obtained by solving following boundary 

integral equation directly as conducted many researchers (e.g. Chau and Taylor, 1992; Lee, 1995).  
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    Next, more efficient evaluation of free-surface integral could be used. The near-field on free-

surface is additionally divided into two parts. The nearest region which includes water line is only 

integrated by using numerical integral. Since the intermediate region in near-field has circular 

shape, it could be evaluated semi-analytically. The velocity potential has generally following form.  
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                       (6.2) 

The azimuthal direction is composed of only trigonometric functions which could be conducted 

analytically and only radial direction integration is evaluated numerically. This semi-analytic 

integration could reduce the evaluation of linear velocity potential on the large region of free-

surface. Thus it could improve both computational efficiency and numerical accuracy.  

6.2.2 Improvement of numerical model 
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    In this study, the head wave condition is only considered thus vertical bending moment is 

calculated in the elastic motion. In several heading angle, both horizontal and torsional bending 

modes on the second-order should be considered.  

    In the structural part, there exist many design issues. For instance, the structural damping is one 

of important parameter in real sea state on the ship design. Because the springing has very small 

radiation damping, structural damping influence to the responses considerably. Using more exact 

modal shape and structural damping, the effect of hydroelastic response on a ship could be 

confirmed.   

    In the forward speed problem, we adopted NK assumption thus the steady flow effect is ignored. 

As shown in chapter 4, however, the steady flow effect is also very important in both linear and 

non-linear problems. DB flow assumption could be applied on forward speed problem.  

    We only calculated second-order velocity potential force with forward speed in limited 

unsteady motion case in monochromatic waves due to uncertainty of present Rankine panel 

method. However, the obtained result must be validated and complete solution should be 

calculated by using more trustable way.  

6.2.3 Indirect method for second-order velocity potential force with forward speed 

 

    As a future work, we would like to introduce the calculation method of second-order velocity 

potential force with forward speed. As discussed in chapter 4, truncated free-surface integral 

region might be a reason of error in calculation of second-order force with freely-floating 

condition. Indirect method used in chapter 5 could be also extended with forward speed provided 

linear velocity potential is given thus more trustable calculation could be conducted on second-

order force with forward speed. Although the calculation is not conducted in this dissertation, the 

procedure of indirect method with forward speed is briefly explained as a final stage. 

    Molin (1979) extended the Haskind relation to the second-order problem in the zero forward 

speed and showed that second-order scattering velocity potential force could be calculated by 

using linear quantities. This method could be also extended to the forward speed case. First, the 

second-order velocity potential force with forward speed is written in this form. 
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If we conduct the same approach used in Ogilvie and Tuck (1969), it could be rewritten by 
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where mi is mj-terms on linear body boundary condition with forward speed 

Here, superscript r means reverse flow which has reverse forward speed and  sign means sum – 

and difference – frequency components, respectively. This second-order reverse flow velocity 

potential which is used as an assistant velocity potential satisfies following boundary conditions. 
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    Next, Haskind-Newman approach is applied on second-order boundary condition. It starts from 

following integral equations. 
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    Provided that bottom and radiation conditions are satisfied, we can substitute second-order 

boundary condition with forward speed into above integral equations. Hence, Eq. (6.7) could be 

rewritten by following equations for sum-frequency variable at each boundary condition.  

On the body boundary 
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On the free-surface boundary 
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If we can apply the slender ship assumption as used in linear problem, the line integral could be 

ignored. Thus,  

0
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After substituting Eqs. (6.8-10) into Eq. (6.7), the integral equation for the second-order boundary 

condition becomes following form. 
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                      (6.11) 

The right hand sides in Eq. (6.11) could be substituted into force formulation Eq. (6.4). Thus, the 

second-order velocity potential force in bichromatic waves could be expressed in this form. 
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As same with zero forward speed problem, the second-order force could be obtained by evaluating 

the body and free surface integral composed of several linear quantities. In the body surface 

integral, there are more high-order derivatives of velocity potentials. Although the second 

derivatives could be removed by using Stokes theorem, there remains a third derivative of steady 

velocity potential. Thus it might be one of the most difficult problems in the consideration of 

steady flow effect in second-order velocity potential force. If we ignore the effect of steady flow 

on the body surface (NK assumption), the non-homogeneous of body surface become much 

simpler. It is as follows: 
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         (6.13) 

 

Here, the second derivative of unsteady & double body velocity potentials could be removed by 

using Stokes theorem as same with zero forward speed problem.    
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Thus, the non-homogeneous component could be calculated without higher-order derivative in 

NK assumption. It is written by 
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(6.15) 

    Next, the free-surface integral also becomes much more difficult to be solved than zero forward 

speed problem. Nevertheless, rather similar approach could be applied on the free-surface 

integration in case it does not have steady velocity potential. As conducted in zero forward speed 

problem, the integration could also be divided into near- & far- field regions. In the near-field 

region, the integration might be conducted by using numerical integration. However, there are 

also several second derivatives and a third derivative of velocity potential. To conduct the 

numerical integration it is better to remove these higher-order derivatives as far as possible. The 

non-homogeneous terms on free-surface in NK assumption could be written by 
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(6.16) 

Using the 2-D Green theorem on the free-surface, the inner-field of free-surface integration is 

expressed in this form.  
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In the combination of same frequency components, following relation could be additionally 

applied. 
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(6.18) 

    From the result of Green theorem for the third derivative, several second derivative variables 

are made additionally. The equation shows that the effect of forward speed is coupled with several 

derivatives of velocity potentials and it means the numerical accuracy could decrease as forward 

speed increases.  

    In the far-field free-surface region which has infinite integral interval, the velocity potential 

should be expressed by mathematical formulation. In the forward speed problem, the velocity 

potential at far-field region can be also approximated by using Kochin function in this form.  
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where each variables is defined as follows: 
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    In the low forward speed ( 0.25 ), the k1 wave component is relatively very small at the far 

field region and the integration in Eq. (6.19) could be conducted by straightforward way such as 

stationary phase approximation. It is expressed in this form. 

   2 0

2~ , sik

j j sk e
 

                                                  (6.20) 

where  
 2 2

2

,
,

2 1 4 cos

j s

j s

s

H k ki
k




 
  

 
, 

s : stationary phase angle,  0 cos sinX Y         

 

    Using this asymptotic formulation, the far-field free-surface integration could be implemented 

by numerical or semi-analytic way. However, as the forward speed increases ( 0.25 ) the 

stationary phase approximation could not be used at cusp point on free-surface and the 

contribution of k1 wave components also increase together. In the right of that the inner-field 

region also has several derivatives of velocity potential coupled with forward speed, it is expected 

that the high forward speed problems need more efficient and exact numerical scheme for the 

evaluation of free-surface integration. 
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Appendix A: Vector identity of normal vector variation on a 

rigid body 
 

The first-order term of normal vector variation in the generalized mode can be written as 

follows: 

 (1) (1)( )
T

O n n                                                   (A.1) 

On a rigid body, the displacement and its derivative can be expressed in this form. 
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                         (A.2.3) 

Since the divergence of displacement on a rigid body is zero, i.e. (1) 0  , the first-order 

normal vector variation Eq. (A.1) becomes the following 
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                      (A.3) 

where (1) (1) (1) (1)

4 5 6( , , )R    is the rotational motion vector. 

Next, the second-order component of normal vector variation can be written as follows: 
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                        (A.4) 

In this expression, the quadratic product of linear displacement ( (2) ) can be written in terms of 

the second-order term in the expansion of Euler-angle matrix  H  as follows: 
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The cross product term in second line of Eq. (A.4) can be calculated using Eq. (A.2) and expressed 

as follows: 
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              (A.6) 

where E denotes the unit matrix having only the unit diagonal element i j   . 

After substituting upper two equations into Eq. (A.4), each term can be written by 
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T T Tn x n n            H H                                     (A.7.3) 
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2 2 2
(1) (1) (1)
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y z z x x y
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  

      
           

      
H H        (A.7.4) 

After collecting all terms, we can find that second-order component of normal vector variation on 

a rigid body also agrees with classical formulation, as shown below: 
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Appendix B: Vector identity of the inertial force on a rigid body 
 

    The transformed tensor for the rotational mode shape is defined to consider the rotational 

motion in the following form: 
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                                  

 

T T

h T h T

T T

                (B.1) 

On a rigid body, the deformation gradient tensor (T) could be written as follows: 
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 
    

T T T              (B.2) 

    Using the transformed rotational motion tensor, the generalized linear inertial force on a rigid 

body could be expressed as follows: 
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                      (B.3) 

Thus the linear inertial force for the rotational motion takes the following form: 

     (1) (0) (1) (1) (1) (1) (1)

b b
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F dV x x dV m x               h I          (B.4) 

    Next, the generalized second-order inertial force is written as follows: 
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In the second-order inertial force, each component could also be rewritten by substituting the 

rotation mode tensor into Eq. (B.5) on a rigid body assumption. The last two terms are as follows: 
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The quadratic product term could be expressed in the following form: 
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Here, the second term in (B.7) plus (B.8) could be written with so-called quadratic inertial force 

in [69] as follows: 
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(B.9) 

After collecting all terms, we can confirm that the second-order inertial force takes the same 

expression as the classical expression on a rigid body, as shown below: 
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