
Theory of Ship Waves
(Wave-Body Interaction Theory)

Additional Explanation on the Assignment (Problem Set: No. 4)

The analytical integral with respect to η in the following:

ϕ(x, y) = 2

∫ ∞

0

f(η)G(x, y; 0, η) dη

G(x, y; 0, η) = − 1

π

∫ ∞

0

sin ky sin kη

k
e−k|x| dk

− 1

π

∫ ∞

0

k cos k(y + η)−K sin k(y + η)

k2 +K2
e−k|x| dk

+i e−K(y+η)−iK|x|

We consider the case of f(η) = iωX (a piston-type wavemaker), for which we have

ϕ(x, y) = 2iωX

∫ ∞

0

G(x, y; 0, η) dη

= iωX 2i e−Ky−iK|x|
∫ ∞

0

e−Kη dη

+iωX
(
− 2

π

)∫ ∞

0

sin ky

k
e−k|x|

{∫ ∞

0

sin kη dη

}
dk

+iωX
(
− 2

π

)∫ ∞

0

e−k|x|

k2 +K2

{
k

∫ ∞

0

cos k(y + η) dη −K

∫ ∞

0

sin k(y + η) dη

}
dk

where we substitute the following formulas:

∫ ∞

0

cos k(y + η) dη = − 1

k
sin ky∫ ∞

0

sin k(y + η) dη =
1

k
cos ky∫ ∞

0

sin kη dη =
1

k
,

∫ ∞

0

e−Kη dη =
1

K

Then we can have the following:

ϕ(x, y) = iωX
( 2i

K

)
e−Ky−iK|x|

+iωX
(
− 2

π

)[∫ ∞

0

sin ky

k2
e−k|x| dk −

∫ ∞

0

e−k|x|

k(k2 +K2)

{
k sin ky +K cos ky

}
dk

]

Rewriting the result gives the final form as follows:

ϕ(x, y) = iωX
( 2i

K

)
e−Ky−iK|x|

+iωX
2

π

∫ ∞

0

K(k cos ky −K sin ky)

k2(k2 +K2)
e−k|x| dk
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Let us consider the same problem in finite-depth water by means of the eigen-function expansion

method. By taking the limit of infinite water depth from the result to be obtained, we will be able to

derive the result shown in the previous page. Considering this limit would be helpful in understanding

the relation between the finite and infinite water-depth cases.

First, the eigenvalues and corresponding eigenfunctions are explained by solving the following

problem:

[L] ∇2ϕ(x, y) = 0

[F ]
∂ϕ

∂y
+Kϕ = 0 on y = 0

[B ]
∂ϕ

∂y
= 0 on y = h

[R] outgoing waves at |x| → ∞

by means of the variable-separation method.

Let us assume a solution in the form

ϕ(x, y) = X(x)Y (y)

Then from Laplace’s equation, we have

X ′′Y +XY ′′ −→ x′′

X
= −Y ′′

Y
= ±k2

i) For the case of −k2

The fundamental solutions of the above are obatined as follows:

X ′′ + k2X = 0 −→ X = a1 e
ikx + a2 e

−ikx

Y ′′ − k2Y = 0 −→ Y = b1 e
−ky + b2 e

ky

Imposing the boundary conditions on [F ], [B ], and [R] gives the following result:

ϕ1(x, y) = A
cosh k0(y − h)

cosh k0h
e−ik0x for x > 0

where k0 tanh k0h = K


ii) For the case of +k2

The fundamental solutions in this case are obatined as follows:

X ′′ − k2X = 0 −→ X = c1 e
−kx + c2 e

kx

Y ′′ + k2Y = 0 −→ Y = d1 cos ky + d2 sin ky

A solution satisfying the boundary conditions on [F ], [B ] and the condition of decaying as x → +∞
may be given in the form

ϕ2(x, y) = B
cos kn(y − h)

cos knh
e−knx for x > 0

where kn tan knh = −K


Therefore, as the sum of the cases of i) and ii) we have an expression for the velocity potential in

terms of the eigenfunctions for the finite water depth as follows:

ϕ(x, y) = A
cosh k0(y − h)

cosh k0h
e−ik0x +

∞∑
n=1

Bn
cos kn(y − h)

cos knh
e−knx (1)
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As the next step, the boundary condition on the wavemaker

∂ϕ

∂x
= f(y) = iωX on x = 0 (2)

must be satisfied, which may be accomplished by applying the orthogonality in a system of eigenfunc-

tions in the depth-wise direction. Namely, from (1) and (2) we can obtain the relation:

∂ϕ

∂x

∣∣∣∣
x=0

= −Aik0
cosh k0(y − h)

cosh k0h
−

∞∑
n=1

Bnkn
cos kn(y − h)

cos knh
= iωX (3)

Multiplying both sides of (3) by each component in the orthogonal function system, we may have

simultaneous equations for the unknowns. In this process, the following results (the orthogonal prop-

erties) will be used: ∫ h

0

cosh k0(y − h)

cosh k0h
dy =

tanh k0h

k0
=

K

k20
(4)

∫ h

0

cosh2 k0(y − h)

cosh2 k0h
dy =

1

cosh2 k0h

∫ h

0

1 + cosh 2k0(y − h)

2
dy

=
1

2k0 cosh
2 k0h

(
k0h+ sinh k0h cosh k0h

)
=

1

2k20

{
h(k20 −K2) +K

}
(5)

Substituting k0 → ikn in above results, we have the followings:∫ h

0

cos kn(y − h)

cos knh
dy =

tan knh

kn
= −K

k2n
(6)∫ h

0

cos2 kn(y − h)

cos2 knh
dy = − 1

2k2n

{
− h(k2n +K2) +K

}
(7)

Note that other integrals are zero due to orthogonality of the functions considered here; that is,∫ h

0

cosh k0(y − h)

cosh k0h

cos kn(y − h)

cos knh
dy = 0 (8)

With these relations, multiplying both sides of (3) by cosh k0(y − h)/ cosh k0h, integrating from 0

to h with respect to y, and using (4), (5), and (8), we have

iωXK = −Aik0
1

2

{
h(k20 −K2) +K

}
−→ A = iωX

( 2i

k0

) K

K + h(k20 −K2)
(9)

Likewise, multiplying both sides of (3) by cos km(y − h)/ cos kmh and integrating from 0 to h with

respect to y, we have

iωX (−K) = Bnkn
1

2

{
− h(k2n +K2) +K

}
−→ Bn = −iωX

( 2

kn

) K

K − h(k20 +K2)
(10)

Substituting these results in (1) gives the following result:

ϕ(x, y) = iωX
( 2i

k0

)
C0

cosh k0(y − h)

cosh k0h
e−ik0x − iωX

∞∑
n=1

2

kn
Cn

cos kn(y − h)

cos knh
e−knx (11)

where C0 =
K

K + h(k20 −K2)
, Cn =

K

K − h(k2n +K2)
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Let us consider the limit of h → ∞ from the above result. In considering this limit, we note that

tanh k0h → 1 and thus

k0 −→ K , C0 −→ 1 ,
cosh k0(y − h)

cosh k0h
−→ e−Ky

On the other hand, concerning the second term of (11), discrete wavenumber kn becomes a continuous

variable and

cos kn(y − h)

cos knh
= cos kny + tan knh sin kny −→ 1

k

(
k cos ky −K sin ky

)
Cn −→ K

−h(k2n +K2)
=

Kkn
−knh(k2n +K2)

−→ − 1

π

K dk

k2 +K2

Here, since knh ∼ nπ, kn/n has been understood as ∆k, which is the same limiting operation as in

obtaining the Fourier transform from the complex form of Fourier series. The summation with respect

to n must be converted as an integral with respect to k. In this way, we have the following expression

from (11) as the limit of infinite water depth:

ϕ(x, y) = iωX
( 2i

K

)
e−Ky−iKx

+iωX
2

π

∫ ∞

0

K(k cos ky −K sin ky)

k2(k2 +K2)
e−kx dk for x > 0

which is the same as the result derived before by using Green’s theorem.

Another Solution Method

With the assumption of infinite water depth from the beginning, let us consider the same problem

using a special form of eigenfunction expansion method.

By means of the variable-separation method, a general solution of the velocity potential satisfying

[F ], [B] and [R] may be written in the form

ϕ(x, y) =Ae−Ky−iKx

+

∫ ∞

0

B(k)
(
k cos ky −K sin ky

)
e−kx dk for x > 0 (12)

where A and B(k) are unknowns to be determined.

To satisfy the body boundary condition, differentiation of (12) with respect to x is considered on

x = 0, which can readily be given as follows:

∂ϕ

∂x
= f(y) = iωX

= −iKAe−Ky −
∫ ∞

0

B(k) k
(
k cos ky −K sin ky

)
dk (13)

Here, as will be proven later, we note that the Fourier integral theorem provides the following identity

for arbitrary function f(y):

f(y) = 2K e−Ky

∫ ∞

0

f(η) e−Kη dη

+
2

π

∫ ∞

0

dk

∫ ∞

0

f(η)
(k cos ky −K sin ky)(k cos kη −K sin kη)

k2 +K2
dη (14)

Therefore, comparing (13) with (14), we can find the following relations to be satisfied:

− iA = 2

∫ ∞

0

iωX e−Kη dη = iωX
2

K
(15)

−B(k) k =
2

π

∫ ∞

0

iωX
(k cos kη −K sin kη)

k2 +K2
dη =

2

π

(
iωX

) 1

k2 +K2

(
− K

k

)
(16)

4



Thus we can determine the unknowns as follows:

A = iωX
2 i

K

B(k) = iωX
2

π

K

k2(k2 +K2)

 (17)

Substituting these results in (12), we can obtain the solution in the form

ϕ(x, y) = iωX
(2i
K

)
e−Ky−iKx

+iωX
2

π

∫ ∞

0

K( k cos ky −K sin ky )

k2(k2 +K2)
e−kx dk (18)

which is of course the same as the result obtained by another method.

Proof of Equation (14)

f(y) = 2K e−Ky

∫ ∞

0

f(η) e−Kη dη

+
2

π

∫ ∞

0

dk

∫ ∞

0

f(η)
(k cos ky −K sin ky)(k cos kη −K sin kη)

k2 +K2
dη (19)

may be proven from the Fourier integral theorem (Fourier transform). The proof written below was

actually obtained by myself about 30 years ago when I was a graduate student.

According to the Fourier transform, we have the following identity:

f(y) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
f(η) eik(y−η) dk dη =

1

π

∫ ∞

0

dk

∫ ∞

−∞
f(η) cos k(y − η) dη (20)

With understanding that f(y) is defined for y > 0 and η is interpreted as |η| (or f(y) is assumed to

be even in y), (20) can be written as the Fourier cosine transform:

f(y) =
2

π

∫ ∞

0

dk

∫ ∞

0

f(η) cos k(y − η) dη (21)

Here we can transform cos k(y − η) as follows:

cos k(y − η) =
1

k2 +K2

{
k2 cos kη cos ky +K2 sin kη sin ky

}
+

1

k2 +K2

{
K2 cos kη cos ky + k2 sin kη sin ky

}
=

1

k2 +K2

{
k2 cos kη cos ky +K2 sin kη sin ky

}
+

K2

k2 +K2
cos k(y + η) + sin kη sin ky (22)

Furthermore
1

k2 +K2

{
(k cos ky −K sin ky)(k cos kη −K sin kη)

}
=

1

k2 +K2

{
k2 cos kη cos ky +K2 sin kη sin ky

}
− kK

k2 +K2
sin k(y + η) (23)

Therefore we can obtain the following relation:

cos k(y − η) =
(k cos ky −K sin ky)(k cos kη −K sin kη)

k2 +K2

+
K

k2 +K2

{
k sin k(y + η) +K cos k(y + η)

}
+ sin kη sin ky (24)
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Then regarding the integrals with respect to k, we will use the following results (which can be

proven with the inverse Laplace transform or the Fourier transform):

2

π

∫ ∞

0

k

k2 +K2
sin k(y + η) dk = e−K(y+η)

2

π

∫ ∞

0

K

k2 +K2
cos k(y + η) dk = e−K(y+η)

 (25)

∫ ∞

0

sin kη sin ky dk =
1

2

∫ ∞

0

{
cos k(y − η)− cos k(y + η)

}
dk = 0 (26)

Summarizing the results shown above, we can finally obtain

f(y) =

∫ ∞

0

f(η)

[
2

π

∫ ∞

0

cos k(y − η) dk

]
dη

=
2

π

∫ ∞

0

dk

∫ ∞

0

f(η)
(k cos ky −K sin ky)(k cos kη −K sin kη)

k2 +K2
dη

+2K e−Ky

∫ ∞

0

f(η) e−Kη dη (27)

which is the desired indentity for f(y) shown as (19).

Note on the Velocity Potentials due to Source and Doublet

It has beeen shown before that the general solution of the 2D Laplace equation is written in the

polar coordinate system as follows:

Φ = C log r +
∞∑

n=1

1

rn

{
An cosnθ +Bn sinnθ

}
(28)

We note that higher-order fundamental solutions can be obtained by successive differentiations of the

principal solution, C log r, with respect to x and y. Let us show this fact.

x = r cos θ, y = r sin θ

r =
√
x2 + y2 , θ = tan−1 y

x
=

π

2
− tan−1 x

y

 (29)

Thus we have the following formulae for differentiation.
∂

∂x
=

∂

∂r

∂r

∂x
+

∂

∂θ

∂θ

∂x
= cos θ

∂

∂r
− sin θ

r

∂

∂θ

∂

∂y
=

∂

∂r

∂r

∂y
+

∂

∂θ

∂θ

∂y
= sin θ

∂

∂r
+

cos θ

r

∂

∂θ

(30)

The velocity potential of a point source is the principal solution given as

ϕ0 = C log r (31)

Then by differentiation we have the following results:

ϕdx = −∂ϕ0

∂x
= −C

cos θ

r
(32)

ϕdy = −∂ϕ0

∂y
= −C

sin θ

r
(33)
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These velocity potentials are known as those of doublet with the axis in the x and y directions,

respectively. In the same way, we can obatin the second-order terms as follows.

∂2ϕ0

∂x2
= −∂ϕdx

∂x
= C

{ cos2 θ

r2
− sin2 θ

r2

}
= C

cos 2θ

r2
(34)

∂ϕ0

∂x∂y
= −∂ϕdx

∂y
= C

{ sin θ cos θ

r2
+

cos θ sin θ

r2

}
= C

sin 2θ

r2
(35)

In summary, the free-surface Green function, G(x, y; ξ, η), is the velocity potential due to a point

source with unit strength satisfying the linear free-surface boundary condition, and thus the normal

differentialtion of the Green function
∂

∂nQ
G(x, y; ξ, η)

appearing in the Green’s theorem

ϕ(P) =

∫
SH

{
∂ϕ(Q)

∂nQ
− ϕ(Q)

∂

∂nQ

}
G(P;Q) ds(Q)

can be hydrodynamically understood as the velocity potential of doublet with the axis in the normal

direction. In other words, the velocity potential describing the flow generated by a general-shaped

body can be obtained by a distribution of the source and the doublet with normal axis along the

surface of the body.
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