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1) According to Eq. (1.29) in the text, the nonlinear free-surface boundary condition

can be derived from the substantial derivative of the pressure being equal to zero.

In fact, it is known that the 2nd-order free-surface boundary condition is given

as
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This boundary condition is derived from Eq. (1.30) in the text by applying the

Taylor-series expansion about z = 0. On the other hand, the same boundary

condition must also be derived by combining the kinematic boundary condition
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Then, show that Eq. (1) can be obtained by eleminating ζ from Eq. (2) and

Eq. (3), neglecting terms higher than and equal to O(Φ3), and using the Taylor-

series expansion about z = 0.

Hint: The Taylor-series expansion can be applied not only to the velocity poten-

tial itself, like Eq. (1.27) in the text, but also to the linear term in the boundary

condition; that is,
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as a lump term.

2) Regarding the computation of time average of a product of two oscillatory quan-

tities with the same circular frequency ω over one cycle of an oscillatory motion,

the following calculation formula is available:
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where T is the period, A and B are of complex quantities in general, and B∗

denotes the complex conjugate.

Show a proof of this formula, Eq. (4).
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