Theory of Ship Waves (Wave-Body Interaction Theory)

Supplementary notes on Sections 3.1 and 3.2
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Fig.1 Schematic illustration for the diffraction and radiation problems.

Decomposition of the velocity potential
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Body boundary condition
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Body-disturbance waves
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Scattered wave:  (F = iaHF (K)
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Case (1)
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Fig.2 Case of incident wave incoming from the positive z-axis
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Fig.3 Case of incident wave incoming from the negative z-axis
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Hydrodynamic Relations Derived with Green’s Theorem

y=0 _SF KO_ ﬁ Sk y=0
1 <« <« T » 33'
I
’ N A
Y SH |
n
I I
S_ |—> Q = Q Q == Q !
T On"ba In =0 19
' A
Y .
I I
L > > |
y=00 SB Y Yy=00
Y
Fig. 3.4 Application of Green’s theorem
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Tablel Summary of Some Important Hydrodynamic Relations
¢ P Relations to be obtained
1 ©i o Aij = Aji, Bij = Bj; : Symmetry relations in the radiation forces
2 Vi P; B;; = %pw{ Hfﬁj_ +H; H; } Energy conservation in the radiation problem
3 éD bp |[R|?+|T|>=1 Energy conservation in the diffraction problem
4 035} ©; E; = pga H;‘ Haskind-Hanaoka-Newman’s relation
_ -+ 75—
5 ép ?; Ej=pga{H; R+ H,; T}
Relations in 4 and 5 gives H) = ﬁ;_RJrﬁj_T, (R=iHf, T=1+4H] )
For a symmetry body Hf =ie®H cosey F €°Ssineg
Hi = H{ £, (£ is real quantity; the phase is the same)
Furthermore Bis = Bs1 = ¢, Bi1
Bsz = (2 B;;  (Bessho’s relation)
6 ¢D YD hf=H;
Transmission wave (both amplitude & phase) past an asymmetric body is the same
irrespective of the direction of incident wave (Bessho’s relation)
— _  —+1+4+diH,
T |9 vp | hy = H ——%
1—iH,
The amplitude of reflection wave by an asymmetric body is also the same irrespective
of the direction of incident wave (Bessho’s relation)
Relations of 3 and 7 for a symmetric body gives |R+T|=1:
Wave energy equally splitting law

In the above, ¢p = o + 4 and ¢ denotes the complex conugate of ¢






