Theory of Ship Waves (Wave-Body Interaction Theory)

Supplementary notes on Section 2.1

Meaning of Eq. (2.2)
Let us consider the total amount of flux @ across the boundary C of the fluid (in the 2D problem)

denoted as S.
Q= / dﬁ—/Cn-VquE://SV~V¢dS://SV2¢dS

If there is no singularity (like source), @ = 0 due to the conservation of mass. However, if there is a

source within S, the flux @ must be not zero but equal to the amount coming from the point of source;

which is assumed to be unit in the present case. Thus when the source is located at (z,y) = (0,7),
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Because, by the definition of the delta function, it follows that

+e n+e
o0(x)de =1, / d(y—mn)dy=1
n

—€ —€

Derivation of Laplace Equation in the Polar Coordinates

S5 . . .
Let us consider the 2D case with the s; s coordinate
b Qu+dQ, .
* system. By considering the flux in the s; direction
—_ using the velocity potential, we have the followings:
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A Likewise, by considering the flux in the sy direction,
- it follows that
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Since the total net flux must be zero due to the principle of mass conservation, we have the following
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For the case of polar coordinate system, we can find §s; = 67 and dsy = 60 by calculating (dz)? + (dy)?

relation:

from the relation:
x=rcosf, y=rsinf

— dr=drcosf —rsinfdf, dy=drsinf+rcosfdb
—  (dz)? + (dy)? = (dr)* + (rdf)?

Then, substituting ds; = dr, dso = rd6 into Eq. (1) and diving the result by ds;dsq, we have
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Solution Methods for 2-D Laplace Equation

1. Solution in the Cartesian Coordinate System

The z-axis is taken in the horizontal direction and the positive y-axis is taken vertically downward,

with the origin on the undisturbed free surface.
Vo= —_—— + - =0 (2)
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Let us apply the method of separation of variables; that is, the solution is assumed to be given in a form

of ® = X (x)Y (y). Substituting this into (2), we have

X'Y+XY"=0 (3)
Therefore X Y
7:—75—k20r + k2 (4)
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Constant k is arbitrary, not necessarily integer. If we require that the solution must be finite at infinity

(y = oo or |z| — 00), fundamental solutions of (5) are given as
e e*ky{ Acoskx + Bsinkx } (6)
+k* — e*km{Acosky—l-Bsinky} (7)

Here A and B are constants, possibly functions of parameter k, and thus a general solution may be

written in the form

B R :/ e"“y{A(k:) cos kz + B(k) sinkx}dkz (8)
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2. Solution in the Polar Coordinate System
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Applying the method of separation of variables, the solution can be assumed to be of the form ¢ =

R(r)©(0). Substituting this into (10), we have the following:
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Here we should note that the parameter n introduced in (11) must be integer, because fundamental
solutions with respect to 6 to be given by (13) must be periodic (the values for § = 0 and 6 = 27 must

be the same). This situation is different from the case considered in the Cartesian coordinate system.



The elementary solutions for (12) and (13) are given by
R:{r", 7"_"}, @z{cosn@, sinn@} (14)

If we require regularity of a solution at infinity (r — o), a general solution can be written as
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For the case of n = 0, the solution will be independent of #. (The possibility of @ = 6 which may be
obtained from (13) should be excluded from the condition of periodicity.) In this case,
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Thus we have the following equation as a general solution:

43:C’logr+i%{Ancosn0+aninn0} (17)

n=1

3. Relations of Solutions

There must be some relations between (8) and (17), because both are solutions for the same 2-D

Laplace equation. In order to see those relations, let us consider the following integral:
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Introducing the relations y = r cos 6, x = rsin #, we can perform the integral with respect to k as follows:
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Therefore, separating the real and imaginary parts, we have
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As the next, we will consider the following integral as the case of n =0
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Then, differentiating with respect to y, we have
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Namely <1
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Equations (20) and (22) are desired relations between the solutions in the Cartesian and polar coordinate

systems.

4. Application of Fourier Transform

One-dimensional Fourier transform is defined in the form:

(k) = / f(y) e ™ da
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Similarly two-dimensional Fourier transform can be expressed as
e = [ swe e dady
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Note the following relations in the Fourier transform:
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Let us consider a fundamental solution, corresponding to a hydrodynamic source with unit strength

situated at (z,y) = (0,7), which satisfies
V2 = 6(z)d(y —n) (27)
Applying the Fourier transform with respect to x to (27) and noting (25) and (26), we have
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A general solution of (28), valid except at y = 7, is given as
& (k) = Akl 4 B~ IHy (29)

Unknown coefficients, A and B, must be determined from boundary conditions and by taking account of
the singularity at y = 7. First, to avoid the singularity at y = n for a moment, we divide the region into
the lower (denoted as Region 1) and upper (Region 2) parts, separated at point y = 7. Since the region
is considered unbounded (no outer boundaries), the solution must be zero at both infinities (y — +00).

Thus the solutions in the lower (written as ¢7) and upper (¢3) regions are given as
o7 =Ael, g5 = Be Ikl (30)

(Here the positive y-axis is taken vertically upward.)
To take account of the singularity at y = 7, let us integrate (27) over a small region crossing y = 7;
ie. n—e <y <n+e (where € is assumed to very small). The result takes a form
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This relation can be satisfied, provided that
dgs  dgi _
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Substituting (30) in (32) gives the followings:

Belkn — Aelkln —
(33)
—|k|(Be‘|k‘" 4 Ae\kln) =1
From these we can determine A and B as follows:
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Substituting these into (30) gives the desired solution in the form
] L k-
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These two can be written as a unified form
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As the next step for obtaining the solution in the physical domain, the inverse Fourier transform must
be considered, which becomes
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In relation to this integral, let us consider the following integral:
*1 ikr
F(r)= — e dk (38)
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This integral can be evaluated as follows:
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Therefore we can recast the result of (37) in the form
o(x y):—iRe{—log(x—kﬂy—nD]:ilogr r=+/z2+ (y—n)? (40)
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The procedure explained above looks complicated, but it will be useful in understanding derivation of

the free-surface Green function.



To see another method using the Fourier transform, let us apply the two-dimensional Fourier transform

to the following Laplace equation:

With relations of (25) and (26), it follows that
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Thus the inverse Fourier transform provides the following expression:
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Let us first perform the integral with respect to ¢:
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Since there are singular points at ¢ = +i|k|, a contour integral taken in the upper half complex plane (for

the case of y > 0) gives the following result:
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Substituting this in (43), we have the result:
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This is the same as (37) and thus the final expression will be the same as (40), as expected.





