
Theory of Ship Waves (Wave-Body Interaction Theory)
Supplementary notes on Section 1.5

Plane Progressive Waves

The free-surface elevation:

ζ =
1

g

∂ϕ

∂t

∣∣∣∣
z=0

= A cos(ωt− kx) = Re
[
Ae−ikx eiωt

]
(1)

The phase function ωt − kx, which represents a wave propagating in the positive x-axis, because

f(ωt− kx) satisfies
∂f

∂t
+ c

∂f

∂x
=

(
ω − ck

)
f ′ = 0

c =
ω

k
> 0

 (2)

Here k is the wavenumber, ω is the circular (or angular) frequency , and c is the phase velocity.

Dispersion Relation

The general solution to be obtained from Laplace’s equation is assumed to be in a form

ϕ(x, z, t) = Re
[
Z(z) e−ikx eiωt

]
(3)

Here it should be noted that Z(z) can be complex. Then a general solution for Z(z) is given by

Z(z) = C ekz +De−kz (4)

where C and D are unknown to be determined from boundary conditions.

The free-surface and bottom boundary conditions for Z(z) are written as follows:

∂2ϕ

∂t2
− g

∂ϕ

∂z
= 0 −→ −ω2Z − g

dZ

dz
= 0 on z = 0 (5)

∂ϕ

∂z
= 0 −→ dZ

dz
= 0 on z = h (6)

Substituting (4) into (5) and (6) gives the following:

C(ω2 + gk) +D(ω2 − gk) = 0

C ekh −De−kh = 0

}
(7)

We note that both unknowns, C and D, cannot be determined uniquely only from these equations

(because both equations above are homogeneous ones). However, in order to have non-trivial solutions,

the following relation must hold: ∣∣∣∣∣ ω2 + gk ω2 − gk

ekh − e−kh

∣∣∣∣∣ = 0 (8)

−→ − e−kh(ω2 + gk)− ekh(ω2 − gk) = 0

−→ gk
(
ekh − e−kh

)
− ω2

(
ekh + e−kh

)
= 0

−→ k tanh kh =
ω2

g
(9)

This is the dispersion relation, implying that the wavenumber (wavelength) and the frequency (period)

are mutually dependent parameters.



It should be noted that we can eliminate just one unknown from (7) and the resultant equation can

be written in the form

Z(z) = C̃
cosh k(z − h)

cosh kh
C̃ ≡ 2C ekh cosh kh (10)

Mathematically speaking, (9) is the eigen-value equation (the equation for eigen values) and (10) is the

associated eigen solution or homogeneous solution.

In order to determine the remaining unknown coefficient in (10), we must specify the free-surface

elevation given by (1). From (3) and (10), we have

ϕ(x, z, t) = Re
[
C̃

cosh k(z − h)

cosh kh
e−ikx eiωt

]
(11)

−→ ζ =
1

g

∂ϕ

∂t

∣∣∣∣
z=0

= Re
[ iω

g
C̃ e−ikx eiωt

]
(12)

By comaring the above with (1), we can determine C̃ as follows:

iω

g
C̃ = A −→ C̃ =

gA

iω
(13)

Then the solution can be obtained in the form:

ϕ = Re
[ gA

iω

cosh k(z − h)

cosh kh
e−ikx eiωt

]
=

gA

ω

cosh k(z − h)

cosh kh
sin(ωt− kx) (14)

Approximation of tanh kh ≃ 1 is valid for kh > π with error less than 0.4 %. This means that if

kh =
2πh

λ
> π −→ h >

λ

2
(15)

is satisfied, the dispersion relation can be practically the same as that for deep water.

For the deep-water case, several relations become rather simple as follows:

k = K =
ω2

g
=

2π

λ
, T =

2π

ω
=

√
2πλ

g
≃ 0.8

√
λ (λ ≃ 1.56T 2 ) (16)

ϕ =
gA

ω
e−kz sin(ωt− kx)

= Re
[ gA

iω
e−kz−ikx eiωt

]
≡ Re

[
φ(x, z) eiωt

]
(17)

where φ(x, z) =
gA

iω
e−kz−ikx (18)

Amplitude Dispersion Relation in Deep Water

According to the textbook, the following expression for the phase velocity is obtained:

c =

√
g

k

(
1 +

1

2
k2A2

)
= c(1)

(
1 +

1

2
k2A2

)
(19)

If we require 1
2 (kA)2 < 0.005, a linear wave may be guaranteed and this requirement gives the following

estimation:

kA <
√
0.01 −→ 2A

λ
=

H

λ
<

√
0.01

π
≃ 1

30
(20)

Here H/λ is referred to as the wave steepness.



Theory of Ship Waves (Wave-Body Interaction Theory)
Supplementary notes on Section 1.5.4 and 1.6

Real Part of Eq. (1.65)

We assume that the difference in amplitude is also small, represented as A2 − A1 = δA. Substituting

this into Eq. (1.65), we can transform as follows:

A1

[
1 +

A2

A1
ei(δω·t−δk·x)

]
= A1

{
1 + ei(δω·t−δk·x)}+ δA ei(δω·t−δk·x)

= A12 e
i 1
2 (δω·t−δk·x) 1

2

{
ei

1
2 (δω·t−δk·x) + e−i 1

2 (δω·t−δk·x)
}
+ δA ei(δω·t−δk·x)

= 2A1 cos
{1

2
(δω ·t− δk ·x)

}
ei

1
2 (δω·t−δk·x) + δA ei(δω·t−δk·x) (1)

Therefore, taking the real part of Eq. (1.65), we can obtain the following result:

η = Re

{
A1

[
1 +

A2

A1
ei(δω·t−δk·x)

]
ei(ω1t−k1x)

}
= 2A1 cos

{1

2
(δω ·t− δk ·x)

}
cos

{(
ω1 +

1

2
δω

)
t−

(
k1 +

1

2
δk

)
x
}

+δA cos
{
(ω1 + δω)t− (k1 + δk)x

}
(2)

Retaining only the leading term of the above equation gives the following approximation:

η = 2A1 cos
{1

2
(δω ·t− δk ·x)

}
cos

(
ω1t− k1x

)
+O(δω, δk, δA) (3)

2π

2π

δk

cg

k

c=
ω

k

Fig. 1 The amplitude modulation part is an envelope of fundamental carrier waves, and
its velocity (group velocity) is given by δω/δk.

Calculation of Group Velocity: Eq. (1.69)

The dispersion relation for finite-water depth takes the form

ω2 = gk tanh kh (4)

The definition of the group velocity is given by

cg =
dω

dk
(5)

Taking first the logarithm of both sides of (4) and then differentiating with respect to k, we may have

the following

2 logω = log gk + log tanh kh



−→ 2
ω ′

ω
=

1

k
+

1

tanh kh

h

cosh2 kh

−→ ω ′ =
dω

dk
=

1

2

ω

k

{
1 +

kh

cosh kh sinh kh

}
−→ cg =

1

2
c
{
1 +

2kh

sinh 2kh

}
(6)

Calculation related to Eq. (1.76)

From Eq. (1.58), we can obtain the followings:

ϕ(x, y) =
ga

iω

cosh k(y − h)

cosh kh
e−ikx (7)

∂ϕ

∂x
= −ga

ω
k
cosh k(y − h)

cosh kh
e−ikx (8)

= −aω cosh k(y − h)

sinh kh
e−ikx ←− k

cosh kh
=

ω2

g sinh kh
(9)

∂ϕ

∂y
=

ga

iω
k
sinh k(y − h)

cosh kh
e−ikx = −iaω sinh k(y − h)

sinh kh
e−ikx (10)

Therefore it follows that∣∣∣∣∂ϕ∂x
∣∣∣∣2 + ∣∣∣∣∂ϕ∂y

∣∣∣∣2 = (aω)2
cosh2 k(y − h) + sinh2 k(y − h)

sinh2 kh
= (aω)2

cosh 2k(y − h)

sinh2 kh
(11)

∫ h

0

cosh 2k(y − h)

sinh2 kh
dy =

[
sinh 2k(y − h)

2k sinh2 kh

]h
0

=
sinh 2kh

2k sinh2 kh
=

cosh kh

k sinh kh
=

g

ω2
←− 1

k tanh kh
=

g

ω2
(12)

Summarizing these results, we can obtain the following result:

1

4
ρ

∫ h

0

{ ∣∣∣∣∂ϕ∂x
∣∣∣∣2 + ∣∣∣∣∂ϕ∂y

∣∣∣∣2 } dy =
1

4
ρ(aω)2

g

ω2
=

1

4
ρga2 (13)

Calculation related to Eq. (1.78)

From Eq. (7) and Eq. (8), we have

iωϕ
∂ϕ∗

∂x
= −(ga)2 k

ω

cosh2 k(y − h)

cosh2 kh
= −(ga)2 k

ω

1

cosh2 kh

1 + cosh 2k(y − h)

2
(14)

∫ h

0

1 + cosh 2k(y − h)

2
dy =

1

2

[
y +

sinh 2k(y − h)

2k

]h
0

=
1

2

(
h+

sinh 2kh

2k

)
=

sinh 2kh

4k

{
1 +

2kh

sinh 2kh

}
=

sinh kh cosh kh

2k

{
1 +

2kh

sinh 2kh

}
(15)

Therefore, with the dispersion relation tanh kh = ω2/gk, we have the following result:

1

2
ρRe

∫ h

0

(iωϕ)
∂ϕ∗

∂x
dy = −1

4
ρ(ga)2

1

ω

sinh kh

cosh kh

{
1 +

2kh

sinh 2kh

}
= −1

4
ρ(ga)2

1

ω

ω2

gk

{
1 +

2kh

sinh 2kh

}
= −1

4
ρga2

ω

k

{
1 +

2kh

sinh 2kh

}
(16)


