Review of Fundamental Equations
Supplementary notes on Section 1.2 and 1.3

e Introduction of the velocity potential:
irrotational motion: w =V xu =10
identity in the vector analysis: V x V¢ =0

— u=V¢

e Basic conservation principles:
(1) Conservation of mass
— Continuity equation V-u =0
(2) Conservation of momentum

s, 1
— Euler’s equation (for inviscid fluid) a—’? +u-Vu= —;Vp +K (K =gk)

For ideal fluid
From (1) : Laplace’s equation V -V¢ = V3¢ =0

1
From (2) : Bernoulli’s equation —;(p Do) = Zf + = qu Vo —gz

because of a relation

u~Vu:%V(u-u)—u><(qu):%V(u-u)

Euler’s equation becomes V % +=-V¢-Vo¢ + ——gz| =0
P

Annex
The other identity in the vector analysis: V- (V x A) =
From the continuity equation V-u =0

— u=VxA (A : defined as the vector potential)

For 2-D flows u = (u,v,0) and thus
the vector potential must be A = (0,0,%)
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which is known as the stream function for 2-D flows.

Boundary Conditions

(1) Kinematic condition

Fluid particles on a wetted boundary surface, described by F'(z,y, z,t) = 0, always follow the movement
of the boundary surface. Namely, even after a short time interval, the fluid particles remain on the
boundary surface. Thus we can write as F(x + uAt,y + vAt, z + wAt, t + At) = 0. Then considering
subtraction of these two and applying a Taylor-series expansion with respect to At, we may have the
following result:

F(z 4+ udt, y +vAt, z +wAt, t + At) — F(z,y, 2,1)

oF oF oF oF
:uAtaJr At8—+ At8—+At§+O[( t)’] =0 (1)



Then dividing the above by At and taking the limit of A — 0, we have the following result:
87F+ aj+ 8F+ aiFfE (2)
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With the definition of the velocity potential u = (u, v, w) = V¢, this result can be written as

DF  OF
F= F=
D= o +V¢-V 0 on 0 (3)
Dividing both sides with |VF| and noting the definition of the normal vector n = VF/|VF|, we may
have
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v¢.n:%:_ma(zvn) (4)

(2) Free-surface condition

Provided that the elevation of free surface is expressed as z = ((z,y,t), the kinematic boundary

condition is given as follows:

F(JZ,yVZ,t):Z*C(.T,y,t):O (5)
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Here we note that both ¢ and ¢ are unknown. Thus we need one more boundary condition on the free
surface; that is, the dynamic boundary condition which states that the pressure on the free surface is

equal to the atmospheric pressure:

(0= pa) = G + 5V Vo g0 =0 onz = (o) (7

Linearization

Assuming that both ¢ and ¢ are of small quantities and retaining only the first-order terms in ¢ and

¢, we may have the followings:
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Eliminating ¢ from (6) and (7), it follows that

0? 0
8775?7 87¢+O(¢2,§¢):0 on z = ((x,y,t) (10)

Furthermore applying the Taylor-series expansion around the undisturbed free surface (z = 0):

0
z=0

and neglecting higher-order terms resulting from this Taylor expansion, the final result takes the following

form: 5 96
ﬁ—gazo onz=0 (12)



