
Review of Fundamental Equations
Supplementary notes on Section 1.2 and 1.3

• Introduction of the velocity potential:

irrotational motion: ω = ∇× u = 0

identity in the vector analysis: ∇×∇ϕ ≡ 0

−→ u = ∇ϕ

• Basic conservation principles:

(1) Conservation of mass

−→ Continuity equation ∇ · u = 0

(2) Conservation of momentum

−→ Euler’s equation (for inviscid fluid)
∂u

∂t
+ u · ∇u = − 1

ρ
∇p+K (K = gk )

For ideal fluid

From (1) : Laplace’s equation ∇ · ∇ϕ = ∇2ϕ = 0

From (2) : Bernoulli’s equation − 1

ρ
(p− pa) =

∂ϕ

∂t
+

1

2
∇ϕ · ∇ϕ− gz

because of a relation

u · ∇u =
1

2
∇(u · u)− u× (∇× u) =

1

2
∇(u · u)

Euler’s equation becomes ∇
[
∂ϕ

∂t
+

1

2
∇ϕ · ∇ϕ+

p

ρ
− gz

]
= 0
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The other identity in the vector analysis: ∇ · (∇×A) ≡ 0

From the continuity equation ∇ · u = 0

−→ u = ∇×A (A : defined as the vector potential)

For 2-D flows u = (u, v, 0) and thus

the vector potential must be A = (0, 0, ψ)

−→ u =
∂ψ

∂y
, v = − ∂ψ

∂x

which is known as the stream function for 2-D flows.

Boundary Conditions

(1) Kinematic condition

Fluid particles on a wetted boundary surface, described by F (x, y, z, t) = 0, always follow the movement

of the boundary surface. Namely, even after a short time interval, the fluid particles remain on the

boundary surface. Thus we can write as F (x + u∆t, y + v∆t, z + w∆t, t + ∆t) = 0. Then considering

subtraction of these two and applying a Taylor-series expansion with respect to ∆t, we may have the

following result:

F (x+ u∆t, y + v∆t, z + w∆t, t+∆t)− F (x, y, z, t)

= u∆t
∂F

∂x
+ v∆t

∂F

∂y
+ w∆t

∂F

∂z
+∆t

∂F

∂t
+O

[
(∆t)2

]
= 0 (1)



Then dividing the above by ∆t and taking the limit of ∆→ 0, we have the following result:

∂F

∂t
+ u

∂F

∂x
+ v

∂F

∂y
+ w

∂F

∂z
≡ DF

Dt
= 0 (2)

With the definition of the velocity potential u = (u, v, w) = ∇ϕ, this result can be written as

DF

Dt
=
∂F

∂t
+∇ϕ · ∇F = 0 on F = 0 (3)

Dividing both sides with |∇F | and noting the definition of the normal vector n = ∇F/|∇F |, we may

have

∇ϕ · n =
∂ϕ

∂n
= − 1

|∇F |
∂F

∂t

(
≡ Vn

)
(4)

(2) Free-surface condition

Provided that the elevation of free surface is expressed as z = ζ(x, y, t), the kinematic boundary

condition is given as follows:

F (x, y, z, t) = z − ζ(x, y, t) = 0 (5)

DF

Dt
= − ∂ζ

∂t
− ∂ϕ

∂x

∂ζ

∂x
− ∂ϕ

∂y

∂ζ

∂y
+
∂ϕ

∂z
= 0 on z = ζ(x, y, t) (6)

Here we note that both ϕ and ζ are unknown. Thus we need one more boundary condition on the free

surface; that is, the dynamic boundary condition which states that the pressure on the free surface is

equal to the atmospheric pressure:

− 1

ρ

(
p− pa

)
=
∂ϕ

∂t
+

1

2
∇ϕ · ∇ϕ− gζ = 0 on z = ζ(x, y, t) (7)

Linearization

Assuming that both ϕ and ζ are of small quantities and retaining only the first-order terms in ϕ and

ζ, we may have the followings:

− ∂ζ

∂t
+
∂ϕ

∂z
+O(ζϕ) = 0 (8)

ζ =
1

g

∂ϕ

∂t
+O(ϕ2) = 0 (9)

Eliminating ζ from (6) and (7), it follows that

∂2ϕ

∂t2
− g

∂ϕ

∂z
+O(ϕ2, ζϕ) = 0 on z = ζ(x, y, t) (10)

Furthermore applying the Taylor-series expansion around the undisturbed free surface (z = 0):

ϕ(x, y, z, t) = ϕ(x, y, 0, t) + ζ

(
∂ϕ

∂z

)
z=0

+ · · · (11)

and neglecting higher-order terms resulting from this Taylor expansion, the final result takes the following

form:
∂2ϕ

∂t2
− g

∂ϕ

∂z
= 0 on z = 0 (12)


