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1. Fundamental Theories on Water Waves

In order to understand theoretically the dynamics of a floating body in waves, it is indispensable

to understand the theories related to water waves, that is, the free-surface hydrodynamics. Starting

with reviewing the hydrodynamics as a subject of ‘mechanics’, fundamental knowledge concerning the

characteristics of water waves will be summarized in this chapter.

1.1 Continuity Equation and Euler’s Equations

Since the hydrodynamics is a subject of ‘mechanics’ of the fluid, its fundamental equations must be

obtained from the conservation laws of physics, such as mass, momentum, and energy, as in the general

mechanics. Let us consider first the conservation of mass. We focus our attention on a group of fluid

particles (or a material volume of fluid) so that we always examine the same group of particles. Thus we

define a volume of fluid V (t) subject to the above restriction, which changes in time. Then by denoting

the density of fluid as ρ, the principle of conservation of mass can be written in the form

d

dt

∫∫∫
V (t)

ρ dV = 0. (1.1)

Next let us consider the principle of conservation of momentum. According to the Newton’s second

law, the sum of all forces acting on the volume of fluid must be equal to the time rate-of-change of

its momentum. Since viscous effects are normally small in the water-wave phenomena, we neglect the

viscous shear stress and consider only the normal pressure stress and the gravity force. Then the i-th

component (i = 1, 2, and 3 correspond to x, y, and z) in the conservation of momentum can be written

in the following form

d

dt

∫∫∫
V (t)

ρ ui dV = −
∫∫

S(t)

p ni dS +

∫∫∫
V (t)

ρg k dV . (1.2)

Here p denotes the normal pressure acting on the surface S of a prescribed volume of fluid V ; ni the i-th

component of the unit normal vector pointing out of V on the surface S; ui the i-th component of the

velocity vector; g the acceleration due to gravity; k is the elementary vector along the z-axis which is

taken vertically downwards (in the direction of the gravity force acting).

In the theory of water waves, it is customary to assume that the fluid density ρ is given and unchanged

with time. Thus the unknowns in (1.2) are the components of the velocity vector ui (i = 1 ∼ 3) and

the pressure p; hence the total number of unknowns is four. We can see that (1.1) provides one equation

and (1.2) provides three equations. Therefore by solving (1.1) and (1.2) with appropriate boundary and

initial conditions applied, the flow of a fluid under consideration can be determined.

In (1.1) and (1.2) especially their left-hand sides, it is supposed that the fluid particles confined by

region V are always the same at all times and their movement will be pursued in a Lagrangian way. In

order to describe this with a spaced-fixed coordinate system, let us consider a general volume integral of

the form

I(t) =

∫∫∫
V (t)

F (x, t) dV , (1.3)

where F is an arbitrary differentiable scalar function of position vector x and time t. We should bear in

mind that the volume of integration is itself a function of time. Therefore the boundary surface S of this

volume will change in time and move; let its normal velocity be denoted by Un.
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We consider the variation of (1.3) after a short time interval ∆t, which can be written as

∆I = I(t+∆t)− I(t) =

∫∫∫
V (t+∆t)

F (x, t+∆t) dV −
∫∫∫

V (t)

F (x, t) dV . (1.4)

With the Taylor-series expansion, we can write as

F (x, t+∆t) = F (x, t) +∆t
∂F (x, t)

∂t
+O

[
(∆t)2

]
. (1.5)

Neglecting all terms higher than (∆t)2, the difference between V (t + ∆t) and V (t) is a thin volume

contained between the adjacent surfaces S(t + ∆t) and S(t) in the time ∆t. Thus, denoting the nor-

mal velocity of the boundary surface by Un, we can write ∆V = S(t)Un∆t. With these taken into

consideration, ∆I in (1.4) can be approximated as

∆I =

∫∫∫
V+∆V

(
F +∆t

∂F

∂t

)
dV −

∫∫∫
V

F dV

= ∆t

∫∫∫
V

∂F

∂t
dV +

∫∫∫
∆V

F dV +O
[
(∆t)2

]
= ∆t

∫∫∫
V

∂F

∂t
dV +∆t

∫∫
S

F Un dS +O
[
(∆t)2

]
. (1.6)

Finally, by dividing both sides by ∆t and taking the limit as ∆t→ 0, the time derivative of I(t) defined

by (1.3) takes the form
dI

dt
=

∫∫∫
V

∂F

∂t
dV +

∫∫
S

F Un dS. (1.7)

Equation (1.7) is known as the transport theorem. The surface integral in this equation represents

the transport of quantity F out of the volume V , as a result of the movement of the boundary.

When V is a material volume, always composed of the same fluid particles, the surface S moves with

the same normal velocity as the fluid and hence Un = u ·n = ujnj . In this case, in terms of the transport

theorem (1.7), the conservation of mass (1.1) can be transformed as follows:

d

dt

∫∫∫
V

ρ dV =

∫∫∫
V

∂ρ

∂t
dV +

∫∫
S

ρ ujnj dS

=

∫∫∫
V

[
∂ρ

∂t
+

∂

∂xj
(ρ uj)

]
dV = 0. (1.8)

Here Gauss’ theorem written in the indicial notation∫∫∫
V

∂Aj

∂xj
dV =

∫∫
S

Ajnj dS (1.9)

has been used in obtaining (1.8).

Since the last integral in (1.8) is evaluated at a fixed instant of time, the distinction that V is a

material volume is unnecessary at this stage. Moreover, this volume can be composed of an arbitrary

group of fluid particles; hence the integrand itself is equal to zero throughout the fluid. Thus, the volume

integration in (1.8) can be replaced by a partial differential equation of the form

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0. (1.10)

This is referred to as the continuity equation, derived from the conservation of mass.

For an incompressible fluid, the density is constant, and thus (1.10) can be simplified to give the

following:

2



∂uj
∂xj

= 0 or ∇ · u = 0 (1.11)

Likewise, by applying the transport theorem (1.7) to the conservation of momentum (1.2), it follows

that ∫∫∫
V

[
∂

∂t
(ρ ui) +

∂

∂xj
(ρ ui uj)

]
dV =

∫∫∫
V

[
− ∂p

∂xi
+ ρg δi3

]
dV . (1.12)

The right-hand side of this equation has been obtained by using Gauss’ theorem (1.9), and δi3 denotes

the Kroenecker’s delta, equal to 1 if i = 3 and 0 otherwise.

Once again the volume of fluid in question is arbitrary; hence (1.12) must hold for the integrands

alone, in the form
∂

∂t

(
ρui
)
+

∂

∂xj

(
ρuiuj

)
= − ∂p

∂xi
+ ρg δi3 . (1.13)

Finally, if the derivatives of products on the left-hand side of this equation are expanded with the chain

rule, and the continuity equation (1.10) is invoked, we obtain Euler’s equation in the form

Dui
Dt

≡
(
∂

∂t
+ uj

∂

∂xj

)
ui = −1

ρ

∂p

∂xi
+ g δi3 . (1.14)

We note that this equation is obtained from the conservation of momentum, corresponding to the

Newton’s second law on the motion equation in the general mechanics. Therefore, the left-hand side of

(1.14), denoted as Dui/Dt, is the time rate-of-change in a coordinate system with the fluid particle and

can be interpreted as the acceleration of a material particle of fluid. Thus D/Dt defined in (1.14) is

referred to as the substantial derivative.

1.2 Potential Flows

In most problems related to water waves, we may assume that the motion of fluid is irrotational; that

is, ∇×u = 0. In other words, the vorticity (ω = ∇×u) is zero throughout the fluid. For this particular

case, let us consider how (1.11) and (1.14) can be transformed.

According to the formulae in the vector analysis, for an arbitrary scalar function Φ(x, t), an identity

of ∇×∇Φ = 0 (rot gradΦ = 0) holds. Therefore, if ∇× u = 0 is satisfied, the velocity vector u can be

represented as u = ∇Φ in terms of a scalar function Φ, which is called the velocity potential, and the

flows that can be described with the velocity potential are referred to as the potential flows.

Introducing the velocity potential may at first seem an unnecessary complication, but it is advantageous

in a mathematical treatment. The velocity is a vector quantity with three unknown scalar components,

whereas the velocity potential is a single scalar unknown from which all three velocity components may

be computed.

If u = ∇Φ is substituted for the velocity vector in the continuity equation (1.11), it follows that

∇ · ∇Φ = ∇2Φ = 0. (1.15)

This is the Laplace equation which expresses the conservation of mass for potential flows and provides a

partial differential equation as the governing equation to be solved for the function Φ.

We will consider next how Euler’s equation (1.14) can be recast for potential flows. For that purpose,

we note that the nonlinear term on the left-hand side of Euler’s equation can be transformed in the

following form with indicial notations

uj
∂

∂xj
ui ≡ uj∂jui = uj(∂jui − ∂iuj) + uj∂iuj

= ujεkji(∇× u)k +
1

2
∂i(ujuj) =

1

2
∇(∇Φ · ∇Φ), (1.16)

3



because ∇× u = 0 is satisfied for potential flows.

Using this relation and substituting u = ∇Φ in (1.14), it follows that

∇
[
∂Φ

∂t
+

1

2
∇Φ · ∇Φ+

p

ρ
− gz

]
= 0. (1.17)

Integrating this with respect to the three space variables gives the following expression:

p+ ρ
∂Φ

∂t
+

1

2
ρ∇Φ · ∇Φ− ρgz = p0 , (1.18)

where p0 is a constant, independent of the space coordinates, which may be taken as the atmospheric

pressure, pa , on the undisturbed still water surface.

Once the velocity potential is determined, the pressure in the fluid can be computed from (1.18); hence

(1.18) is referred to as Bernoulli’s pressure equation. We should note again that Bernoulli’s pressure

equation is obtained from the conservation of momentum.

1.3 Boundary Conditions

In order to solve the Laplace equation, appropriate boundary conditions must be imposed on the

boundaries of the fluid domain. Normally we consider a kinematic boundary condition corresponding to

a statement regarding the velocity of the fluid on the boundary. This kinematic boundary condition can

always be applied on any boundary surface with a specified geometry and position.

Suppose that the boundary surface is represented with a function F (x, t) = 0 in a space-fixed co-

ordinate system. Then the kinematic boundary condition can be derived readily by considering the

substantial derivative of this function, because the fluid particles on a wetted boundary surface must

follow the movement of the boundary surface. Therefore we may write as follows:

DF

Dt
=
∂F

∂t
+∇Φ · ∇F = 0 on F = 0. (1.19)

Dividing both sides with |∇F | and noting that the normal vector can be computed by n = ∇F/|∇F |,
we may have

∇Φ · n =
∂Φ

∂n
= − 1

|∇F |
∂F

∂t

(
≡ Vn

)
on F = 0. (1.20)

This equation provides the boundary condition of Neumann type for the velocity potential, and physically

implies that the normal velocity of a fluid particle, denoted by ∂Φ/∂n, is equal to the normal velocity of

the body surface, denoted by Vn. This boundary condition is called the kinematic condition.

In a problem of water waves, the water surface (which is referred to as the free surface) is a boundary

surface. Suppose that the wave elevation is given by z = ζ(x, y, t), then the function representing the

boundary surface can be expressed as

F = z − ζ(x, y, t) = 0. (1.21)

Substituting this in (1.19) gives the kinematic boundary condition in the form

DF

Dt
= −∂ζ

∂t
− ∂Φ

∂x

∂ζ

∂x
− ∂Φ

∂y

∂ζ

∂y
+
∂Φ

∂z
= 0 on z = ζ(x, y, t). (1.22)

Here we note that the wave elevation ζ is also unknown. Thus we need one more boundary condition on the

free surface, relating Φ with ζ. In order to realize this requirement, we consider the dynamic condition

which states that the pressure on the free surface is equal to the atmospheric pressure. Considering

p = pa on z = ζ in (1.18), we can obtain the desired boundary condition in the form

∂Φ

∂t
+

1

2
∇Φ · ∇Φ− gζ = 0 on z = ζ(x, y, t). (1.23)

4



In principle, by eliminating ζ from (1.22) and (1.23), the boundary condition only for the velocity

potential Φ on the free surface may be derived. However, the resulting equation will be a complicated

nonlinear one and must be imposed on the exact free surface z = ζ which is unknown at this stage.

In order to understand fundamental and important characteristics of these equations analytically,

we adopt a technique of linearization. That is, we assume that the wave elevation ζ and the velocity

potential Φ representing the associated fluid motion are both sufficiently small. Then the derivatives of

these quantities will be also of small first order. With these assumptions, we neglect all higher-order

terms than O(Φ2) in (1.22) and (1.23).

First, from (1.23), the linearized equation for the free-surface elevation is obtained as

ζ =
1

g

∂Φ

∂t
+O(Φ2). (1.24)

Next, (1.22) may be approximated as
∂ζ

∂t
=
∂Φ

∂z
+O(ζΦ). (1.25)

This equation simply states that the vertical velocities of the free surface and fluid particles are equal,

ignoring the small departure of that surface from the horizontal orientation.

Eliminating ζ from (1.24) and (1.25) gives the following equation:

∂2Φ

∂t2
− g

∂Φ

∂z
+O(Φ2, ζΦ) = 0. (1.26)

Although not explicitly shown, this equation must be imposed on the exact free surface z = ζ. To

simplify this complication further, we apply to the velocity potential the Taylor-series expansion about

the undisturbed free surface z = 0, in the form

Φ(x, y, z, t) = Φ(x, y, 0, t) + ζ

(
∂Φ

∂z

)
z=0

+ · · · . (1.27)

Since ζ is assumed small, we can see that the errors induced by applying the boundary condition on

z = 0 may be higher than O(Φ2). Therefore, it is consistent with the linearizations already carried out to

impose (1.26) on z = 0, and thus the linearized free-surface boundary condition for the velocity potential

can be expressed in the following form:

∂2Φ

∂t2
− g

∂Φ

∂z
= 0 on z = 0. (1.28)

The derivation shown above may seem rather complicated, but there exists a more expedient approach,

which is suitable for considering the nonlinear free-surface boundary condition for the velocity potential.

That approach is to replace the kinematic condition (1.22) by the statement that the substantial derivative

of the pressure is zero on the free surface. This is a rather pragmatic mixture of the dynamic and

kinematic boundary conditions, because the statement that Dp/Dt = 0 on the free surface implies that

this is precisely the appropriate moving surface on which the pressure is constant.

Substituting (1.18) for the pressure, we obtain the desired boundary condition in the form(
∂

∂t
+∇Φ · ∇

)(
∂Φ

∂t
+

1

2
∇Φ · ∇Φ− gz

)
= 0 on z = ζ . (1.29)

Working out the indicated derivative gives

∂2Φ

∂t2
− g

∂Φ

∂z
+ 2∇Φ · ∇∂Φ

∂t
+

1

2
∇Φ · ∇

(
∇Φ · ∇Φ

)
= 0 on z = ζ . (1.30)
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It should be noted however that the wave elevation ζ must be evaluated from (1.23). If the technique

of linearization described above is applied to (1.30), we can readily obtain the linearized free-surface

boundary condition (1.28). Other boundary conditions to be imposed will be explained subsequently

when they are needed.

1.4 Principle of Energy Conservation

As a preparation for investigating the characteristics of progressive waves and hydrodynamic forces

on a body, the energy and its rate of change with respect to time of ideal fluids will be explained in this

section.

According to the knowledge in the general mechanics, the total energy in the fluid is the sum of kinetic

and potential energies. Thus, in a prescribed volume V , the total energy is given by the integral

E =

∫∫∫
V (t)

ρ

[
1

2
q2 − gz

]
dV =

∫∫∫
V (t)

ρ

[
1

2
∇Φ · ∇Φ− gz

]
dV , (1.31)

where q = |u| and the positive z-axis is taken vertically downward.

Next, let us consider the rate of change with respect to time of the total energy (1.31). Allowing

the boundary surface S of the volume V to move with the normal velocity Un and using the transport

theorem (1.7), we have

dE

dt
= ρ

d

dt

∫∫∫
V (t)

[
1

2
q2 − gz

]
dV

= ρ

∫∫∫
V

∂

∂t

[
1

2
q2 − gz

]
dV + ρ

∫∫
S

[
1

2
q2 − gz

]
Un dS. (1.32)

Since z is independent of time, the only contribution to the volume integral in (1.32) is from the kinetic-

energy term, which takes the form

∂

∂t

[
1

2
q2
]
=

∂

∂t

[
1

2
∇Φ · ∇Φ

]
= ∇Φ · ∇∂Φ

∂t
= ∇ ·

(
∂Φ

∂t
∇Φ
)
. (1.33)

Here the Laplace equation has been used in the last transformation. For the integrand of the surface

integral in (1.32), Bernoulli’s equation (1.18) can be used to write as

1

2
q2 − gz = −

(
p− pa
ρ

+
∂Φ

∂t

)
. (1.34)

Then, substituting these results and applying Gauss’ theorem, we can rewrite the volume integral with

the surface integral in the form

dE

dt
= ρ

∫∫
S

[
∂Φ

∂t

∂Φ

∂n
−
(
p− pa
ρ

+
∂Φ

∂t

)
Un

]
dS. (1.35)

As the boundary surface of a volume of fluid, let us consider the hull surface of a body SH , the free

surface SF , and a control surface SC which is at rest and located far from a body. Then the boundary

conditions on these surfaces can be written as

on SC Un = 0

on SH
∂Φ

∂n
= Un = Vn

on SF
∂Φ

∂n
= Un, p = pa


(1.36)
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Therefore (1.35) can be recast in the form

dE

dt
= −

∫∫
SH

(
p− pa

)
Vn dS + ρ

∫∫
SC

∂Φ

∂t

∂Φ

∂n
dS. (1.37)

If the time average over one cycle is considered, the rate of change of the total energy in the entire fluid

(left-hand side) must be zero in time average. The first term on the right-hand side is the work done by

a body onto the fluid, because Vn is the normal velocity of the body and the normal vector is defined

positive when directing out of the fluid into the body. Denoting this work as WD, the relation to be

obtained from (1.37) for the time average can be expressed as

WD ≡ −
∫∫

SH

(
p− pa

)
Vn dS = −ρ

∫∫
SC

∂Φ

∂t

∂Φ

∂n
dS. (1.38)

This equation can be used in deriving a relation of the damping force on a body with the energy of

progressive waves generated by an oscillation of that body. That relation is known as the principle of

energy conservation. Of course, if the body is fixed in space (Vn = 0) or if no body exists, the left-hand

side of (1.38) is zero; thus in these cases, the principle of energy conservation can be written in the form∫∫
SC

∂Φ

∂t

∂Φ

∂n
dS = 0. (1.39)

1.5 Plane Progressive Waves of Small Amplitude

1.5.1 Phase function and phase velocity

x
OSF

SB

c

h

S

y

a

S -1 1

Fig. 1.1 Coordinate system for a
plane progressive wave

The simplest solution of the free-surface condi-

tion (1.28), which nevertheless has great practical

significance, is the plane progressive wave system.

As shown in Fig. 1.1, a plane wave is supposed to

propagate to the positive x-axis in water of finite

constant depth (y = h). The motion of fluid is two

dimensional in the x-y plane, but the wave propa-

gates only in the x-axis; thus this wave is sometimes

called one-dimensional wave.

Let us consider a wave which is sinusoidal in time

with circular (or angular or radian) frequency ω ;

thus the period is given by T = 2π/ω. Denoting the

amplitude of the wave as a, the elevation of this sinusoidal plane progressive wave can be written as

y = η(x, t) = a cos(ωt− k0x), (1.40)

where k0 denotes the wavenumber, the number of waves per unit distance along the x-axis. Thus, in

terms of the wavelength λ, it is given by k0 = 2π/λ.

We should note that the phase function in (1.40) is written as ωt − k0x, which represents a wave

propagating in the positive x-axis without changing the profile. In order to confirm this, let us introduce

a coordinate system (x′-y) moving in the positive x-axis with the same velocity as that of the wave (which

is denoted as c). To an observer moving with this velocity, the wave must appear steady-state. Thus,

from the following relation

ωt− k0x = ωt− k0(x
′ + ct) = (ω − k0c)t− k0x

′ = −k0x′ ,

7



we can see that
ω − k0c = 0 −→ c =

ω

k0
> 0. (1.41)

This velocity is the propagation velocity of the wave profile and referred to as the phase velocity. With

the same discussion, the phase function for a wave propagating in the negative x-axis takes the form of

ωt+ k0x.

These characteristics can be written in another way. We can confirm that an arbitrary function f(ϑ)

with the phase function ϑ = ωt− k0x satisfies

∂f

∂t
+ c

∂f

∂x
=
(
ω − c k0

)
f ′ = 0. (1.42)

Namely, a function f satisfying the advection equation of the above form represents the propagation with

velocity c in the positive x-axis without changing its profile.

1.5.2 Velocity potential

Let us derive the velocity potential Φ for one-dimensional progressive waves. The governing equation

of Φ is the Laplace equation, subject to the boundary conditions on the free surface SF , the water bottom

SB , and an artificial vertical surface S±∞ at x = ±∞. Those are written as

Continuity equation [L]
∂2Φ

∂x2
+
∂2Φ

∂y2
= 0 for y ≥ 0 (1.43)

Free-surface condition [F ]
∂2Φ

∂t2
− g

∂Φ

∂y
= 0 on y = 0 (1.44)

Bottom condition [B]
∂Φ

∂y
= 0 on y = h (1.45)

The boundary condition on S±∞ (which is usually called the radiation condition) is not specified

above, but it must be a physically relevant condition. In the present problem, it should state that the

wave propagates in the positive x-direction; which can be realized if the phase function takes the form of

f(ωt− k0x).

With this consideration, the velocity potential to be obtained is assumed to have the following form:

Φ(x, y, t) = Y (y) sin(ωt− k0x). (1.46)

Substituting this assumed form into the Laplace equation (1.43), we obtain the ordinary differential

equation for Y (y) in the form
d2Y

dy2
− k20Y = 0. (1.47)

The general solution of (1.47) is given as

Y (y) = C1 e
k0y + C2 e

−k0y . (1.48)

Here C1 and C2 are constants to be determined from the boundary conditions on the free surface and

the bottom.

Substituting (1.48) in (1.44) and (1.45) gives the following equations:

C1(ω
2 + gk0 ) + C2(ω

2 − gk0 ) = 0

C1 e
k0h − C2 e

−k0h = 0

}
(1.49)

The necessary and sufficient condition for existence of non-trivial solutions except for C1 = C2 = 0 is∣∣∣∣∣ ω2 + gk0 ω2 − gk0

ek0h −e−k0h

∣∣∣∣∣ = 0. (1.50)
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Namely ω2

g
≡ K = k0 tanh k0h (1.51)

is the required condition; which may be regarded as an equation for the eigen-value to be satisfied between

the wavenumber k0 and the frequency ω.

The corresponding eigen-solution can be obtained as follows. By eliminating one unknown from (1.49)

and introducing

C1 e
k0h = C2 e

−k0h ≡ 1

2
D, (1.52)

the eigen-solution can be written in the form

Φ(x, y, t) = D cosh k0(y − h) sin(ωt− k0x) (1.53)

in terms of an unknown coefficient D.

It should be noted that D cannot be determined from (1.49), because the boundary conditions on [F ]

and [B ] are both homogeneous. In order to determine this unknown, the wave elevation on y = 0 will be

required to be equal to (1.40). Since the linearized free-surface elevation can be computed from (1.24),

we have the following relation:

η =
1

g

(
∂Φ

∂t

)
y=0

= D
ω

g
cosh k0h cos(ωt− k0x)

= a cos(ωt− k0x). (1.54)

From this, it follows that D =
ga

ω cosh k0h
. (1.55)

Finally, substituting this result in (1.53) gives the velocity potential for the plane progressive wave in the

form

Φ(x, y, t) =
ga

ω

cosh k0(y − h)

cosh k0h
sin(ωt− k0x). (1.56)

In terms of a complex notation, the above result can be written in the following form

Φ(x, y, t) = Re
[
ϕ(x, y) eiωt

]
, (1.57)

ϕ(x, y) =
ga

iω

cosh k0(y − h)

cosh k0h
e−ik0x . (1.58)

Here Re in (1.57) means only the real part to be taken. This way of writing, separating the time-dependent

term eiωt from the spatial part ϕ(x, y), is commonly adopted; which makes various calculations easier.

However, with this way of writing, the phase function ωt− k0x cannot be indicated in an explicit form.

Nevertheless, under the assumption that the time-dependent part is expressed as eiωt, we must be able

to understand that the complex term e−ik0x in the spatial part represents a wave propagating in the

positive x-axis.

Likewise, we should understand that e+ik0x represents a wave propagating in the negative x-axis.

1.5.3 Dispersion relation

We will examine more the meaning of (1.51). Since k0 and ω are mutually related through (1.51),

the phase velocity c defined by (1.41) can be written only with the wavenumber k0 (or equivalently the

wavelength λ), in the form

c =
ω

k0
=

√
g

k0
tanh k0h =

√
gλ

2π
tanh

2πh

λ
. (1.59)
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We can see from (1.59) that the phase velocity varies with the wavelength, and the longer the waves are,

the faster they propagate.

In general, ocean waves may be described with a super-

position of various components of sinusoidal waves with

different wavelength, as can be envisaged from the Fourier-

series expansion for an arbitrary function. Each sinusoidal

component wave in the ocean propagates with different

phase velocity; thus the pattern of ocean waves varies from

moment to moment. This characteristic is called the dis-

persion of waves, and the relation of (1.59) or (1.51), asso-

ciating the phase velocity with the wavelength, is referred

to as the dispersion relation.

The wavenumber k0 satisfying (1.51) cannot be written

in an explicit form as a function of the frequency, because

of the hyperbolic tangent. However, since y = tanh kh is

a function of monotonically increasing as schematically

1

O
k

K k

K

k tanh kh

0

Fig. 1.2 The wavenumber k0 in finite
depth is larger than K in deep
water.

shown in Fig. 1.2, we can see that the solution of (1.51), denoted as k = k0, can be obtained uniquely. For

the infinite-depth limit (kh → ∞), tanh kh = 1 and thus the wavenumber of progressive wave becomes

k0 = K. That is, k0 > K is always satisfied for waves in finite depth; hence the shallower the water

depth, the shorter the wavelength, as compared to the infinite-depth value K.

Considering the two limiting cases for sufficiently deep (kh = 2πh/λ → ∞) and shallow (kh =

2πh/λ→ 0) in the water depth, it follows from (1.59) that

c =

√
g

K
=

√
gλ

2π
( kh→ ∞ ), (1.60)

c =
√
gh ( kh→ 0 ). (1.61)

In the shallow-water limit (1.61), where the corresponding wave is called the shallow-water wave or

the long-wave approximation, the phase velocity depends only on the depth, and the resulting wave

motion is no longer dispersive. On the other hand, in order for the deep-water wave to be practically

valid, tanh kh ∼ 1 must be satisfied with sufficient accuracy. When kh = 2πh/λ > π, i.e. h > λ/2,

tanh kh ≃ 0.996 and thus the error is less than 0.4%. We can see from this estimation that large errors

may not be caused even if the free-surface wave in finite depth is approximated as the deep-water wave,

provided that the water depth is larger than half of the wavelength. This condition looks applicable to

substantially almost all waves in the field of ocean engineering. The case of deep water makes various

equations explained in this section simpler. Thus some important equations for the deep-water case are

summarized below:

k
(
=

2π

λ

)
= K =

ω2

g
, T =

2π

ω
=

√
2πλ

g
≃ 0.8

√
λ

(
λ ≃ 1.56T 2

)
, (1.62)

c =
ω

k

(
=
λ

T

)
=
g

ω
≃ 1.56T , (1.63)

Φ(x, y, t) = Re
[
ϕ(x, y) eiωt

]
, ϕ(x, y) =

ga

iω
e−Ky−iKx . (1.64)
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1.5.4 Group velocity

In this section, we consider a narrow band of the component waves, with nearly equal wavelength

and direction. A characteristic of the resulting distribution is that the waves travel in a group. The

propagation velocity of the group of these waves is not the phase velocity but the group velocity, which

is important in understanding the propagation of the wave energy, as will be explained later. However,

as a complementary explanation for the group velocity, we consider here a purely kinematic analysis for

the group of waves formed by two nearly equal plane waves.

2π

2π

δk

cg

k

c=
ω

k

Fig.1.3 The amplitude modulation is represented by an envelope encompassing fundamental car-
rier waves and its propagation velocity (group velocity) is given by δω/δk.

Denoting the difference in the frequency and wavenumber of two nearly equal waves as δω = ω2 − ω1

and δk = k2 − k1, we can write the resulting wave profile as follows:

η = Re
[
A1 e

i(ω1t−k1x) +A2 e
i(ω2t−k2x)

]
= Re

[
A1 e

i(ω1t−k1x)

{
1 +

A2

A1
ei(δωt−δkx)

}]
. (1.65)

Here the factor in braces represents an amplitude modulation, which will be slowly varying in both space

and time, because both δk and δω are assumed small. Substituting A2 = A1 + δA, taking the real

part, and neglecting higher-order terms in δk, δω, and δA, we can obtain the following expression as the

first-order approximation:

η = 2A1 cos

[
1

2

(
δω ·t− δk ·x

)]
cos
(
ω1t− k1x

)
. (1.66)

This type of wave motion is illustrated in Fig. 1.3.

The fundamental wave component is represented by the last cosine term with ω1 and k1, which is

called the carrier wave. The amplitude is slowly varying and its envelope encompasses a group of carrier

waves. As obvious from (1.66), the wavelength and period of the slowly varying part (the amplitude

modulation) are 4π/δk and 4π/δω, respectively; thus the length of one group of waves is 2π/δk. The

group velocity cg, which is the propagation velocity of the group of waves represented by an envelope, is

given by
cg =

δω

δk
. (1.67)

We consider the limiting case where δω → 0 and δk → 0, but at the same time both t and x are large

enough so that the products δω·t and δk·x are finite. In this case, the amplitude modulation will persist

and the group velocity (1.67) will approach the finite limit:

cg =
dω

dk
=
d(kc)

dk
= c+ k

dc

dk
= c− λ

dc

dλ
. (1.68)
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In general, the group and phase velocities differ, unless the phase velocity is independent of the

wavelength, as can be seen from (1.68). As already studied, longer waves propagate faster and thus

dc/dλ > 0 except for the shallow-water limit. Thus we can see that cg < c in general.

Let us work out the differentiation of (1.68) using the dispersion relation of (1.51). It may be convenient

to differentiate after taking the logarithm of the dispersion relation. The result will be of the form

2

ω

dω

dk0
=

1

k0
+

2h

sinh 2k0h
.

Therefore,

cg =
1

2

ω

k0

[
1 +

2k0h

sinh 2k0h

]
=
c

2

[
1 +

2k0h

sinh 2k0h

]
, (1.69)

where c = ω/k0 is the phase velocity.

It is also obvious from (1.69) that cg < c in general except for a special case of k0h → 0. In both

limiting cases of deep water (kh≫ 1) and shallow water (kh≪ 1), (1.69) reduces to

cg =
1

2
c ( kh → ∞ ), (1.70)

cg = c ( kh → 0 ). (1.71)

Namely, in deep water, the group velocity is precisely half of the phase velocity, and in the shallow-water

limit, the group and phase velocities are the same.

1.6 Wave Energy and Its Propagation

By using the results in the preceding section, let us compute the energy density of the plane progressive

waves. As an appropriate volume of fluid, we consider a vertical column, extending throughout the depth

of the fluid and bounded above by the free surface. Then the energy density E, per unit area of the mean

free surface above this column, can be computed from

E = ρ

∫ h

η

{ 1

2
∇Φ · ∇Φ− gy

}
dy, (1.72)

where η denotes the free-surface elevation to be computed from

η =
1

g

∂Φ

∂t

∣∣∣∣
y=0

. (1.73)

Thus we can see that η = O(Φ). In evaluating (1.72), contributions up to the 2nd order in Φ will be

retained consistently and other higher-order terms will be discarded. Furthermore, the potential energy

of the fluid below the still water surface will be omitted, because this is unrelated to the wave motion.

With these taken into account, (1.72) can be written as

E =
1

2
ρ

∫ h

0

{(∂Φ
∂x

)2
+
(∂Φ
∂y

)2}
dy +

1

2
ρgη2 +O(Φ3). (1.74)

Then this equation will be averaged with respect to time over one cycle of the wave motion. For the

calculation of the time average, it is convenient to use the following formula:

F ≡ Re
[
Aeiωt

]
Re
[
B eiωt

]
F ≡ 1

T

∫ T

0

F dt =
1

4

(
AB∗ +A∗B

)
=

1

2
Re
(
AB∗)

 (1.75)
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The velocity potential Φ for a plane progressive wave is given by (1.57) and (1.58). Thus by applying

(1.75) to (1.74), the time average of the energy density (1.74) can be evaluated as follows:

E =
1

4
ρRe

∫ h

0

{
∂ϕ

∂x

∂ϕ∗

∂x
+
∂ϕ

∂y

∂ϕ∗

∂y

}
dy +

1

4
ρga2

=
1

4
ρ (aω)

2 1

sinh2 k0h

∫ h

0

cosh 2k0(y − h) dy +
1

4
ρga2

=
1

4
ρga2 +

1

4
ρga2 =

1

2
ρga2 . (1.76)

We can see from this result that the kinetic and potential energies are the same and the density of the

total wave energy is 1
2ρga

2, which has nothing to do with water depth, wavenumber, and frequency.

Next, let us consider the rate of change with respect to time of the wave-energy density of a plane

progressive wave. The calculation formula is already given by (1.37), but the first term on the right-hand

side must be omitted because of no body in the present case. The control surface can be taken as the

two vertical surfaces in the x-direction of a vertical column, separated with small distance δx, and these

two vertical surfaces are denoted as S(x) and S(x+ δx). The width of a vertical column in the direction

parallel to the crest line of the wave is taken as unity. Then the rate of change of the wave energy within

this small vertical column can be evaluated from

∂E

∂t
δx = ρ

(∫
S(x+δx)

−
∫
S(x)

)
∂Φ

∂t

∂Φ

∂x
dy

= ρ
∂

∂x

[ ∫ h

0

∂Φ

∂t

∂Φ

∂x
dy

]
δx+O

(
Φ3
)
. (1.77)

Using the complex representation (1.57) and (1.58) for the velocity potential and the formula (1.75) for

the computation of time average, we obtain the following result:

∂E

∂t
= ρ

∂

∂x

[
1

2
Re

∫ h

0

(
i ωϕ

)∂ϕ∗
∂x

dy

]
= − ∂

∂x

[
1

2
ρ(ga)2

k0
ω

1

cosh2 k0h

∫ h

0

1 + cosh 2k0(y − h)

2
dy

]
= − ∂

∂x

[
1

2
ρga2

1

2

ω

k0

{
1 +

2k0h

sinh 2k0h

}]
. (1.78)

Here we note that the quantity in brackets is the product of the energy density E given in (1.76) and the

group velocity cg given in (1.69). Therefore we may write (1.78) in the form

∂E

∂t
+ cg

∂E

∂x
= 0. (1.79)

This is written in a form of the advection equation with the group velocity as the transportation velocity.

Therefore we can understand that the time-averaged energy density of a plane progressive wave will be

transported with the group velocity in the same direction as that of the wave propagation.
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2. Free-Surface Green Function

The velocity potential describing the flow around a floating or submerged body near the free surface can

be expressed in a form of boundary integral equation by means of the Green’s theorem. The free-surface

Green function is a kernel function of the boundary integral equation, which is thus of great importance.

Physically this Green function is the velocity potential of a periodic source with unit strength, satisfying

all of the homogeneous boundary conditions except for a condition on the body surface. This chapter

explains the details of the derivation of the free-surface Green function for a simpler case; that is, the

2-D problem in deep water.

2.1 Velocity Potential of Periodic Source with Unit Strength

The velocity potential for a plane progressive wave has been already explained and given as (1.56). This

wave should be understood in a way that a disturbance (like an oscillating body or a wavemaker) exists

somewhere at a large distance and only the progressive-wave part arrives at an observation point as a

plane progressive wave. In other words, the fluid flow near the source of disturbance may be complicated,

including the local waves, which decay with increasing the distance from the disturbance, in addition

to the progressive wave. We shall consider an exact expression for this complicated flow induced by a

periodic hydrodynamic source with unit strength. For simplicity, only the 2-D problem in water of infinite

depth is considered here, but extension to more general or complex problems may be possible with the

knowledge to be obtained in this chapter. Writing the time-dependent part as eiωt, we shall obtain the

velocity potential in the form

Φ(x, y, t) = Re
[
G(x, y) eiωt

]
(2.1)

O
x

y

I

II

(0,η)

Fig. 2.1 Coordinate system

The unit source is assumed to be placed at (0, η).

Note that the induced flow is symmetric with re-

spect to x, and thus we may assume x in subse-

quent analyses to be positive (x > 0) and in the

final result, x can be replaced with |x| or more

generally |x − ξ| if the position of source in the

x-axis is x = ξ.

The spatial part of the velocity potential

(which may be called the Green function) must

satisfy the following equations:

[L] ∇2G = δ(x) δ(y − η) (2.2)

[F ]
∂G

∂y
+KG = 0 on y = 0 ; K =

ω2

g
(2.3)

[B]
∂G

∂y
= 0 as y → ∞ (2.4)

[R] Radiation condition; generated waves must be outgoing. (2.5)

It should be noted that the right-hand side of (2.2) is not zero but the Dirac’s delta function with

unit magnitude, which is related to the amount of flow out of the source singularity located at x = 0 and
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y = η. The radiation condition is not written explicitly here with a mathematical equation, which must

be physically relevant and thus the waves generated must be outgoing from the source point. Since the

time-dependent part is written as eiωt, the solution satisfying the radiation condition must take a form

of G ∼ Ae−iKx at x→ ∞ (in more general, G ∼ Ae−iK|x| at |x| → ∞) on the free surface.

To seek the solution of (2.2)–(2.5), we will use the Fourier transform:

G∗(k; y) =

∫ ∞

−∞
G(x, y) e−ikx dx

G(x, y) =
1

2π

∫ ∞

−∞
G∗(k; y) eikx dk

 (2.6)

Utilizing the following relations ∫ ∞

−∞
δ(x) e−ikx dx = 1, (2.7)∫ ∞

−∞

d f(x)

dx
e−ikx dx = ik f∗(k), (2.8)

we obtain the Fourier transforms of (2.2)–(2.4) as follows:

d2G∗

dy2
− k2G∗ = δ(y − η) (2.9)

dG∗

dy
+KG∗ = 0 on y = 0 (2.10)

dG∗

dy
= 0 as y → ∞ (2.11)

Equation (2.9) is an ordinary differential equation with respect to y, subject to the boundary conditions

of (2.10) and (2.11).

In order to obtain a solution taking account of singular behavior at y = η due to the delta function on

the right-hand side of (2.9), we shall consider the analysis according to the following procedure:

1) To avoid a singularity at y = η for a moment, the fluid region is divided into the upper (Region I)

and lower (Region II) parts, separated at y = η as shown in Fig. 2.1. The homogeneous solutions

valid in Region I and Region II are denoted as G∗
1 and G∗

2, respectively.

2) Since (2.9) is a quadratic differential equation and the right-hand side can be zero except at y = η,

both G∗
1 and G∗

2 includes two unknowns in general.

3) G∗
1 must satisfy the free-surface boundary condition on y = 0, and G∗

2 must satisfy the condition

of no disturbance as y → ∞. With these requirements, each of G∗
1 and G∗

2 includes one unknown

(thus still two unknowns in total).

4) Two additional conditions which can be used to determine the remaining two unknowns may be

provided by considering the matching conditions between G∗
1 and G∗

2 at y = η. In order to consider

those conditions, let us integrate (2.9) over a small region crossing y = η; i.e. η − ϵ ≤ y ≤ η + ϵ

(where ϵ is assumed very small). The result of integration is[
dG∗

dy

]η+ϵ

η−ϵ

− k2
∫ η+ϵ

η−ϵ

G∗ dy =

∫ η+ϵ

η−ϵ

δ(y − η) dy = 1. (2.12)

We can see that this relation can be satisfied, provided that

G∗
2(η) = G∗

1(η), (2.13)

dG∗
2

dy

∣∣∣∣
y=η

− dG∗
1

dy

∣∣∣∣
y=η

= 1. (2.14)
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These two matching conditions determine both G∗
1 and G∗

2 completely, thus we can obtain a unique

solution G∗(k, y) valid in the entire fluid region. Considering the inverse Fourier transform of thereby

obtained solution in the Fourier-transformed domain may provide the desired solution in the physical

domain of the velocity potential of a periodic source with unit strength; that is, the Green function.

Here we note that the Green function is defined as a function satisfying homogeneous boundary

conditions like (2.3)–(2.5) and possessing a singularity like (2.2) at a particular point in the fluid region.

Let us obtain the Green function by the procedure described above. First a general homogeneous

solution of (2.9) is given by

G∗(k; y) = C1 e
|k|y + C2 e

−|k|y . (2.15)

Then G∗
1 satisfying (2.10) and G∗

2 satisfying (2.11) can be easily obtained and expressed in the form

G∗
1(k; y) = C

{
e|k|y − e−|k|y +

2|k|
|k| −K

e−|k|y
}
, (2.16)

G∗
2(k; y) = De−|k|y , (2.17)

where C and D are unknowns; which can be determined from (2.13) and (2.14) and hence the solutions

of G∗
1 and G∗

2. The obtained results may be expressed in a unified form as follows:

G∗(k; y) = − 1

2|k|

{
e−|k||y−η| − e−|k|(y+η)

}
− e−|k|(y+η)

|k| −K
. (2.18)

The inverse Fourier transform of the above result can be written as

G(x, y; 0, η) =
1

2π

∫ ∞

−∞
G∗(k; y) eikx dk

= − 1

2π

∫ ∞

0

{
e−k|y−η| − e−k(y+η)

} cos kx

k
dk − 1

π

∫ ∞

0

e−k(y+η) cos kx

k −K
dk. (2.19)

Here the first term on the right-hand side of (2.19) can be integrated analytically, with the result

−
∫ ∞

0

{
e−k|y−η| − e−k(y+η)

} cos kx

k
dk = log

r

r1
, (2.20)

where r
r1

}
=
√
x2 + (y ∓ η)2 .

Therefore the Green function in the physical domain satisfying the free-surface and bottom boundary

conditions are expressed in the form

G(x, y; 0, η) =
1

2π

(
log r − log r1

)
− 1

π

∫ ∞

0

e−k(y+η) cos kx

k −K
dk. (2.21)

The first term on the right-hand side; i.e. 1
2π log r represents the velocity potential of a source with unit

strength in an unbounded fluid. As explained before, this term has the delta-function singularity on the

right-hand side of (2.2) and this term is referred to as the fundamental (or principal) solution in the

theory of partial differential equations. The other terms on the right-hand side of (2.21) represent the

free-surface effect and these are regular in the entire fluid domain under consideration.

Up to this point in our derivation, the radiation condition has not been considered explicitly. Let us

consider how the radiation condition will be satisfied through the treatment of the integral appearing in

(2.21). This integral is a singular integral, with its integrand becoming singular at k = K. Mathemati-
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cally, there can be three different ways in treating this kind of singular integrals. Namely,

∫ ∞

0

e−ky cos kx

k −K
dk =



lim
µ→0

∫ ∞

0

e−ky cos kx

k − (K − iµ)
dk ≡ I1

lim
µ→0

∫ ∞

0

e−ky cos kx

k − (K + iµ)
dk ≡ I2

1

2

(
I1 + I2

)
≡ I3

(2.22)

Although these three are mathematically correct, the results to be obtained may be physically different.

Among these, we should select a physically relevant result, which satisfies the radiation condition and

thus must have a form of Ae−iK|x| as |x| → ∞. Through this kind of selection in the treatment of the

singular integral in (2.21), we can satisfy the radiation condition.

O O
k k=

k =Kk =K - iµ

Fig.2.2 A treatment of singular point on the real axis.

First, let us consider the treatment of I1 in (2.22). Due to the existence of a small negative imaginary

part in the wavenumber (K − iµ) and a limit of µ→ 0, we may deform the integration path on the real

axis as shown in Fig. 2.2. Then with the residue theorem, the following relation holds:

I1 = lim
µ→0

∫ ∞

0

e−ky cos kx

k − (K − iµ)
dk =

∫ ∞

0

C
e−ky cos kx

k −K
dk − πi e−Ky cosKx. (2.23)

The first integral on the right-hand side must be treated as Cauchy’s principal-value integral; that is, the

integration range excludes a very small neighborhood of k = K as explicitly shown below

LC ≡
∫ ∞

0

C
e−ky cos kx

k −K
dk = lim

ϵ→0

{∫ K−ϵ

0

+

∫ ∞

K+ϵ

}
e−ky cos kx

k −K
dk. (2.24)

It is noteworthy that this principal-value integral must be of real quantity.

k = K

k = Ki

for x>0
for x<0

ik

k

-

O

O

1

1

1

1

Fig.2.3 Transform of integration path in the complex plane.
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Next, to make clear the physical meaning of this principal-value integral, let us transform it by using

a complex-plane integral. For that purpose, we will consider the following integral in the complex plane

J ≡
∮
C

e−ζy+iζx

ζ −K
dζ. (2.25)

The integration path in the complex plane must be taken such that the integrand at infinity does not

diverge. To investigate the behavior at infinity, ζ = Reiθ (R → ∞) is substituted into the exponential

function in (2.25). Then we have

e−ζy+iζx = e−R{y cos θ+x sin θ}−iR{y sin θ−x cos θ} . (2.26)

For x > 0, this function decays exponentially as R→ ∞, as long as θ is taken within 0 ≤ θ ≤ π/2. (Note

that y ≥ 0 in the fluid domain.) With this information, we take the integration path in the first quadrant

as shown on the left in Fig. 2.3. Needless to say, for the case of x < 0, the path must be taken in the

fourth quadrant, i.e. −π/2 ≤ θ ≤ 0 as shown on the right in Fig. 2.3. Even in this case, the result to be

obtained will be the same as that for x > 0, if x is replaced with |x| in the final result. (Physically this

is natural, because the flow induced by a source must be symmetric with respect to x.)

Once an appropriate integration path is taken in the complex plane depending on the sign of x, the

contribution from a path along the quadrant at infinity is zero. Since there are no singular points inside

the round integration path shown in Fig. 2.3, integral J defined by (2.25) must be zero on account of

Cauchy’s fundamental theorem. Writing each contribution from the round integration path in Fig. 2.3,

we can write the final result as follows:

J =

∫ ∞

0

C
e−ky+ikx

k −K
dk − πi e−Ky+iKx +

∫ 0

∞

e−iky−kx

ik −K
idk = 0. (2.27)

Thus
∫ ∞

0

C
e−ky+ikx

k −K
dk =

∫ ∞

0

e−iky−kx

k + iK
dk + πi e−Ky+iKx . (2.28)

The integration on the left-hand side is obtained from the integral on the real axis except at k = K

and thus associated with Cauchy’s principal-value integral. Therefore, by taking only the real part of

(2.28), we can see that Cauchy’s principal-value integral LC defined in (2.24) can be transformed in the

following form

LC =

∫ ∞

0

C
e−ky cos kx

k −K
dk = Re

∫ ∞

0

C
e−ky+ikx

k −K
dk

= Re

∫ ∞

0

(k − iK) e−iky

(k − iK)(k + iK)
e−kx dk − π e−Ky sinKx

=

∫ ∞

0

k cos ky −K sin ky

k2 +K2
e−kxdk − π e−Ky sinKx. (2.29)

We note again that LC is of real quantity, despite that we have used a technique of complex integral.

Substituting this result as the first integral on the right-hand side of (2.23) and replacing x with |x|,
we can obtain another expression for I1 defined in (2.22) in the form

I1 = LC − πi e−Ky cosKx

=

∫ ∞

0

k cos ky −K sin ky

k2 +K2
e−k|x|dk − πi e−Ky−iK|x| . (2.30)

This expression enables us to understand the physical meaning of each term. As is clear by considering

the case of |x| → ∞, the first term on the right-hand side in (2.30) represents a local wave which exists
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only near the source and decays rapidly as the distance from the source increases. The second term given

by a complex exponential function represents a progressive wave which propagates away from the source

and thus represents physically expected result. Therefore, we can conclude that the treatment of I1 for

the singular integral defined in (2.22) does satisfy the radiation condition.

Details of the transformation according to I2 in (2.22) will be omitted here, but it may be easily

understood from the difference between I1 and I2 that the final result to be obtained from I2 is just

the complex conjugate of the result obtained for I1. Therefore the result of I2 represents an incoming

progressive wave, which is physically inappropriate and thus must be discarded. The treatment of I3 in

(2.22) is the average of I1 and I2 with equal magnitude, providing not progressive but stationary wave

which is also physically inappropriate.

Summarizing correct expressions of the free-surface Green function satisfying the radiation condition

of outgoing waves away from a point source, we have the following results:

G(x, y; ξ, η) =
1

2π
log

r

r1
− 1

π
lim
µ→0

∫ ∞

0

e−k(y+η) cos k(x− ξ)

k − (K − iµ)
dk (2.31)

=
1

2π
log

r

r1
− 1

π

∫ ∞

0

C
e−k(y+η) cos k(x− ξ)

k −K
dk + i e−K(y+η) cosK(x− ξ) (2.32)

=
1

2π
log

r

r1
− 1

π

∫ ∞

0

k cos k(y + η)−K sin k(y + η)

k2 +K2
e−k|x−ξ| dk

+i e−K(y+η)−iK|x−ξ| . (2.33)

As we can envisage from the transformation above, a key point to satisfy the correct radiation condition

is to regard the wavenumber K as not real but complex quantity with very small negative imaginary part

(K− iµ, µ > 0 ). (However, we note that µ must tend to zero in the end of analysis after transformation

of singular integrals.)

Next, let us consider a physical meaning of this small value of µ. In the problem treated here, the

unsteady motion of fluid is assumed to be harmonic in time with circular frequency ω, which actually

makes it difficult a little to satisfy the radiation condition, as we have seen in the analysis shown above. In

reality, the unsteady motion may start from an initial state of rest and become steady state of harmonic

oscillation after going through a transient stage. Thus, if the problem is treated as an initial-value

problem, there must be no ambiguity in the solution, representing physically relevant phenomenon of

outgoing waves away from a disturbance. This situation in reality may be mimicked in an approximate

way simply by making the circular frequency ω slightly complex, with negative imaginary part, so that

the flow induced vanishes for t → −∞. Namely, the time-dependent part eiωt must be modified in the

form eϵt eiωt = ei(ω−iϵ)t and thus we should write (2.1) as

Φ(x, y, t) = Re
[
G(x, y) ei(ω−iϵ)t

]
. (2.34)

Starting with this expression using ω − iϵ instead of ω, the wavenumber K = ω2/g appearing in the

free-surface boundary condition must be modified as follows:

K =
(ω − iϵ)2

g
≃ ω2

g
− iµ

(
µ = 2

ωϵ

g

)
. (2.35)

This is equivalent to the treatment of I1 defined in (2.22), and thus we can obtain automatically the correct

expression of the Green function, without being annoyed with satisfaction of the radiation condition.
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Going back to the free-surface condition (2.3) with understanding of (2.34) and (2.35), we may write

the free-surface condition in the form

∂G

∂y
+
(
K − iµ

)
G = 0 on y = 0. (2.36)

This can be regarded as a combined expression of the free-surface and radiation conditions. In fact, by

following the solution procedure explained up to (2.21) in terms of (2.36) instead of (2.3), we can easily

confirm that the expression corresponding to (2.21) takes the form

G(x, y; 0, η) =
1

2π

(
log r − log r1

)
− 1

π

∫ ∞

0

e−k(y+η) cos kx

k − (K − iµ)
dk. (2.37)

This is completely the same as (2.31). Therefore by following the transformation explained as the treat-

ment of I1, we can obtain the correct result satisfying the radiation condition, without recourse to the

argument on whether the obtained result is physically plausible.

2.2 Green’s Theorem

Now that we have studied the Green function as the velocity potential of the flow generated by a

periodically oscillating source, we shall derive the velocity potential of the flow induced by a general-

shaped floating body by means of the Green function. Explanation here starts with Gauss’ divergence

theorem in a 2-D fashion: ∫∫
V

∇ ·A dS = −
∮
S

n ·A ds. (2.38)

Here n denotes the normal vector, which is defined positive when pointing from the boundary into the

fluid domain, resulting in the minus sign on the right-hand side of (2.38).

Let us consider A = ϕ∇G, with ϕ the velocity potential to be obtained for a general-shaped body and

G the Green function obtained in the preceding section. The result can be written as∫∫
V

(
∇ϕ · ∇G+ ϕ∇2G

)
dS = −

∮
S

ϕ
∂G

∂n
ds. (2.39)

Similarly by considering A = G∇ϕ, we have the following∫∫
V

(
∇G · ∇ϕ+G∇2ϕ

)
dS = −

∮
S

G
∂ϕ

∂n
ds. (2.40)

Subtracting (2.40) from (2.39), it follows that∫∫
V

(
ϕ∇2G−G∇2ϕ

)
dS =

∮
S

{
∂ϕ

∂n
G− ϕ

∂G

∂n

}
ds. (2.41)

Here we note that ∇2ϕ = 0 throughout the fluid region but the Green function G has a singularity at

the source point (x, y) = (ξ, η) and thus satisfies

∇2G = δ(x− ξ) δ(y − η). (2.42)

In subsequent derivation we shall perform the integration with respect to the coordinates of the source

point (ξ, η); which may be allowed by noting the reciprocity property of the Green function:

G(x, y; ξ, η) = G(ξ, η;x, y). (2.43)

Substituting (2.42) in (2.41), we can readily obtain an important result of the form

ϕ(P) =

∮
S

{
∂ϕ(Q)

∂nQ
− ϕ(Q)

∂

∂nQ

}
G(P;Q) ds(Q), (2.44)
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Fig.2.4 Coordinate system and notations.

where P = (x, y) is the field point and Q = (ξ, η) is the integration (or the source) point. This form of

representation for the velocity potential is called Green’s theorem.

It should be noted that the area of integration (S) in (2.44) is all the boundary surrounding the fluid

under consideration, consisting of the hull surface of a floating body (SH), the free surface (SF ), the

bottom of water (SB) and artificial vertical lines far from the body as the radiation boundary (S±∞), as

shown in Fig. 2.4.

At this moment, let us examine the value of integrand of (2.44) on the boundary surface, for which

we summarize here the boundary conditions satisfied by ϕ(Q) and G(P;Q). With (2.43) kept in mind,

those can be expressed as

[SF ]
∂ϕ

∂n
=
∂ϕ

∂η
= −Kϕ ;

∂G

∂n
=
∂G

∂η
= −KG on η = 0

[SB ]
∂ϕ

∂n
=
∂ϕ

∂η
= 0 ;

∂G

∂n
=
∂G

∂η
= 0 as η → ∞

[S±∞]
∂

∂n
= ∓ ∂

∂ξ
, ϕ ∼ Ae−Kη∓iKξ ; G ∼ B e−Kη∓iKξ


(2.45)

Substituting these into (2.44), we can see that the integrand of (2.44) becomes zero on SF , SB, and S±∞.

As a result, the integral on the floating-body surface (SH) remains only as nonzero contribution. Thus

we have an expression for the velocity potential at the field point P(x, y) in the fluid as follows:

ϕ(P) =

∫
SH

{
∂ϕ(Q)

∂nQ
− ϕ(Q)

∂

∂nQ

}
G(P;Q) ds(Q). (2.46)

We should recall that the Green function was derived to satisfy all homogeneous boundary conditions

which are the same as those to be satisfied by the velocity potential to be obtained for a general-shaped

floating body. It may be clear from the argument above that the contribution becomes zero from the

boundary where a homogeneous boundary condition is imposed and the Green function is obtained

to satisfy the same homogeneous condition. This fact is greatly advantageous from the viewpoint of

reducing the number of unknowns in numerical computations (because generally ∂ϕ/∂n or ϕ is unknown

on boundaries). In return for this advantage, the free-surface Green function becomes complicated as

compared to the fundamental solution ( log r ), as seen in (2.31)–(2.33), especially the integral term with

respect to k representing the local wave appears to cause a problem. However, with recent computers,

this integral term can be evaluated with great accuracy and less computation time.
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Although the free-surface Green function G(P;Q) can be evaluated without any problem and

∂ϕ(Q)/∂nQ can be given explicitly through an inhomogeneous boundary condition on the body sur-

face, the velocity potential ϕ(Q) on the body surface is unknown. Therefore (2.46) is useless as it is. To

determine the velocity potential on the body surface, we consider a limiting case where the field point

P(x, y) is placed on the body surface. In this case, (2.46) may provide an integral equation for the velocity

potential on the body surface, because both P and Q are on the body surface. However, there is one

important thing to be noted. In this limit, as is clear from the argument on the amount of net flux from

a point source, the amount of flux into the fluid region when P(x, y) is on the boundary must be just

half of that when P(x, y) is in the fluid (if the body surface is smooth). That is to say, (2.42) in this case

must be modified as

∇2G =
1

2
δ(x− ξ) δ(y − η). (2.47)

Using this equation instead of (2.42) and following the same argument and transformation described

before, we can obtain the following equation:

1

2
ϕ(P) =

∫
SH

{
∂ϕ(Q)

∂nQ
− ϕ(Q)

∂

∂nQ

}
G(P;Q) ds(Q), (2.48)

where P(x, y) is situated on SH .

Equation (2.48) can be rewritten in a form of integral equation as follows:

1

2
ϕ(P) +

∫
SH

ϕ(Q)
∂

∂nQ
G(P;Q) ds(Q) =

∫
SH

∂ϕ(Q)

∂nQ
G(P;Q) ds(Q). (2.49)

Since ∂ϕ/∂n can be given from the body boundary condition (its explicit form will be explained later),

the integral on the right-hand side can be computed. Thus (2.49) can be regarded as an integral equation

for the velocity potential on the body surface. The method of solving this kind of integral equation for

the velocity potential on the body surface is referred to as the direct boundary element method or the

free-surface Green function method.

Once the velocity potential ϕ(Q) on the body surface has been determined by solving (2.49) with an

appropriate numerical method, we can compute the velocity potential ϕ(P) at any point in the fluid

region in terms of (2.46).

2.3 Kochin Function

Let us consider the behavior of the velocity potential given by (2.46) far from a floating body and

examine the difference in the asymptotic form of the velocity potentials (or equivalently wave elevations)

for a point source and for a floating body.

The field point P(x, y) on the right-hand side of (2.46) appears only in the Green function G(P;Q).

Thus an asymptotic form of the velocity potential ϕ(P) as |x| → ∞ can be obtained by substituting the

asymptotic form of G(P;Q); which can be easily obtained simply by discarding the local-wave terms in

(2.33) and the result is expressed as

G(P;Q) ∼ i e−K(y+η)∓iK(x−ξ) = i e−Kη±iKξ e−Ky∓iKx as x→ ±∞. (2.50)

Substituting this in (2.46), we can obtain the following result:

ϕ(x, y) ∼ iH±(K) e−Ky∓iKx as x→ ±∞, (2.51)

where
H±(K) =

∫
SH

(
∂ϕ

∂n
− ϕ

∂

∂n

)
e−Kη±iKξ ds(ξ, η). (2.52)
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In the linear theory, the wave elevation on the free surface can be computed in terms of the velocity

potential on y = 0, and thus the asymptotic form of the wave (which must be a progressive wave) can be

computed in terms of (2.51) in the form
ζ(x, t) = Re

[
ζ(x) eiωt

]
,

ζ(x) =
iω

g
ϕ(x, 0) ∼ −ω

g
H±(K) e∓iKx as x→ ±∞.

(2.53)

We can see from (2.53) that H±(K) defined by (2.52) is equivalent to the complex amplitude (i.e. real

amplitude and phase) of the progressive wave generated by a floating body. Thus this function is called

the wave amplitude function or the Kochin function.

Comparing with (2.50) induced by a point source, we can see that characteristics of the wave outgoing

from a disturbance with wavenumber K is of course the same. However the amplitude and phase are

changed into a form of the Kochin function, which includes the effects of geometry and motion of a

floating body, because ∂ϕ/∂n in the definition of (2.52) is given by the body boundary condition as a

function of body geometry and motion and thus the velocity potential ϕ as a solution of (2.49) is also a

function of body geometry and motion.
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3. Two-Dimensional Wave Making Theory

In order to understand the characteristics of wave-induced motions of a floating body and the theory

of wave-energy absorption and perfect reflection, it is necessary to understand properly the so-called radi-

ation and diffraction problems and various hydrodynamic relations satisfied between the waves generated

by the body and hydrodynamic forces acting on the body.

3.1 Boundary Condition on a Floating Body

O

O

x

yy

x

ξ 1

ξ 3

ξ 2

Fig. 3.1 Coordinate system and notations.

As already explained in Section 1.3, the

boundary condition to be satisfied on an os-

cillating body can be obtained by consider-

ing the kinematic condition; that is, the zero

substantial derivative of a function describ-

ing the body surface. However, the substan-

tial derivative is defined in a space-fixed co-

ordinate system, whereas the body geometry

is normally defined as time invariable with

a body-fixed coordinate system. Thus the

difference between these coordinate systems

associated with oscillation of a body must be

taken into account in evaluating the substan-

tial derivative.

As shown in Fig. 3.1, let the space-fixed coordinate system be denoted as O-xy and the body-fixed

coordinate system be denoted as Ō-x̄ȳ. With assumption of small amplitude of body motions, the relation

between the two coordinate systems can be written as x = x̄+α(t), where x = (x, y) and x̄ = (x̄, ȳ) are

position vectors, and α(t) denotes the displacement vector of body motion; which may be expressed as

α(t) = i ξ1(t) + j ξ2(t) + k ξ3(t)× x

ξj(t) = Re
{
Xj e

iωt
} }

(3.1)

where i, j, k are unit vectors along the x-, y-, and z-axes in the space-fixed coordinate system, and j =1,

2, 3 in subscript denote sway, heave, and roll respectively, with complex amplitude Xj in the j-th mode

of motion.

The geometry of body surface is time-independent with the body-fixed coordinates x̄ = (x̄, ȳ), and

thus in terms of x = x̄+α(t), the body surface can be described generally as follows:

F (x̄) = F (x−α(t)) = 0. (3.2)

Therefore the substantial derivative of (3.2) takes the form

DF

Dt
=
∂F

∂t
+∇Φ · ∇F = −α̇(t) · ∇F +∇Φ · ∇F = 0. (3.3)

Dividing this equation with |∇F | and noting that the normal vector can be defined as n = ∇F/|∇F |,
(3.3) may be rewritten as

∇Φ · n =
∂Φ

∂n
= α̇(t) · n ≡ Vn . (3.4)
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Exactly speaking, the normal vector n and associated normal derivative in (3.4) are expressed in the

space-fixed reference frame. However, computing the normal vector is easier with body-fixed coordinates.

The distinction between the space-fixed and body-fixed coordinate systems may be a source of second-

order effects that can be neglected in the linear theory. With this understanding, we shall not distinguish

x̄ = (x̄, ȳ) and x = (x, y) in what follows. Then, writing the time-dependent term as eiωt and the velocity

potential as Φ(x, t) = Re
{
ϕ(x) eiωt

}
, (3.4) can be expressed as follows:

∂ϕ

∂n
=

3∑
j=1

iωXj nj (3.5)

where
n1 = nx =

∂x

∂n
, n2 = ny =

∂y

∂n

n3 = xn2 − y n1 = (r × n)3 = ε3jkxjnk (x1 = x, x2 = y)

 (3.6)

Since the right-hand side of (3.5) is in a form of linear superposition of each mode of motion, it looks

that we may write the velocity potential in a corresponding form, like

ϕ(x) =
3∑

j=1

ϕj(x) ≡
3∑

j=1

iωXj φj(x).

However, we should note that the velocity potential ϕ(x) must include the incident-wave potential, say

ϕ0(x), as an input of wave-induced motions. Therefore, in order to satisfy the body-boundary condition

(3.5), the velocity potential must include the scattering component, say ϕ4(x), which represents the

interaction of incident waves with the body and the normal derivative of the sum ϕ0 + ϕ4 must be equal

to zero on the body surface. Summarizing the above, we may write the velocity potentials and the

boundary conditions for each component as follows:

ϕ(x) =
4∑

j=0

ϕj(x) =
ga

iω

{
φ0(x) + φ4(x)

}
+

3∑
j=1

iωXjφj(x), (3.7)

∂

∂n

(
φ0 + φ4

)
= 0, (3.8)

∂φj

∂n
= nj (j = 1, 2, 3). (3.9)

Here φ0 denotes the incident-wave potential normalized with ga/iω (where a and ω are the amplitude and

circular frequency of the incident wave, respectively). For the case of infinite water depth and incoming

from the positive x-axis, φ0 is given explicitly as

φ0(x, y) = e−Ky+iKx . (3.10)

As already mentioned, φ4 represents the scattering potential introduced to satisfy the boundary

condition (3.8), which has nothing to do with the body motions at all. Thus the physical situation in

considering φ4 is that the body is fixed in space (no body motions) and incident waves are diffracted by

the presence of a body. The sum of φ0 + φ4 ≡ φD is referred to as the diffraction potential in this

lecture note. (Note that some authors may call φ4 the diffraction potential.)

On the other hand, φj (j = 1 ∼ 3) represents the flow induced by the j-th mode of motion in an

otherwise calm water (without incident waves) and is referred to as the radiation potential, normalized

with velocity iωXj . Schematic illustration of the diffraction and radiation problems is shown in Fig. 3.2.
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Fig.3.2 Schematic illustration for the diffraction and radiation problems.

3.2 Decomposition of Kochin Function and Progressive Waves

As described in the preceding section, within the framework of linear theory, a complicated real problem

of a floating body oscillating in waves can be decomposed into the diffraction problem and the radiation

problems for each mode of motions. Thus the progressive waves generated by the body (equivalently the

Kochin function) can be decomposed in the same fashion; which will be described below.

The velocity potentials for the disturbance due to the presence of a body are given by (3.7) with

incident-wave term ϕ0 excluded. Thus, substituting those in the definition of the Kochin function (2.51),

we can write it in the form of superposition of each component as follows:

H±(K) =
ga

iω
H±

4 (K) +

3∑
j=1

iωXjH
±
j (K) =

ga

iω

{
H±

4 (K)−K

3∑
j=1

Xj

a
H±

j (K)

}
. (3.11)

Here the asymptotic form of each component of the disturbance potential can be written as follows:

φj(x, y) ∼ iH±
j (K) e−Ky∓iKx as x→ ±∞, (3.12)

H±
j (K) =

∫
SH

(
∂φj

∂n
− φj

∂

∂n

)
e−Kη±iKξ ds(ξ, η) (j = 1 ∼ 4). (3.13)

It should be noted that ∂φj/∂n on the body surface is given by (3.9) as a real quantity but φj itself

is complex even on the body surface (because the free-surface Green function in the integral equation for

φj is complex), and consequently the Kochin function by (3.13) is generally complex.

In terms of the Kochin function, the complex amplitude of progressive wave generated by the body is

expressed as

ζ(x) = −ω

g

{
ga

iω
H±

4 (K) +
3∑

j=1

iωXjH
±
j (K)

}
e∓iKx

= a

{
iH±

4 (K)− iK
3∑

j=1

Xj

a
H±

j (K)

}
e∓iKx as x→ ±∞. (3.14)
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This wave elevation can be rewritten in a decomposed form as follows:

ζ(x, t) = Re
[
ζ(x) eiωt

]
≡ Re

[
4∑

j=1

ζ±j ei(ωt∓Kx)

]
, (3.15)

where ζ±j = −iKXjH
±
j (K) for j = 1 ∼ 3 : radiation wave, (3.16)

ζ±4 = iaH±
4 (K) for scattered wave. (3.17)

In the radiation problem, the wave amplitude of generated wave is usually expressed as the ratio to

the amplitude of body motion. Specifically, when the body motion is given by ξj(t) = Re
{
Xj e

iωt
}
, the

elevation of progressive wave far from the body is written as Re
{
XjĀj e

iε±
j ei(ωt∓Kx)

}
, with Āj and ε±j

being the wave amplitude ratio and the phase difference, respectively. Comparing this expression with

(3.16), we can obtain the following relation:

Āj e
iε±

j = −iKH±
j (K). (3.18)

Here the body is assumed implicitly symmetric about the centerline; thus the wave amplitudes on the

right and left sides of the body are the same. In this case, the phase of generated wave satisfies ε+2 = ε−2

for the case of heave and ε+j = ε−j + π for the case of sway (j = 1) and roll (j = 3).

In the diffraction problem, by taking account of the boundary conditions satisfied by φ0 and φ4 and

Green’s theorem for φ0, we can transform the integral equation for the diffraction potential and the

resultant calculation formula for the Kochin function in a more convenient form. Getting back to Green’s

theorem given by (2.43) and considering φD = φ0 + φ4 as the velocity potential, we may obtain the

following:

φD(P) =−
∫
SH

φD(Q)
∂

∂nQ
G(P;Q) ds(Q)

+

∫
S±∞

{
∂φ0(Q)

∂nQ
− φ0(Q)

∂

∂nQ

}
G(P;Q) ds(Q). (3.19)

Here we have taken into account the body boundary condition (3.8) and that the scattering potential φ4

satisfies the radiation condition of the wave outgoing on both sides of the body but the incident-wave

potential φ0 does not. The second line in (3.19) is the result of φ0 not satisfying the radiation condition.

However this second line is equal to φ0(P) itself on account of Green’s theorem for the case of no floating

body. Thus we can have the following expression

φ4(P) = −
∫
SH

φD(Q)
∂

∂nQ
G(P;Q) ds(Q), (3.20)

when the field point P is in the fluid region.

In the same manner, when the field point P is take on the body surface, the coefficient on the left-hand

side of (3.19) must be equal to 1/2 and thus the integral equation for φD takes the following form:

1

2
φD(P) +

∫
SH

φD(Q)
∂

∂nQ
G(P;Q) ds(Q) = φ0(P). (3.21)

Once the velocity potential φD has been determined, the asymptotic expression of φ4(P) far from the

body can be obtained from (3.20) in the form

φ4(P) ∼ iH±
4 (K) e−Ky∓iKx as x→ ±∞

H±
4 (K) = −

∫
SH

φD
∂

∂n
e−Kη±iKξ ds(ξ, η)

 (3.22)
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The numerical value from this expression must be identical to that from (3.13) for j = 4.

3.3 Calculation of Hydrodynamic Forces

Suppose that the velocity potentials on the body surface φj (j = 1 ∼ 4) are obtained by solving an

integral equation (2.48) in the radiation and diffraction problems. Then we shall consider how to calculate

hydrodynamic forces acting on the body.

Since the force can be obtained by integrating the pressure on the wetted surface of a body, let us

consider the pressure first. In the linear theory, higher-order terms in Bernoulli’s pressure equation can

be discarded, and thus the total pressure with the reference value taken as the atmospheric pressure can

be written as

P (x, y, t) = −ρ∂Φ
∂t

+ ρgy +O(Φ2). (3.23)

The second term on the right-hand side represents the hydrostatic pressure. This term has nothing to

do with the velocity potential. However, since the body oscillates, variation in this hydrostatic pressure

due to body motions must be considered; which can be obtained by substituting the y-component of

x = x+α(t) given by (3.1). Namely

y = y + ξ2(t) + ξ3(t)x = y +Re
[ (
X2 +X3 x

)
eiωt

]
. (3.24)

For the first term on the right-hand side of (3.23) representing the hydrodynamic pressure, Φ(x, t) =

Re
[
ϕ(x) eiωt

]
and (3.7) for ϕ(x) will be substituted. The result may be written in the form

P (x, t) = Re
[
p(x) eiωt

]
p(x) = pR(x) + pD(x) + pS(x)

}
(3.25)

where
pR(x) = −ρiω

3∑
j=1

iωXj φj(x), (3.26)

pD(x) = −ρiω ga
iω

{
φ0(x) + φ4(x)

}
= −ρgaφD(x), (3.27)

pS(x) = ρg
(
X2 +X3x

)
. (3.28)

First we shall consider the force to be obtained by integrating the pressure (3.26) in the radiation

problem. Noting that the normal vector is defined as positive when directing from the body surface into

the fluid, the hydrodynamic force in the i-th direction can be obtained as follows:

Fi = −
∫
SH

pR(x)ni ds = ρ(iω)2
3∑

j=1

Xj

∫
SH

φj(x)ni ds ≡
3∑

j=1

fij . (3.29)

Here the velocity potential φj(x) is generally given in complex (its imaginary part exists because the Green

function in the integral equation includes the imaginary part associated with generation of progressive

waves on the free surface). Therefore, by introducing a notation of φj(x) = φjc(x) + i φjs(x), fij in

(3.29) can be written as

fij = ρ(iω)2Xj

∫
SH

{
φjc(x) + i φjs(x)

}
ni ds

= −(iω)2Xj

[
−ρ
∫
SH

φjc(x)ni ds︸ ︷︷ ︸
]
− iωXj

[
ρω

∫
SH

φjs(x)ni ds︸ ︷︷ ︸
]

(3.30)

Aij Bij
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Thus fij can be interpreted as the force component acting in the i-th direction due to the j-th mode of

motion. Together with time-dependent term eiωt, we can see that (iω)2Xj represents the acceleration

and iωXj the velocity and hence Aij and Bij can be defined as the added mass and the damping co-

efficient, respectively. It should be noted these quantities are defined with minus sign in the acceleration

and velocity as in (3.30), because the radiation force is a component of the total force to be considered

on the right-hand side of the motion equation in Newton’s second law and will be transposed finally onto

the left-hand side of the motion equation. The force component fij may be written as fij = TijXj , where

Tij can be regarded as the transfer function with respect to the displacement Xj in the j-th mode of

motion and given in the form

Fi =
3∑

j=1

TijXj , Tij = −(iω)2
{
Aij +

1

iω
Bij

}
Aij +

1

iω
Bij = −ρ

∫
SH

φj(x)ni ds = −ρ
∫
SH

φj(x)
∂φi

∂n
ds

 (3.31)

The body boundary condition for φi given by (3.9) has been substituted in the last expression.

Next we shall consider the force to be obtained by integrating the pressure (3.27) in the diffraction

problem. The resulting hydrodynamic force is referred to as the wave-exciting force, and the force

acting in the i-th direction can be calculated by

Ei = −
∫
SH

pD(x)ni ds = ρga

∫
SH

φD(x)ni ds

= ρga

∫
SH

{
φ0(x) + φ4(x)

}
ni ds. (3.32)

Here the force component related to the incident wave, φ0(x), is called Froude-Krylov force, which

was only the component of wave-exciting force considered in the beginning of the 20th century. With

the advent of computers, the effect of wave scattering could be computed and its importance became

realized.

Lastly we shall consider the restoring force to be obtained by integrating the variance in the hydrostatic

pressure (3.28) due to body motions. In the same way as that for the radiation and diffraction forces,

the final formulae may be obtained by the line integral on the wetted surface of a body. However, as an

effective alternative, Gauss’ theorem will be used here. We should note that the hydrostatic forces act

only in the vertical direction in parallel to the gravity in space; that is, contributions exist only in heave

and also in roll as the moment due to couple of vertical forces.

The restoring force in heave can be obtained as follows:

S2 = −
∫
SH

pS(x)n2 ds = − ρg

∫
SH

(
X2 +X3 x

)
n2 ds

= − ρg

∫ B/2

−B/2

(
X2 +X3 x

)
dx = − ρgBX2 ≡ −C22X2 , (3.33)

where B denotes the breadth of a floating body.

Similarly, the restoring moment in roll (about the origin of the coordinate system) becomes

S3 = −
∫
SH

pS(x)n3 ds = − ρg

∫
SH

(
X2 +X3 x

)(
n2x− n1y

)
ds

= − ρgX3

∫ B/2

−B/2

x2 dx+ ρgX3

∫∫
V

y dS

= ρgX3

{
− ∇BM +∇OB

}
= − ρg∇OM X3 , (3.34)
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where the Gauss theorem has been used in transformation, and ∇ denotes the displacement volume,

BM the vertical length between the center of buoyancy and the metacenter, and OB the vertical length

between the origin of the coordinate system and the center of buoyancy.

In the motion equation, the moment about the center of gravity (denoted with G) may be needed,

which can be computed as follows:

SG
3 = −

∫
SH

pS(x)n
G
3 ds = − ρg

∫
SH

(
X2 +X3 x

){
n2x− n1(y −OG)

}
ds

= S3 − ρg OG

∫
SH

(
X2 +X3 x

)
n1 ds = S3 − ρg OGX3

∫∫
V

dS

= − ρg∇
{
OM +OG

}
X3 = − ρg∇GM X3 ≡ −C33X3 . (3.35)

Here the center of gravity is assumed to be located below the free surface and hence GM = OG+OM .

The hydrodynamic force and moment related to the roll motion in the radiation and diffraction prob-

lems must also be evaluated about the center of gravity in considering the equations of body motion,

which will be described later when we shall consider them.

3.4 Reflection and Transmission Waves

The concept of reflection and transmission waves will be important in considering the deformation

of incident wave due to the presence of a body. Details of the characteristics of these waves will be

explained subsequently in connection with various hydrodynamic relations between the waves generated

by a floating body and hydrodynamic forces acting on that body. In this subsection, only the definition

of the reflection and transmission waves and their notations will be described.
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Fig.3.3 Case of incident wave incoming from the positive x-axis

First let us consider the case where the incident wave is incoming from the positive x-axis (see Fig. 3.3).

For generality, the shape of a floating body is assumed to be asymmetric in left and right. In this case,

the reflection wave can be defined as the wave propagating to the positive x-axis, opposite to the incident

wave, and hence from (3.14) the complex amplitude ζR can be expressed as

ζR = iaH+
4 (K)− iK

3∑
j=1

X+
j H+

j (K). (3.36)

It should be noted that the complex motion amplitude in the case of Fig. 3.3 is written asX+
j to distinguish

from the case when the direction of incident wave is opposite (which will be considered next).

By dividing with the incident-wave amplitude, the nondimensional reflection wave is defined as

CR ≡ ζR
a

= R− iK

3∑
j=1

X+
j

a
H+

j (K), (3.37)
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where R = iH+
4 (K) (3.38)

is the reflection-wave (complex) coefficient when the body is fixed in space (in the diffraction problem),

whereas CR is the corresponding coefficient when the body oscillates in an incident wave.

The transmission wave is defined as the wave passing the body and propagating to the infinity of

negative x-axis, which includes the incident wave. Thus the complex amplitude ζT and its nondimensional

form are expressed in the form

ζT = a
{
1 + iH−

4 (K)
}
− iK

3∑
j=1

X+
j H−

j (K), (3.39)

CT ≡ ζT
a

= T − iK
3∑

j=1

X+
j

a
H−

j (K), (3.40)

where T = 1 + iH−
4 (K) (3.41)

is the coefficient of transmission wave when the body is fixed in space.
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Fig.3.4 Case of incident wave incoming from the negative x-axis

Next let us consider the case where the incident wave is incoming from the negative x-axis (see Fig. 3.4).

When the body is asymmetric, the scattered wave (Kochin function in the diffraction problem) is different

depending on the direction of the incident wave. To indicate this difference clearly, the Kochin function

in the diffraction problem of Fig. 3.4 is denoted by h±4 (K) in contrast to H±
4 (K) for the case of Fig. 3.3.

If the body is asymmetric, the wave-exciting force and hence the complex amplitude of the body motion

may also be different depending on the direction of the incident wave. Thus, for the case of Fig. 3.4, the

complex amplitude in the j-th mode of motion will be denoted as X−
j . On the other hand, the Kochin

function in the radiation problem is independent of the incident wave. With all these taken into account,

the complex coefficient of reflection wave for the case of Fig. 3.4 is given in the form

CR ≡ ζR
a

= R− iK
3∑

j=1

X−
j

a
H−

j (K), (3.42)

where R = ih−4 (K). (3.43)

Likewise, the coefficient of transmission wave for the case of Fig. 3.4 can be expressed as

CT ≡ ζT
a

= T − iK
3∑

j=1

X−
j

a
H+

j (K), (3.44)

where T = 1 + ih+4 (K). (3.45)

Now that the definition of the reflection and transmission waves has been given, we shall consider

hydrodynamic relations in connection with these waves by using Green’s theorem.
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3.5 Hydrodynamic Relations Derived with Green’s Theorem

Green’s theorem has been applied in subsection 2.2 to derive an expression for the velocity potential

in the form of boundary integral. A result from Green’s theorem is given by (2.40), which can be written

for two different velocity potentials, ϕ and ψ, in the form∮
S

{
ϕ
∂ψ

∂n
− ψ

∂ϕ

∂n

}
ds =

∫∫
V

(
ψ∇2ϕ− ϕ∇2ψ

)
dS. (3.46)

Here, as shown in Fig. 3.5, the boundary S surrounding the fluid region V consists of the hull surface of

a floating body SH , the free surface SF , the radiation surface far from the body S±∞, and the bottom

of water SB.
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Fig.3.5 Application of Green’s theorem

We note that the velocity potentials ϕ and ψ in (3.46) are regular in the fluid region and hence satisfy

∇2ϕ = 0 and ∇2ψ = 0. Namely the right-hand side of (3.46) is zero. Furthermore we assume in what

follows that both ϕ and ψ satisfy the same boundary conditions on SF and SB but not necessarily the

same on S±∞ and SH . In this case, the line integrals on SF and SB on the left-hand side of (3.46) become

zero and thus ∫
SH+S±∞

(
ϕ
∂ψ

∂n
− ψ

∂ϕ

∂n

)
ds = 0. (3.47)

Since the radiation boundaries are parallel to the y-axis, the following relations hold

on S−∞,
∂

∂n
=

∂

∂x
, ds = dy, y : 0 → ∞

on S+∞,
∂

∂n
= − ∂

∂x
, ds = − dy, y : ∞ → 0

 (3.48)

Therefore (3.47) can be written as follows:∫
SH

(
ϕ
∂ψ

∂n
− ψ

∂ϕ

∂n

)
ds = −

[ ∫
S+∞

+

∫
S−∞

](
ϕ
∂ψ

∂n
− ψ

∂ϕ

∂n

)
ds

=

∫ ∞

0

dy

[
ϕ
∂ψ

∂x
− ψ

∂ϕ

∂x

]x=+∞

x=−∞
(3.49)

where
[ ]

in the last expression of (3.49) denotes the difference of the quantity in brackets between

the values at x = +∞ and at x = −∞.
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The y-dependence in the velocity potentials far from the body is, as explicitly shown in (3.12), expressed

as e−Ky. Thus the integral with respect to y appearing in (3.49) may be performed in advance, and the

result takes the form ∫ ∞

0

e−2Ky dy =
1

2K
. (3.50)

With this result, (3.49) can be written as∫
SH

(
ϕ
∂ψ

∂n
− ψ

∂ϕ

∂n

)
ds =

1

2K

[(
ϕ
∂ψ

∂x
− ψ

∂ϕ

∂x

)
y=0

]x=+∞

x=−∞
(3.51)

This is the base equation for deriving various hydrodynamic relations in subsequent sections.

3.5.1 Symmetry relations in the added mass and damping coefficient

We may choose any combination for ϕ and ψ, as long as velocity potentials satisfy the same boundary

conditions on SF and SB. As the first choice, let us set ϕ = φi and ψ = φj in the radiation problem.

Since both satisfy the same radiation condition of outgoing waves, the right-hand side of (3.51) must be

zero, which may be confirmed directly by substituting asymptotic forms of φi and φj :

φi(x, 0) ∼ iH±
i e∓iKx

φj(x, 0) ∼ iH±
j e∓iKx

}
as x→ ±∞ (3.52)

Therefore it follows that ∫
SH

φi
∂φj

∂n
ds =

∫
SH

φj
∂φi

∂n
ds, (3.53)

and from (3.31) this relation is equivalent to writing as

Tji = Tij . (3.54)

Separating this expression into the real and imaginary parts, we have

Aji = Aij , Bji = Bij , (3.55)

which represents the symmetry relations in the added-mass and damping coefficients; that is, the radiation

force acting in the j-th direction due to the i-th mode of motion is equal to the corresponding value acting

in the i-th direction due to the j-th mode of motion.

3.5.2 Relations of energy conservation

Next let us take ϕ = φi and ψ = φj (where the overbar means the complex conjugate) and consider the

consequence of (3.51). We note that the complex conjugate of the velocity potential can be interpreted as

the reverse-time velocity potential (which was named first by Bessho), because this velocity potential

with time-dependent part eiωt can also be written in the form

Φ(x, t) = Re
[
φj(x) e

iωt
]
= Re

[
φj(x) e

−iωt
]
. (3.56)

Thus considering the complex conjugate of the spatial part is equivalent to considering the original spatial

part with time reversed. We also note that the body boundary condition in the radiation problem is given

by (3.9) and the normal vector is of real quantity. Thus we have the followings for φi and φj

∂φi

∂n
= ni,

∂φj

∂n
= nj = nj on SH . (3.57)
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Since the transfer function defined by (3.31) is of complex quantity, the left-hand side of (3.51) can be

written as

L ≡
∫
SH

(
φi
∂φj

∂n
− φj

∂φi

∂n

)
ds =

∫
SH

φi nj ds−
∫
SH

φj ni ds

= − 1

ρ

{
Aji +

1

iω
Bji −

(
Aij −

1

iω
Bij

)}
=

2i

ρω
Bij , (3.58)

where the symmetry relations (3.55) have been taken into account in the last expression of (3.58).

On the other hand, the right-hand side of (3.51) can be evaluated with the following asymptotic

expressions:

φi(x, 0) ∼ iH±
i e∓iKx,

∂φi

∂x
∼ ±KH±

i e∓iKx

φj(x, 0) ∼ −iH±
j e

±iKx,
∂φj

∂x
∼ ±KH

±
j e

±iKx

 (3.59)

The result after substituting these takes the following form:

R ≡ 1

2K

[(
φi
∂φj

∂x
− φj

∂φi

∂x

)
y=0

]x=+∞

x=−∞
= i
{
H+

i H
+

j +H−
i H

−
j

}
. (3.60)

Therefore L = R gives the following relation:

Bij =
1

2
ρω
{
H+

i H
+

j +H−
i H

−
j

}
. (3.61)

For a body with port and starboard symmetry, the Kochin function in the radiation problem satisfies

a relation of H−
j = (−1)jH+

j and hence

B22 = ρω
∣∣H+

2

∣∣2 , (3.62)

Bij = ρωH+
i H

+

j for i, j = 1 or 3. (3.63)

These are known as the energy conservation, relating the damping coefficient to the square of the ampli-

tude of body-generated progressive wave.

This relation of energy conservation can be derived in another way. The work done by the body motion

in the j-th mode on the fluid can be obtained by taking time average of the pressure integral as follows:

WD =

∫
SH

P Vn ds =

∫
SH

Re
[
pR(x) eiωt

]
Re
[
iωXj nj eiωt

]
ds

=
1

2
Re

∫
SH

pR(x)
(
− iωXj nj

)
ds. (3.64)

Here Vn denotes the normal velocity of the body, and a formula for taking time average of the product

of two different quantities in harmonic oscillation has been applied. Since the pressure in the radiation

problem is given by (3.26) with φj(x) = φjc(x) + iφjs(x), the result of (3.64) can be expressed as

WD =
1

2
Re

[
ρ (iω)(iωXj)

2

∫
SH

{
φjc(x) + iφjs(x)

}
nj ds

]
=

1

2
(ωXj)

2ρω

∫
SH

φjs(x)nj ds =
1

2
(ωXj)

2Bjj , (3.65)

where the definition of the damping coefficient in (3.30) has been used. We can see from this result that

only the damping force contributes to the work and the inertia force does not.

This work is imparted to the fluid and must be equal to the mean rate of energy flux of progressive

waves generated by the body. The energy density of progressive wave with amplitude a is 1
2ρga

2 and the
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amplitude of the radiation wave is given by (3.16). Therefore the energy density of outgoing waves on

both sides of the body is given by

E+ =
1

2
ρg
∣∣KXjH

+
j

∣∣2 =
1

2
ρω(ωXj)

2
∣∣H+

j

∣∣2 ω
g

E− =
1

2
ρg
∣∣KXjH

−
j

∣∣2 =
1

2
ρω(ωXj)

2
∣∣H−

j

∣∣2 ω
g

 (3.66)

The velocity of the energy flux is equal to the group velocity (which is given by cg = 1
2

ω
K = 1

2
g
ω in deep

water), and the rate of change of the total energy is the product of (E+ + E−) and cg. Thus we have

dE

dt
=
(
E+ + E− ) cg =

1

2
(ωXj)

2 1

2
ρω
{ ∣∣H+

j

∣∣2 + ∣∣H−
j

∣∣2 }. (3.67)

Equating (3.65) and (3.67), we can obtain the relation (3.61) for the case of i = j.

The energy conservation in the diffraction problem may be derived in the same way. Let us consider a

combination of ϕ = φD and ψ = φD. In this case, with the body boundary condition (3.8), the integral

on the body surface becomes zero, and thus only the right-hand side of (3.51) must be zero. That is,[(
φD

∂φD

∂x
− φD

∂φD

∂x

)
y=0

]x=+∞

x=−∞
= 0. (3.68)

Considering the case of Fig. 3.3 (incident wave incoming from the positive x-axis), the asymptotic form

of φD can be written in terms of the reflection and transmission wave coefficients in the form

φD(x, 0) ∼ eiKx +Re−iKx as x→ +∞
φD(x, 0) ∼ T eiKx as x→ −∞

}
(3.69)

Substituting these into (3.68) gives the following result:

− iK
(
eiKx +Re−iKx

)(
e−iKx −ReiKx

)
− iK

(
e−iKx +ReiKx

)(
eiKx −Re−iKx

)
−
(
− iK T T − iK T T

)
= 0.

Therefore
∣∣R ∣∣2 + ∣∣T ∣∣2 = 1. (3.70)

Since R and T are the coefficients nondimensionalized with the incident-wave amplitude a, (3.70) can be

written in the form
1

2
ρg
∣∣ ζR ∣∣2 + 1

2
ρg
∣∣ ζT ∣∣2 =

1

2
ρga2 . (3.71)

The right-hand side, 1
2 ρga

2, represents the energy density of incident wave as the input. Thus (3.71)

tells us that the total energy density after diffraction by the body remains the same as that of the input,

which means the energy conservation in the diffraction problem.

3.5.3 Haskind-Newman’s relation

Hydrodynamic relations between the radiation and diffraction problems may be derived by considering

a combination of ϕ = φD and ψ = φj (j = 1, 2, 3). Taking account of the body boundary conditions (3.8)

for φD and (3.9) for φj and the calculation formula for the wave-exciting force (3.32), the left-hand side

of (3.51) gives the following result:

L =

∫
SH

(
φD

∂φj

∂n
− φj

∂φD

∂n

)
ds =

∫
SH

φD nj ds =
Ej

ρga
. (3.72)
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On the other hand, the right-hand side of (3.51) can be evaluated with the following expressions for the

velocity potentials:

as x→ +∞, φD ∼ eiKx +Re−iKx, φj ∼ iH+
j e−iKx

as x→ −∞, φD ∼ T eiKx, φj ∼ iH−
j eiKx

}
(3.73)

The result of the calculation for the right-hand side takes the form

R =
1

2K

[
KH+

j

{
1 +Re−i2Kx

}
+KH+

j

{
1−Re−i2Kx

}
+KH−

j T e
i2Kx −KH−

j T e
i2Kx

]
= H+

j . (3.74)

Equating (3.72) and (3.74) gives the following relation

Ej = ρgaH+
j , (3.75)

which is known as Haskind-Newman’s relation.

We note that Ej is the wave-exciting force acting in the j-th direction exerted by the incident wave

incoming from the positive x-axis, and H+
j is associated with the complex amplitude of the radiation

wave generated by the j-th mode of motion, propagating to the positive x-axis (opposite to the direction

of propagation of the incident wave). Although the diffraction and radiation problems look superficially

unrelated, (3.75) states a remarkable relation that the wave-exciting force Ej can be computed only from

the complex wave amplitude H+
j in the radiation problem.

Since the damping coefficient can be computed from the square of the Kochin function, (3.61) and

(3.75) gives also the following relation:

Bjj = ρω

∣∣∣∣ Ej

ρga

∣∣∣∣2 =
ω

ρg2

∣∣∣∣ Ej

a

∣∣∣∣2 =
1

2ρgcg

∣∣∣∣ Ej

a

∣∣∣∣2 . (3.76)

Namely the damping coefficient and the wave-exciting force are directly related.

As an easy extension, let us consider next a combination of ϕ = φD and ψ = φj . In this case, with

(3.57), the left-hand side of (3.51) turns out the same as (3.72). However, the right-hand side of (3.51)

will be different from (3.74) and evaluated in terms of (3.73). The result takes the form

R =
1

2K

[
KH

+

j

{
ei2Kx +R

}
−KH

+

j

{
ei2Kx −R

}
+KH

−
j T +KH

−
j T
]

= H
+

j R+H
−
j T . (3.77)

Therefore the following relation can be obtained:

Ej = ρga
{
H

+

j R+H
−
j T

}
. (3.78)

This result must be equal to (3.75) and hence we have

H+
j = H

+

j R+H
−
j T . (3.79)

We note that R = iH+
4 and T = 1 + iH−

4 . Thus (3.79) implies that a relation exists between the

scattered wave in the diffraction problem and the radiated wave by forced oscillation in the radiation

problem. This relation will be investigated more in the next subsection for a floating body with port and

starboard symmetry.
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3.5.4 Relation between radiation and diffraction waves

The Kochin function for the radiation wave generated by a symmetric body has the property of

H−
j = (−1)jH+

j . Thus (3.79) can be written separately for the case of symmetric motion (j = 2 for

heave) and for the case of antisymmetric motion (j = 1 for sway or j = 3 for roll) as follows:

H+
2 = H

+

2

(
iH+

4 + 1 + iH−
4

)
, (3.80)

H+
j = H

+

j

(
iH+

4 − 1− iH−
4

)
(j = 1 or 3). (3.81)

Here we note that the Kochin function for the scattered wave, H±
4 (K), can be separated into the sym-

metric and antisymmetric components with respect to the y-axis. More specifically from (3.22), it can

be written as

H±
4 (K) = −

∫
SH

φD
∂

∂n
e−Kη cosKξ ds±

{
− i

∫
SH

φD
∂

∂n
e−Kη sinKξ ds

}
≡ C4(K)± S4(K). (3.82)

First, by substituting (3.82) in (3.80), we have

2i C4 + 1 = H+
2 /H

+

2 . (3.83)

It can be seen from this that the symmetric component of the scattered wave C4 is given by the radiation

wave generated by the heave motion. In terms of (3.18) as an expression of H+
2 , C4 can be expressed as

follows:

C4 = Im
(
H+

2

)
/H

+

2 = i eiε2 cos ε2 . (3.84)

Likewise, substituting (3.82) in (3.81), we have an expression for the antisymmetric component as follows:

2i S4 − 1 = H+
j /H

+

j (j = 1 or 3). (3.85)

Thus S4 = −iRe
(
H+

j

)
/H

+

j = − eiεj sin εj . (3.86)

By combining (3.84) and (3.86), the Kochin function in the diffraction problem H±
4 = C4 ± S4 can be

expressed as

H±
4 =

Im
(
H+

2

)
H

+

2

∓ i
Re
(
H+

j

)
H

+

j

= i eiε2 cos ε2 ∓ eiεj sin εj . (3.87)

Thus we can see that the scattered wave can be obtained in terms of only the phase of the radiation

wave. This relation was proven first by Bessho and later by Newman with different analysis, and thus we

call (3.87) Bessho-Newman’s relation.

3.5.5 Bessho’s relation for damping coefficients

In the relations shown above, such as (3.81) and (3.87), the mode index j can be 1 or 3, which suggests

that some important relation exists between the Kochin functions for sway and roll.

Considering j = 1 and j = 3 for (3.81), we can obtain the relation

H+
1 /H

+

1 = H+
3 /H

+

3 .

Thus H+
3 /H

+
1 = H

+

3 /H
+

1 ≡ ℓw . (3.88)

Since a complex quantity equals its conjugate, it must be of real quantity, and the ratio H+
3 /H

+
1 has a

dimension of length; this length (moment lever) of real quantity is denoted as ℓw in (3.88). We can see
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from this relation that the phase of the Kochin functions in sway and roll is exactly the same and that

is why the mode index j can be 1 or 3 in (3.87).

As shown by (3.63), the damping coefficient can be computed with the Kochin function. Substituting

(3.88) in (3.63), we can find the following relations:

B13 = B31 = B11 ℓw , B33 = B11 ℓ
2
w . (3.89)

We can see that the damping coefficient in roll (B33 ) can be computed from the damping coefficient in

sway (B11 ) and ℓw necessary in this computation can be provided by ℓw = B31/B11 only with solutions

of the boundary-value problem for sway. The relation (3.89) is also known as Bessho’s relation.

3.5.6 Reflection and transmission waves by an asymmetric body

In this subsection we consider an asymmetric body; for which, as described in section 3.4, the scattered

wave must be different depending on the direction of the incident wave. For the case of Fig. 3.3 (where

the incident wave is incoming from the positive x-axis), the Kochin function of the scattered wave was

denoted by H±
4 (K), and for the case of Fig. 3.4 (where the incident wave is incoming from the negative

x-axis), the corresponding Kochin function was denoted by h±4 (K). In connection with these two cases,

the diffraction potential for the case of Fig. 3.3 is denoted as φD and the one for the case of Fig. 3.4 will

be denoted as ψD. Then we consider a combination of ϕ = φD and ψ = ψD in Green’s theorem (3.51).

Since both cases are the diffraction problem, the left-hand side of (3.51) is equal to zero owing to

homogeneous boundary conditions on the body surface. Thus we have[(
φD

∂ψD

∂x
− ψD

∂φD

∂x

)
y=0

]x=+∞

x=−∞

= 0. (3.90)

Here the asymptotic forms of φD and ψD at x = ±∞ are written in terms of the Kochin function in the

form
φD(x, 0) ∼ eiKx + iH+

4 e−iKx

ψD(x, 0) ∼ e−iKx + i h+4 e
−iKx

}
as x→ +∞, (3.91)

φD(x, 0) ∼ eiKx + iH−
4 eiKx

ψD(x, 0) ∼ e−iKx + i h−4 e
iKx

}
as x→ −∞. (3.92)

Substitution of these in (3.90) can be written as

−iK( eiKx + iH+
4 e−iKx ) e−iKx( 1 + ih+4 )− iK( eiKx − iH+

4 e−iKx ) e−iKx( 1 + ih+4 )

+iK eiKx( 1 + iH−
4 )( e−iKx − ih−4 e

iKx ) + iK eiKx( 1 + iH−
4 )( e−iKx + ih−4 e

iKx ) = 0.

Therefore the result is expressed in a compact form as follows:

h+4 (K) = H−
4 (K) (3.93)

As shown by (3.41) and (3.45),H−
4 is associated with the transmission wave in Fig. 3.3 and h+4 is associated

with the transmission wave in Fig. 3.4. Thus (3.93) means that the complex amplitude of transmission

wave (both amplitude and phase) past an asymmetric body must be the same irrespective of the incoming

direction of the incident wave.

Next let us consider a combination of ϕ = φD and ψ = ψD. The left-hand side of (3.51) is zero in this

case too; thus (3.90) holds with φD replaced with φD. Using (3.91) and (3.92), the result can be written
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as

−iK( e−iKx − iH
+

4 e
iKx ) e−iKx( 1 + ih+4 ) + iK( e−iKx + iH

+

4 e
iKx ) e−iKx( 1 + ih+4 )

+iK e−iKx( 1− iH
−
4 )( e−iKx − ih−4 e

iKx )− iK e−iKx( 1− iH
−
4 )( e−iKx + ih−4 e

iKx ) = 0,

from which we can obtain the following relation:

H
+

4

(
1 + ih+4

)
= h−4

(
1− iH

−
4

)
. (3.94)

Taking account of (3.93), this relation can be expressed as

h−4 (K) = H
+

4 (K)
1 + iH−

4 (K)

1− iH
−
4 (K)

. (3.95)

It is obvious from (3.95) that
∣∣h−4 (K)

∣∣ = ∣∣H+
4 (K)

∣∣. Thus from the definition of the reflection wave

(3.38) for the case of Fig. 3.3 and (3.43) for the case of Fig. 3.4, we can see that the amplitude of the

reflection wave by an asymmetric body must be the same irrespective of the incoming direction of the

incident wave. However, we should note that the phase is different in general depending on the direction

of the incident wave.

3.5.7 Energy equally-splitting law

Let us consider a consequence of (3.95) for the case of symmetric bodies. Since H±
4 = h∓4 holds for a

symmetric body, (3.95) can be expressed as

H+
4

(
1− iH

−
4

)
= H

+

4

(
1 + iH−

4

)
. (3.96)

In terms of the coefficients of the reflection wave R defined in (3.38) and the transmission wave T defined

in (3.41), (3.96) can be rewritten as

RT +RT = 0. (3.97)

Thus we have Re
{
RT

}
= 0. (3.98)

On the other hand, as shown by (3.70), |R |2 + |T |2 = 1 was proven as the energy conservation in the

diffraction problem. Combining these relations, we can obtain the following relation:∣∣R± T
∣∣ = 1. (3.99)

This relation may be interpreted as the energy equally-splitting law by the following explanation.

The waves at x → +∞ and x → −∞ can be written as ζ(x) = R and ζ(−x) = T , respectively. Thus

the wave can generally be decomposed in the form

ζ(x) =
1

2

{
ζ(x) + ζ(−x)

}
+

1

2

{
ζ(x)− ζ(−x)

}
=

1

2

(
R+ T

)
+

1

2

(
R− T

)
. (3.100)

Namely the first term on the right-hand side, 1
2 (R+T ), represents the symmetric component of the wave

about the body and likewise the second term on the right-hand side, 1
2 (R− T ), the antisymmetric com-

ponent of the wave. Therefore, (3.99) implies that the amplitudes of the symmetric and anti-symmetric

wave components about the body are the same. Since the wave amplitude is connected with the energy

density of incident wave, (3.99) tells us that the energy density of incident wave as the input will be

split equally into the energy density of symmetric and antisymmetric waves after the diffraction by the
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body. The proof shown here is only for the case of fixed body, but the same is true even for the case of

a symmetric body freely oscillating in waves; which will be described in the next chapter.

3.6 Characteristics of Wave-Induced Motions of a Floating Body

Various relations on hydrodynamic forces and body-generated waves have been derived. By taking

account of those relations, let us study the characteristics of wave-induced motions of a floating body.

To give the result analytically in a compact form and thereby understand the essence of the theory, a

floating body is assumed symmetric with respect to the centerline. For this case, the symmetric (heave)

and antisymmetric (sway and roll) modes of motion are not coupled, and thus they can be treated

independently.

First, let us consider heave as the symmetric mode of motion. The equation of motion can be provided

by the Newton’s second law, because all forces on a body have been analyzed using the inertial coordinate

system. The external forces to be considered as the right-hand side of the motion equation are the

radiation force, the wave-exciting force and the restoring force due to variation in the hydrostatic pressure.

Considering only the harmonic motion with circular frequency ω and denoting the heave motion as

ξ2(t) = Re
{
X2 e

iωt
}
, the motion equation for the complex amplitude can be written as follows:

m(iω)2X2 = F2 + E2 + S2

= −
{
(iω)2A22 + iωB22

}
X2 + E2 − C22X2 .

Therefore
[
C22 − ω2

(
m+A22

)
+ iωB22

]
X2 = E2 . (3.101)

Herem denotes the mass of floating body. For the coefficients appearing in (3.101), the following relations

have been obtained:

(3.62) B22 = ρω
∣∣H+

2 (K)
∣∣2 Relation of energy conservation

(3.75) E2 = ρgaH+
2 (K) Haskind-Newman’s relation

(3.18) H+
2 (K) =

i

K
Ā2 e

iε2 Expression of Kochin function

Substituting these and adopting the following notations

C22 − ω2(m+A22) ≡ ρω2E2 ,

Tan−1 E2

|H+
2 |2

≡ αH , H+
2E =

H+
2

E
,

 (3.102)

the solution for the complex amplitude can be written in the form

X2

a
=

1

KE

H+
2E{

1 + i|H+
2E |2

} =
| cosαH |
iKH

+

2

eiαH (3.103)

=
| cosαH |
Ā2

eiδ2 , δ2 = αH + ε2 . (3.104)

Thus we can see that the amplitude is inversely proportional to the wave amplitude ratio Ā2 and the

phase of motion relative to the incident wave is given by δ2 = αH + ε2. At resonance, the restoring

and inertial forces are balanced and thus from (3.102) E = 0 and αH = 0. In this case, from (3.104)

X2/a = 1/Ā2 and δ2 = ε2. We can see also in the limit of ω → 0 (i.e. long wavelength) that H+
2 → B

and E2 → B/K (because E2 → ρgaB and C22 = ρgB) and thus Ā2 → KB, ε2 → −π/2, and αH → π/2;

then X2/a→ 1 and δ2 → 0.
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Next, as the antisymmetric motion, let us consider the coupled motions of sway and roll. In the same

way as that for heave, the equations of coupled motions are expressed as

m (iω)2X1 = F1 + E1 ,

IR (iω)2X3 = F3 + E3 + S3 ,

}
(3.105)

where IR denotes the moment of inertia in roll, and in terms of various relations already proven, the force

components on the right-hand side can be written as follows:

F1 = T11X1 + T13X3 , F3 = T31X1 + T33X3 , Tij = −(iω)2Aij − iωBij ,

A13 = A31 , B13 = B31 = B11ℓw , B33 = B11ℓ
2
w , B11 = ρω|H+

1 |2 ,
E1 = ρgaH+

1 , E3 = ρgaH+
3 = ρgaH+

1 ℓw , S3 = −C33X3 .

 (3.106)

Substituting these in (3.105) and rearranging, the result may be written in the form[
S2 + i |H+

1 |2
]
X1 +

[
Q2 + i |H+

1 |2
]
ℓwX3 =

a

K
H+

1 , (3.107)[
Q2 + i |H+

1 |2
]
ℓwX1 +

[
R2 + i |H+

1 |2
]
ℓ2wX3 =

a

K
H+

1 ℓw , (3.108)

where S, Q, and R are defined as

−ω2(m+A11 ) ≡ ρω2S2 ,

−ω2A13 = −ω2A31 ≡ ρω2Q2ℓw ,

C33 − ω2( IR +A33) ≡ ρω2R2ℓ2w .

 (3.109)

To write the solution in a compact form corresponding to (3.103) and (3.104), let us define the following

symbols:

F 2 ≡ S2R2 −Q4

S2 +R2 − 2Q2
,

Tan−1 F 2

|H+
1 |2

≡ αQ , H
+
1F =

H+
1

F
.

 (3.110)

Then the solution of (3.107) and (3.108) can be expressed in the form

X1 + ℓwX3

a
=

1

KF

H+
1F{

1 + i|H+
1F |2

} =
| cosαQ |
iKH

+

1

eiαQ (3.111)

=
| cosαQ |
Ā1

eiδ1 , δ1 = αQ + ε1 . (3.112)

In the antisymmetric motion too, there must be resonance due to the restoring moment in roll, the

frequency of which can be given by putting F = 0 and thus αQ = 0.

We note that a combined form X1+ℓwX3 of the complex amplitude is important when considering the

wave generated by sway and roll, because the antisymmetric radiation wave can be computed as follows:

ζ+B = ζ+1 + ζ+3 = −iKX1H
+
1 − iKX3H

+
3

= −iK
(
X1H

+
1 +X3H

+
1 ℓw

)
= −iK

(
X1 + ℓwX3

)
H+

1 . (3.113)
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4. Theory of Wave Reflection and Absorption

Based on the knowledge acquired in the preceding chapter, the theory of wave absorption and perfect

reflection, which is one of the important subjects in ocean engineering, will be explained. The main

part of explanation here is to give a compact formula for the reflection and transmission waves and to

understand what is the essential condition for realizing the perfect reflection of incident waves.

4.1 Reflection and Transmission Waves for a Fixed Symmetric Body

The definition of the reflection and transmission waves was already given in section 3.4 for the case

of a general-shaped body which freely oscillates in waves. In this section, as the first step to deepen the

understanding, let us consider a symmetric body which is fixed in space.

y

x
o

Re[ζ  e           ]T
i(ωt+Kx)

Re[ae            ]i(ωt+Kx)
Re[ζ  e            ]R

i(ωt    Kx)-

Incident waveReflection waveTransmission wave

Fig.4.1 Reflection and transmission waves for a symmetric body.

As shown in Fig. 4.1, the incident wave is assumed to be incoming from the positive x-axis. For this

case, as given by (3.38) and (3.41), the coefficients of reflection wave R and transmission wave T are

defined as

R =
ζR
a

= iH+
4 (K), (4.1)

T =
ζT
a

= 1 + iH−
4 (K). (4.2)

Since a floating body is symmetric, (3.80) and (3.81) hold. Thus R and T defined above can be expressed

with the Kochin functions in the radiation problem as follows:

R =
1

2

[
H+

2

H
+

2

+
H+

1

H
+

1

]
, (4.3)

T =
1

2

[
H+

2

H
+

2

− H+
1

H
+

1

]
. (4.4)

It is noteworthy that the first and second terms in brackets represent the symmetric and antisymmetric

components, respectively, of the diffraction wave. Although H+
1 for the antisymmetric component can

be replaced with H+
3 , the result can be written eventually only with H+

1 because of the relation of

H+
3 = H+

1 ℓw.

It can be seen from (4.3) and (4.4) that the amplitude of the Kochin function has nothing to do with

R and T . To write this explicitly, we use the following expressions for the Kochin function

H+
1 =

i

K
Ā1 e

iε1 , H+
2 =

i

K
Ā2 e

iε2 . (4.5)
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From these, it follows that
H+

1

H
+

1

= − ei2ε1 ,
H+

2

H
+

2

= − ei2ε2 . (4.6)

Therefore, substituting these in (4.3) and (4.4), we can obtain the following expressions:

R = − 1

2

(
ei2ε2 + ei2ε1

)
= − cos(ε2 − ε1) e

i(ε2+ε1) , (4.7)

T = − 1

2

(
ei2ε2 − ei2ε1

)
= −i sin(ε2 − ε1) e

i(ε2+ε1) . (4.8)

It is obvious from these expressions that the relation of energy conservation |R |2 + |T |2 = 1 is satisfied

and also the energy equally-splitting law |R±T | = 1 is satisfied. These relations were already proven in

the preceding chapter in terms of Green’s theorem.

4.2 Reflection and Transmission Waves for a Freely Oscillating Symmetric Body

For the case where a symmetric body is freely oscillating in waves, the coefficients of reflection and

transmission waves can be computed from (3.37) and (3.40), by superimposing the radiation waves on

the diffraction waves R and T expressed by (4.3) and (4.4):

CR =
ζR
a

=
1

2

[
H+

2

H
+

2

+
H+

1

H
+

1

]
− iK

3∑
j=1

(Xj

a

)
H+

j , (4.9)

CT =
ζT
a

=
1

2

[
H+

2

H
+

2

− H+
1

H
+

1

]
− iK

3∑
j=1

(Xj

a

)
(−1)jH+

j . (4.10)

Here the complex motion amplitude Xj/a must be given as a solution of the equations of body motion.

To understand step by step, let us consider first the case where a body oscillates only in heave. The

analytical solution for the heave motion is provided by (3.103). Since the wave generated by heave is

symmetric, the symmetric wave component must be modified as follows:

A ≡ 1

2

H+
2

H
+

2

− iK
(X2

a

)
H+

2 =
1

2

H+
2

H
+

2

− i
(H+

2E)
2

1 + i|H+
2E |2

=
1

2

H+
2

H
+

2

{
1 + i|H+

2E |2 − 2iH+
2EH

+

2E

1 + i|H+
2E |2

}
=

1

2

H+
2

H
+

2

1− i|H+
2E |2

1 + i|H+
2E |2

. (4.11)

Therefore, the complex coefficients of reflection and transmission waves take the following form:

CR =
1

2

[
H+

2

H
+

2

1− i|H+
2E |2

1 + i|H+
2E |2

+
H+

1

H
+

1

]
, (4.12)

CT =
1

2

[
H+

2

H
+

2

1− i|H+
2E |2

1 + i|H+
2E |2

− H+
1

H
+

1

]
. (4.13)

It can be seen from these equations that even when the motion (heave) is free, the reflection and trans-

mission waves can be computed only with the phase. More specifically, since the phase of 1+ i
∣∣H+

2E

∣∣2 is

given from (3.102) and (3.104) in the form

Tan−1
∣∣H+

2E

∣∣2 =
π

2
− αH =

π

2
+ ε2 − δ2 , (4.14)

CR and CT can be written as follows:

CR =
1

2

{
− ei2ε2−iπ−i2(ε2−δ2) − ei2ε1

}
=

1

2

(
ei2δ2 − ei2ε1

)
= i sin(δ2 − ε1) e

i(δ2+ε1) , (4.15)

CT =
1

2

(
ei2δ2 + ei2ε1

)
= cos(δ2 − ε1) e

i(δ2+ε1) . (4.16)
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From these, as in the case of motion fixed, we can see that the relation of energy conservation |CR |2 +
|CT |2 = 1 and the energy equally-splitting law |CR ± CT | = 1 are satisfied.

At resonance of heave, αH = 0 thus δ2 = ε2. In this case, we can see from (4.15), (4.16) and (4.7),

(4.8) that the following relations hold:

CR,reso = i sin(ε2 − ε1) e
i(ε2+ε1) = −T

CT,reso = cos(ε2 − ε1) e
i(ε2+ε1) = −R

}
(4.17)

Namely, at resonance, the amplitude of reflection wave becomes equal to that of transmission wave for

the motion-fixed case, and likewise the amplitude of transmission wave becomes equal to that of reflection

wave for the motion-fixed case.

Next, let us fix the heave motion but allow the body motion in sway and roll. In this case, as explained

as (3.113), the antisymmetric wave generated by the body motion can be computed by

ζ+B = −iK
(
X1 + ℓwX3

)
H+

1 . (4.18)

Thus substituting the analytical result (3.111) for the combined motion of sway and roll in (4.18), we

can see that the antisymmetric wave component must be changed in the form

B ≡ 1

2

H+
1

H
+

1

− iK
{(X1

a

)
H+

1 +
(X3

a

)
H+

3

}
=

1

2

H+
1

H
+

1

− iK
X1 + ℓwX3

a
H+

1

=
1

2

H+
1

H
+

1

− i
(H+

1F )
2

1 + i|H+
1F |2

=
1

2

H+
1

H
+

1

1− i|H+
1F |2

1 + i|H+
1F |2

. (4.19)

Therefore from (4.9) and (4.10), the reflection and transmission waves can be expressed as

CR =
1

2

[
H+

2

H
+

2

+
H+

1

H
+

1

1− i|H+
1F |2

1 + i|H+
1F |2

]
, (4.20)

CT =
1

2

[
H+

2

H
+

2

− H+
1

H
+

1

1− i|H+
1F |2

1 + i|H+
1F |2

]
. (4.21)

As shown before for the case of heave only free, these results can be written only with the phase, because

the phase of 1 + i
∣∣H+

1F

∣∣2 is given from (3.110) and (3.112) as

Tan−1|H+
1F |

2 =
π

2
− αQ =

π

2
+ ε1 − δ1 .

Thus in the same way as in obtaining (4.14) and (4.15), the results may be written as

CR = − 1

2

(
ei2ε2 − ei2δ1

)
= −i sin(ε2 − δ1) e

i(ε2+δ1)

CT = − 1

2

(
ei2ε2 + ei2δ1

)
= − cos(ε2 − δ1) e

i(ε2+δ1)

 (4.22)

At resonance of sway-roll combined motion, αQ = 0 thus δ1 = ε1. In this case, we can see that

CR,reso = −i sin(ε2 − ε1) e
i(ε2+ε1) = T

CT,reso = − cos(ε2 − ε1) e
i(ε2+ε1) = R

}
(4.23)

This result is essentially the same as (4.17) for the case of heave only free except for negative sign.

Last, let us consider the general case when all modes of motion are free. In this case, the reflection

and transmission waves can be obtained easily from (4.12), (4.13), (4.20), and (4.21) and written in the

form

CR = A+ B =
1

2

[
H+

2

H
+

2

1− i|H+
2E |2

1 + i|H+
2E |2

+
H+

1

H
+

1

1− i|H+
1F |2

1 + i|H+
1F |2

]
, (4.24)

CT = A− B =
1

2

[
H+

2

H
+

2

1− i|H+
2E |2

1 + i|H+
2E |2

− H+
1

H
+

1

1− i|H+
1F |2

1 + i|H+
1F |2

]
. (4.25)
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These results can be rewritten only in terms of the phase of motions as follows:

CR =
1

2

(
ei2δ2 + ei2δ1

)
= cos(δ2 − δ1) e

i(δ2+δ1)

CT =
1

2

(
ei2δ2 − ei2δ1

)
= i sin(δ2 − δ1) e

i(δ2+δ1)

 (4.26)

It can be confirmed again that even in this case where all modes of motion are free, the relation of energy

conservation |CR |2 + |CT |2 = 1 and the energy equally-splitting law |CR ± CT | = 1 are satisfied.

More importantly, we can see from (4.26) that the perfect reflection and perfect transmission of an

incident wave can be realized, if the following relations are satisfied:

Perfect reflection : δ2 − δ1 = nπ (n = 0,±1, · · · )

Perfect transmission : δ2 − δ1 =
π

2
+ nπ

 (4.27)

That is to say, the perfect reflection for instance can be realized when the phase difference between the

symmetric (heave) and antisymmetric (sway and/or roll) motions is 0 or π, and the amplitude has nothing

to do with the conditions for perfect reflection and transmission.

4.3 Wave Drift Force

Up to the preceding section, what we call linear theory has been explained, assuming that both

amplitudes of incident wave and resulting unsteady motions of a body are small enough and considering

only the first-order terms. The wave drift force to be explained in this section is a time-averaged steady

force which is of second order proportional to the square of the incident-wave amplitude. The second-

order steady wave force can be computed only in terms of the linear velocity potential, and we need

not solve higher-order boundary-value problems. As will be shown later, the wave drift force is directly

related to the reflection-wave coefficient already studied.
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Fig. 4.2 Analysis for wave drift force.

Now let us apply the principle of momentum conservation to the fluid region shown in Fig. 4.2, bounded

by the body surface, free surface, water bottom, and control surfaces (Sc) indicated by dashed lines. In

the analysis, the shape of body is not necessarily symmetric with respect to the y-axis, and the incident
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wave is supposed to be incoming from the positive x-axis. The wave drift force is denoted by FD and

defined as positive when acting in the direction of incident-wave propagation.

【Note】Momentum Conservation Principle

Derivation of the equations to be obtained from the principle of momentum conservation can be

similar to that shown for the principle of energy conservation in Section 1.4. Since the momentum is a

vector quantity, let us denote its i-th component as Mi. Its rate of change with respect to time must

be considered in a Lagrangian way; that is, the transport theorem should be applied. Considering the

general 3D problem, we can write as follows:

dMi

dt
=

d

dt

∫∫∫
V (t)

ρui dV = ρ

∫∫∫
V

∂ui
∂t

dV + ρ

∫∫
S

ui Un dS, (4.28)

where ui is the i-th component of the fluid velocity, and Un is the normal velocity of the boundary surface

S, pointing out of the fluid volume under consideration.

Using the continuity equation (1.11) and Euler’s equation (1.14), it follows that

∂ui
∂t

= − ∂

∂xi

(
p

ρ
− gz

)
− ∂

∂xj

(
uj ui

)
. (4.29)

Substituting this into (4.28) and applying Gauss’ theorem, we have

dMi

dt
= −ρ

∫∫
S

[ p
ρ
ni + ui

(
un − Un

)]
dS. (4.30)

Here we note that the contribution of gz in (4.29) is zero, because only the horizontal components

(i = 1, 2) are considered.

The boundary surface encompassing the fluid volume consists of the body surface (SH), free surface

(SF ), and a control surface (SC) which is at rest and located far from the body. On these boundaries,

on SC Un = 0

on SH un = Vn = Un

on SF un = Un, p = 0

 (4.31)

must be satisfied. (The reference value of the pressure is taken as the atmospheric pressure.) Therefore

it follows that
dMi

dt
= −

∫∫
SH

p ni dS −
∫∫

SC

[
p ni + ρuiun

]
dS. (4.32)

Now let us consider the time average of the above over one cycle. Considering the entire fluid, the

time average of the left-hand side (the rate of change in time of the total momentum) must be zero,

because the time harmonic oscillation is assumed. Noting that the positive normal vector is directed

outward from the fluid region which is opposite to that in Chapter 3, we can see that the first term on

the right-hand side of (4.32) is negative of the force acting in the i-th direction on the body. Thus we

can write as follows:

Fi =

∫∫
SH

p ni dS = −
∫∫

SC

[
pni + ρuiun

]
dS. (4.33)

This relation tells us that the force on a floating body can be obtained from an integral on the control

surface far from the body. In general, the flow field near the body is complicated, whereas on the

control surface, local disturbances decay and only the progressive wave components remain, and hence

the analysis on the control surface becomes much simpler. This idea is referred to as the far-field method

and will be used for the analysis of the wave drift force.
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The analysis for the wave drift force is based on the momentum-conservation principle which is ex-

plained in Note above. Considering the 2-D case of the analysis, we can obtain the following:

FD = −
∫
SC

[
p nx + ρ uxun

]
dℓ (4.34)

where p denotes the pressure, and ux and un denote the x- and normal components of the fluid velocity,

respectively.

p = −ρ
[
∂Φ

∂t
+

1

2
∇Φ · ∇Φ− gy

]
(4.35)

ux un =
(∂Φ
∂x

)2
nx , η±∞ =

1

g

∂Φ

∂t

∣∣∣∣
y=0, x=±∞

(4.36)

Taking account of the above, substituting these into (4.34), and retaining the terms up to O(Φ2), we have

FD = ρ

[∫ η∞

0

−
∫ η−∞

0

](∂Φ
∂t

− gy
)
dy +

ρ

2

∫ ∞

0

dy

[(∂Φ
∂x

)2
−
(∂Φ
∂y

)2 ]x=+∞

x=−∞

=
1

2
ρg
(
η2∞ − η2−∞

)
+
ρ

2

∫ ∞

0

dy

[(∂Φ
∂x

)2
−
(∂Φ
∂y

)2 ]x=+∞

x=−∞
(4.37)

Here we consider time harmonic motions and hence the quantities are written in the form

Φ(x, y, t) = Re
{
ϕ(x, y) eiωt

}
η±∞ = Re

{
a±∞ eiωt

} }
(4.38)

with time-dependent part expressed as eiωt.

Performing the calculation of time average in terms of (1.75), (4.37) can be reduced to

FD =
1

4
ρg Re

{
a∞a

∗
∞ − a−∞a

∗
−∞

}
+
ρ

4
Re

∫ ∞

0

dy
[ ∂ϕ
∂x

∂ϕ∗

∂x
− ∂ϕ

∂y

∂ϕ∗

∂y

]x=+∞

x=−∞
(4.39)

where we note that there exist the incident and reflected waves at x = +∞ and the transmitted wave at

x = −∞. Thus we write as follows:

at x = +∞ a∞ = a eiKx + ζR e
−iKx , ϕ =

g

iω
e−Ky a∞ (4.40)

at x = −∞ a−∞ = ζT e
iKx , ϕ =

g

iω
e−Ky a−∞ (4.41)

Here we note that both ζT and ζR should be regarded as complex.

Necessary calculations at x = +∞ are

∂ϕ

∂x
= ω e−Ky( a eiKx − ζR e

−iKx ) ,
∂ϕ

∂y
= iω e−Ky( a eiKx + ζR e

−iKx )

a∞ a∗∞ = ( a eiKx + ζR e
−iKx )( a e−iKx + ζ∗R e

−iKx )

= a2 + |ζR|2 + 2Re( a ζR e
−i2Kx )

Therefore the result takes the following form:

F∞
D ≡ 1

4
ρgRe( a∞ a∗∞ ) +

1

4
ρRe

∫ ∞

0

dy

[
∂ϕ

∂x

∂ϕ∗

∂x
− ∂ϕ

∂y

∂ϕ∗

∂y

]
x=+∞

=
1

4
ρg
(
a2 + |ζR|2

)
+

1

2
ρgRe

(
a ζR e

−i2Kx
)

+
1

4
ρg

1

2

[
a2 + |ζR|2 − 2Re

(
a ζR e

−i2Kx
)
−
{
a2 + |ζR|2 + 2Re( a ζR e

−i2Kx)
}]

=
1

4
ρg
(
a2 + |ζR|2

)
(4.42)
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In the same way, calculations at x = −∞ are

∂ϕ

∂x
= ω e−Ky ζT e

iKx ,
∂ϕ

∂y
= iω e−Ky ζT e

iKx , a−∞ a∗−∞ = |ζT |2

Thus
F−∞
D ≡ 1

4
ρgRe

(
a−∞ a∗−∞

)
+
ρ

4
Re

∫ ∞

0

dy

[
∂ϕ

∂x

∂ϕ∗

∂x
− ∂ϕ

∂y

∂ϕ∗

∂y

]
x=−∞

=
1

4
ρg |ζT |2 +

1

4
ρg

1

2

{
|ζT |2 − |ζT |2

}
=

1

4
ρg|ζT |2 (4.43)

Substituting these into (4.39) gives the following result:

FD = F∞
D − F−∞

D =
1

4
ρg
(
a2 + |ζR|2 − |ζT |2

)
=

1

4
ρga2

(
1 + |CR|2 − |CT |2

)
(4.44)

On the other hand, the relation of energy conservation |CR |2 + |CT |2 = 1 is satisfied even when the

body motion is free to respond in waves. Thus substituting this relation into the above, we can obtain

finally the calculation formula for the wave drift force in the form

FD
1
2ρga

2
≡ F ′

D = |CR|2 (4.45)

We can see from this result that the normalized wave-drift force can be computed with square of the

reflection-wave coefficient; which is positive, implying that a floating body may drift to the downwave

side (in the same direction of incident-wave propagation) while reflecting the incident wave.

Suppose that a floating-type breakwater is designed such that a larger part of the incident wave will

be reflected with little transmission of the wave. This floating breakwater is efficient in its performance,

but we should realize that the more the performance is efficient, the larger the wave-drift force acts, and

consequently the tension force acting on a mooring line becomes larger, as implied from (4.45),

By the way, in the analysis above, the principle of energy conservation was applied in the transformation

from (4.44) to (4.45). However, as will be studied in the next section, in the presence of energy dissipation

(for instance when the absorption of wave energy is made by an exterior mechanical system), what form

of the energy relation should be? In order to answer this question, let us consider the energy relation

again by denoting the energy dissipation as ∆E. First we start with the equation from (1.38)

∆E = −ρ
[ ∫

S∞

+

∫
S−∞

]
∂Φ

∂t

∂Φ

∂n
dℓ

= − 1

4
ρω Im

∫ ∞

0

dy

[
ϕ
∂ϕ∗

∂x
− ϕ∗

∂ϕ

∂x

]x=+∞

x=−∞
(4.46)

Then, since we have
ϕ =

g

iω
e−Ky

(
a eiKx + ζR e

−iKx
)

∂ϕ∗

∂x
= ω e−Ky

(
a e−iKx − ζ∗R e

iKx
)
 as x→ +∞ (4.47)

ϕ =
g

iω
e−KyζT e

iKx

∂ϕ∗

∂x
= ω e−Ky ζ∗T e

−iKx

 as x→ −∞ (4.48)
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we can substitute these results into (4.46), providing the following relation:

∆E =
1

4

ρgω

K

(
a2 − | ζR |2 − | ζT |2

)
=

1

4
ρga2

ω

K

(
1− |CR |2 − |CT |2

)
(4.49)

We can see naturally from this result that the well-known energy conservation, |CR |2 + |CT |2 = 1,

can be obtained for the case of ∆E = 0. On the other hand, if ∆E =/ 0, in terms of the energy loss η

defined by

η ≡ ∆E

EW
= 1− |CR |2 − |CT |2,

(
EW =

1

4
ρga2

ω

K

)
(4.50)

we can have a generalized expression after substituting the above relation into (4.44), in the form

FD
1
2 ρga

2
= F ′

D = |CR |2 + 1

2
η (4.51)

According to this formula, we can see that the wave drift force can not be zero, even if the complete

absorption of wave energy can be realized.

4.4 Theory for Wave Absorption by a Symmetric Floating Body

The coefficients of reflection and transmission waves for the case when a symmetric body is freely

oscillating in waves can be computed from (4.9) and (4.10). In this section, we consider how both

reflection and transmission waves can be completely zero by using an active control for the complex

amplitude of body motion.

For brevity in the analysis, instead of (4.9) and (4.10), we separate the wave into symmetric and

anti-symmetric components, as shown in (3.100). The result takes the form

Symmetric wave =
1

2

(
CR + CT

)
=

1

2

H+
2

H
+

2

− iK
(Y
a

)
H+

2 (4.52)

Anti-symmetric wave =
1

2

(
CR − CT

)
=

1

2

H+
1

H
+

1

− iK
(XG + ℓnΘ

a

)
H+

1 (4.53)

Here the result of (4.18) has been used in (4.53).

Since making both reflection and transmission waves zero is equivalent to making both symmetric

and anti-symmetric waves zero, we can see from (4.52) and (4.53) that the complex amplitude of body

motions must be of the following values:

Y =
1

2

a

iKH
+

2

=
1

2

a

ĀH
eiεH (4.54)

XG + ℓnΘ =
1

2

a

iKH
+

1

=
1

2

a

ĀS
eiεS (4.55)

We can recognize that (4.54) is just half the complex amplitude of heave at resonance. Similarly, (4.55)

is half the complex amplitude of anti-symmetric motion at its resonance.

Next, let us consider how the conditions (4.54) and (4.55) for perfect wave absorption can be realized

in a practical situation. First we consider (4.54) for the problem of symmetric motion.

As depicted in the left of Fig. 4.3, we introduce an exterior mechanical system consisting of mass,

dashpot, and spring. Denoting the coefficients in the inertia force, damping force, and restoring force
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Fig. 4.3 Wave absorption problem by a symmetric floating body.

with µ2, ν2, and κ2, respectively, the motion equations of a floating body and an exterior mechanical

system may be expressed as follows:

µ2 ÿ + ν2 ẏ + κ2 y = −R

(m+A22) ÿ +B22 ẏ + ρgB y = E2 e
iωt +R

}
(4.56)

Therefore, by eliminating an internal force denoted as R, it follows that(
m+A22 + µ2

)
ÿ +

(
B22 + ν2

)
ẏ +

(
ρgB + κ2

)
y = E2 e

iωt (4.57)

where we will introduce the following relations

B22 = ρω|H+
2 |2, E2 = ρgaH+

2

and notations for making equations compact

ν2 ≡ β2B22 = β2 ρω|H+
2 |2

ρgB + κ2 − ω2
(
m+A22 + µ2

)
≡ ρω2E2

}
(4.58)

Then in a similar way to deriving (3.104) and (3.112), the complex amplitude of heave motion Y in the

expression of y = Y eiωt can be given in the following form:

KY =
a H+

2

E2 + i(1 + β2)|H+
2 |2

(4.59)

In order for the complex amplitude given by the above result to be equal to (4.54), we can see that E = 0

and β2 = 1. Namely, as instructed from (4.58), we should tune the values of κ2 and µ2 to make the heave

motion be resonant and tune the value of ν2 (exterior damping coefficient) in a way that ν2 becomes

equal to the wave-making damping coefficient of the floating body.

This condition for perfect wave absorption may be expressed in a different way. First we introduce

“mechanical impedance” for each of the motion equations as follows:

Z22 ≡ B22 +
1

iω

{
ρgB − ω2(m+A22)

}
Ze
2 ≡ ν2 +

1

iω

{
κ2 − ω2µ2

}
 (4.60)

Then the conditions of E = 0 and β2 = 1 (i.e. B22 = ν2) are equivalent to the following condition:

Z22 = Ze
2 (4.61)
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where the overbar means the complex conjugate. This relation is known as the “conjugate matching”

of the impedance. By the way, the motion equation corresponding to (4.59) may be rewritten with the

mechanical impedance in the following form:(
Z22 + Ze

2

)
iωY = E2 (4.62)

Up to this point, we could absorb the wave energy of symmetric component around a symmetric

floating body with the condition of (4.54). This wave energy must be equal to the work done by the

exterior mechanical system. To see the amount of absorbed energy, let us calculate the rate of work done

by the exterior damping force. Using (4.59) and (4.61), we can obtain the following result:

W2 =
1

T

∫ T

0

ν2 ẏ dy =
1

2
ν2 ω

2|Y |2 =
1

2

( g
ω

)2
ν2 |KY |2 =

1

2
ν2

|E2|2

|Z22 + Ze
2 |2

(4.63)

= EW
2β2|H+

2 |4

|E2 + i(1 + β2)|H+
2 |2|2

, (4.64)

where
EW =

1

2
ρga2 cg =

1

2
ρga2

g

2ω
=

1

4

ρg2a2

ω
. (4.65)

This quantity EW is the mean rate of energy flux of incident wave per unit area on the mean free surface,

see (1.76). For the case of E = 0 and β2 = 1, the rate of work given by (4.64) reduces to the following

W2 =
1

2
EW (4.66)

Namely, half of the incident-wave energy per unit time can be absorbed by controlling the symmetric

motion of a symmetric body. The remaining half is expected to be absorbed by controlling the anti-

symmetric motion of a symmetric body, which will be shown in what follows.

Before going further, however, a coupled of notes should be mentioned. First, by considering (4.64)

as a function of β2 (where β2 > 0), its maximum can be achieved at E = 0 and β2 = 1; that is, when

the perfect wave absorption is realized, the amount of absorbed wave energy is at its maximum. Second,

(4.63) expressed with the mechanical impedance is valid also for 3-D problems, not necessarily limited to

2-D problems.

Now let us consider the case of the right in Fig. 4.3, with a horizontal exterior mechanical system

applied. The reaction force from the exterior system is set to act at a point with moment lever ℓ from

the center of gravity G. Then the coupled motion equations of the exterior mechanical system and

anti-symmetric body motions (sway and roll) may be expressed in the form

µ1

(
ẍG + ℓϕ̈

)
+ ν1

(
ẋG + ℓϕ̇

)
+ κ1

(
xG + ℓϕ

)
= −R1(

m+A11

)
ẍG +B11 ẋG +A11ℓmϕ̇+B11ℓnϕ̇ = ρgaH+

1 e
iωt +R1(

I + IR
)
ϕ̈+B11ℓ

2
n ϕ̇+W GM ϕ+A11ℓm ẍG +B11ℓn ẋG = ρgaH+

1 ℓn e
iωt +R1ℓ

 (4.67)

Eliminating the reaction force from these, we can obtain the following:(
m+A11 + µ1

)
ẍG +

(
B11 + ν1

)
ẋG + κ1 xG

+
(
A11ℓm + µ1ℓ

)
ϕ̈+

(
B11ℓn + ν1ℓ

)
ϕ̇+ κ1ℓ ϕ = ρgaH+

1 e
iωt (4.68)(

I + IR + µ1ℓ
2
)
ϕ̈+

(
B11ℓ

2
n + ν1ℓ

2
)
ϕ̇+

(
WGM + κ1ℓ

2
)
ϕ

+
(
A11ℓm + µ1ℓ

)
ẍG +

(
B11ℓn + ν1ℓ

)
ẋG + κ1ℓ xG = ρgaH+

1 ℓn e
iωt (4.69)
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Here we introduce the following notations for simplifying the results

ν1 ≡ β1 B11 = β1 ρω|H+
1 |2

κ1 − ω2(m+A11 + µ1) ≡ ρω2S2

κ1ℓ− ω2(A11ℓm + µ1ℓ ) ≡ ρω2Q2ℓn

κ1ℓ
2 +WGM − ω2(I + IR + µ1ℓ

2) ≡ ρω2R2ℓ2n
F 2 = (S2R2 −Q4)/(S2 +R2 − 2Q2)


(4.70)

Then the same transformation as for obtaining (3.111) provides the following compact expression:

K
(
XG + ℓnΘ

)
=

aH+
1

F 2 + i(1 + β1ℓ/ℓn)|H+
1 |2

(4.71)

We can see from this result that (4.55) can be realized with F = 0 and β1ℓ/ℓn = 1. In this particular

case, the rate of work to be done by the exterior damping force can be found to be

W1 = EW
2β1|H+

1 |4

|F 2 + i(1 + β1ℓ/ℓn)|H+
1 |2|2

−→ 1

2
EW (4.72)

Therefore, summing up (4.66) and (4.72), we have

(W1 +W2)max = EW (4.73)

This means that, as expected, the total wave energy could be absorbed by controlling both symmetric

and anti-symmetric motions of a symmetric body independently.

4.5 Wave Absorption by a One-side Waveless Body

O

y

a
x

νκ

µ

ζR

Fig. 4.4 Wave absorption by a one-side waveless body.

　 The independent optimal control de-

scribed above is actually cumbersome in

practice. Thus in the present section,

we will consider an asymmetric floating

body, especially the so-called “one-side

waveless body” which generates no wave

at all in one direction even when a body

is forcedly oscillated.

　 For simplicity, let us analyze the

heave motion of this waveless body, with

an exterior mechanical system applied

as shown in Fig. 4.4. As before, the

coefficients of inertia force, damping

force, and restoring force are denoted as

µ, ν, and κ, respectively. Then the motion equation of this floating body can be written in a form similar

to (4.57) as follows: (
m+A22 + µ

)
ÿ +

(
B22 + ν

)
ẏ +

(
ρgB + κ

)
y = E2 e

iωt (4.74)

Let us assume and consider a waveless body which generates no wave in the negative x-axis (downwave

side). In this case H−
2 (K) = 0 and hence the heave damping coefficient of the body and the wave-exciting
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force in heave are expressed from (3.61) and (3.75) respectively, in the form

B22 =
1

2
ρω
{
|H+

2 |2 + |H−
2 |2
}
=

1

2
ρω |H+

2 |2 (4.75)

E2 = ρgaH+
2 (4.76)

Furthermore, since the relation of (3.79) takes the following form for the present case

H+
2 = H

+

2 R+H
−
2 T = H

+

2 R, (4.77)

it is obvious that |R | = 1 and hence |T | = 0 from the principle of energy conservation (3.70). Namely

even when the motions are fixed, a one-side waveless body does not transmit an incident wave (not

generate the wave in the negative x-axis). Taking account of this fact, when the heave motion of this

waveless body is free in waves, the coefficients of reflection and transmission waves can be written from

(3.37) and (3.40) respectively, in the following form:

CR = R− iK
(Y
a

)
H+

2 =
H+

2

H
+

2

− iK
(Y
a

)
H+

2 (4.78)

CT = T − iK
(Y
a

)
H−

2 = 0 (4.79)

Substituting (4.75) and (4.76) in (4.74) and defining the notations of β and E by

ν ≡ β B22 = β
1

2
ρω |H+

2 |2

ρgB + κ− ω2
(
m+A22 + µ

)
≡ ρω2E2

 (4.80)

the complex amplitude Y in the expression of heave motion y = Y eiωt can be given in the form

KY =
aH+

2

E2 + i(1 + β) 12 |H
+
2 |2

(4.81)

Thus substituting this result into (4.78) gives the following result

CR =
H+

2

H
+

2

− i
(H+

2 )2

E2 + i(1 + β) 12 |H
+
2 |2

(4.82)

It can be seen from this result that CR = 0 if E = 0 and β = 1. In this case, CT = 0 from (4.79).

Therefore the perfect wave absorption is realized.

In terms of (4.81), let us calculate the work done per unit time (i.e. the absorbed wave power) by

the exterior mechanical system; which can be performed by substituting (4.81) in (4.64) and the result

reduces to

W =
1

2

( g
ω

)2
ν |KY |2 = EW

β |H+
2 |4

|E2 + i(1 + β) 12 |H
+
2 |2|2

−→ EW (4.83)

This means that, if the body shape is asymmetric and one-side waveless, the perfect absorption of the

wave energy can be realized only with a single mode of body motion (heave in the present analysis). This

feature is very advantageous from a viewpoint of controlling the body motion. However, the body shape

for one-side waveless must vary depending on the wavelength (frequency) of incident wave. Therefore, in

order to enhance the efficiency in the wave-energy absorption over a wider spectrum of wave frequencies,

we need to devise more.

With that consideration, let us consider next a way for realizing the one-side waveless condition simply

by using a symmetric body.
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Fig. 4.5 How to realize the condition of one-side waveless using a symmetric body.

4.6 One-side Waveless Condition with a Symmetric Body

As depicted in the left of Fig. 4.5, we consider a radiation (forced oscillation) problem in which a

vertical external force F0 is applied at the point away from the origin with x0 = ℓ, which induces the

heave and roll motions simultaneously. For a more general case, the position where a vertical external

force applies must be (x0, y0) and y0 =/ 0. In this case, the analysis may be more complicated, because

the origin has the sway velocity. Thus, for simplicity, explanation in the present section will be made

with parameter to be determined taken as ℓ only.

By use of mechanical impedance as in (4.62), the coupled motion equations in this special radiation

problem can be written in the form

Z2 iωY = F0

Z3 iωΘ = F0 ℓ

}
(4.84)

Here the mechanical impedances Z2 and Z3 are specifically given as follows:

Z2 = B22 +
1

iω

{
ρgB − ω2

(
m+A22

)}
= ρω

{
|H+

2 |2 − iE2
}
= ρω|H+

2 |2 secαH e−iαH (4.85)

Z3 = B33 +
1

iω

{
WGM − ω2

(
I + IR

)}
= ρωℓ2w

{
|H+

1 |2 − iR2
}
= ρωℓ2w |H+

1 |2 secαR e
−iαR (4.86)

and the phases αH and αR of the impedance are defined as

ρgB − ω2
(
m+A22

)
≡ ρω2E2, tanαH =

E2

|H+
2 |2

W GM − ω2
(
I + IR

)
≡ ρω2ℓ2wR

2, tanαR =
R2

|H+
1 |2

 (4.87)

With these preparations, let us calculate the wave elevation propagating in the negative x-axis ζ−.

Since the outgoing radiation wave generated by the forced oscillation can be computed from (3.16) and

the modes of motion are heave and roll, we can have the following

ζ− = ζ−2 + ζ−3 = iK
{
Y H−

2 +ΘH−
3

}
= −iK

{
Y H+

2 −ΘℓwH
+
1

}
= −ω

g
F0

[ H+
2

Z2
− ℓ

ℓwH
+
1

Z3

]
(4.88)
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Therefore, for realizing the one-side waveless condition (i.e. for the condition of ζ− = 0), the value of ℓ

should be of the following form

ℓ =
Z3H

+
2

Z2ℓwH
+
1

= ℓw
H

+

1 secαR

H
+

2 secαH

ei(αH−αR)

= ℓw
ĀS secαR

ĀH secαH
ei(αH−αR)+i(εH−εS) (4.89)

Because ℓ must be real, we can see that the condition of one-side waveless must satisfy the following

αH − αR + εH − εS = nπ (n = 0,±1,±2, · · ·) (4.90)

This condition is expressed only with the phases of the Kochin function and mechanical impedance,

which can also be expressed with the phases of symmetric and anti-symmetric body motions. That is,

αH + εH = δ2 from (3.104) and αR + εS = δ1 from (3.112). Therefore, we can see that (4.90) can be

rewritten as follows:

δ2 − δ1 = nπ (n = 0,±1,±2, · · ·) (4.91)

This relation is the same as (4.27), the condition for perfect reflection for a symmetric body; which implies

that we can realize the one-side waveless condition by use of a symmetric floating body which is adjusted

to realize the perfect wave reflection!

Once the body shape is given, the Kochin function (i.e. εH and εS) will be uniquely computed. Thus

in order to satisfy (4.90), αH and αR should be adjusted; which may be possible in practice by changing

the restoring force with mooring lines or by changing E or R defined in (4.87).

When the one-side waveless condition is realized, the complex amplitude of generated wave propagating

to the opposite (positive x in the present analysis) direction ζ+ can be given as follows:

ζ+ = ζ+2 + ζ+3 = −iK
{
Y H+

2 +ΘℓwH
+
1

}
= −F0

2 eiαH

ρgH
+

2 secαH

= −F0 2i
K

ρg

ei(αH+εH)

ĀH secαH
(4.92)

From this result, we can see that the vertical external force F0 should be given in terns of ζ+ as follows:

F0 = −1

2
ρgζ+H

+

2 secαH e−iαH = i
ρgζ+

2K
ĀH secαH e−i(αH+εH) (4.93)

Now that the condition of one-side waveless could be realized with a symmetric body, the subsequent

analysis can be the same as that for an asymmetric one-side waveless body. Namely, as depicted in the

right of Fig. 4.5, an external mechanical system should be equipped at the point of x = ℓ to be given by

(4.89) and (4.90), and then the heave motion should be made resonant by adjusting κ and µ, and the

external damping coefficient ν should be made equal to the wave-making damping coefficient of a floating

body under consideration. In order to confirm this, let us analyze more specifically the wave absorption

problem depicted in Fig. 4.5.

The reaction force between a floating body and an external mechanical system is denoted as F1. Then

the coupled motion equations in waves can be expressed as

Z2 iωY = ρgaH+
2 + F1 (4.94)

Z3 iωΘ = ρga ℓwH
+
1 + F1 ℓ (4.95)[

ν +
1

iω

(
κ− ω2µ

)]
iωY ≡ Ze

2 iωY = −F1 (4.96)
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where Z2 and Z3 are the mechanical impedances given by (4.85) and (4.86), and the wave-exciting force

and moment on the right-hand side are expressed with Haskind-Newman’s relation.

In order for the symmetric wave component to be perfectly absorbed, the complex amplitude Y in

heave must be equal to (4.54). In this case, by calculating the reaction force F1 from (4.94), we can

obtain the following result:

F1 =
ga

2ω

Z2

H
+

2

− ρgaH+
2 = −ρga |H

+
2 |2 + iE2

2H
+

2

= − 1

2
ρgaH+

2 secαH eiαH = −i ρga
2K

ĀH secαH ei(αH+εH) (4.97)

We may calculate F1 from (4.95) in terms of (4.55) for perfect absorption of the anti-symmetric wave

component and (4.89)–(4.90) for the one-side waveless condition. Even in this case, we can confirm that

the result will be the same as (4.97). Therefore we can conclude that the perfect wave absorption can be

achieved by controlling the values of µ，ν, and κ such that F1 given by (4.96) becomes equal to (4.97).

Those conditions may be confirmed to be the same as the conjugate matching of the mechanical

impedance, already given as (4.61). Namely

Ze
2 = Z2

that is, ν = B22 = ρω|H+
2 |2, κ− ω2µ = −ρω2E2

}
(4.98)

When these are satisfied, by use of (4.96) and (4.85) we can easily confirm that the resulting F1 becomes

equal to (4.97).

What should be noted here is that the reaction force F0 in the forced oscillation for realizing the

one-side waveless condition (which is given by (4.93)) is complex conjugate of F1 given by (4.97). To

understand the physical meaning of this relation, first we recall that the time-dependent part was assumed

to be eiωt and only the real part of the product of spatial (or complex amplitude) and time-dependent

parts should be taken. Thus considering the complex conjugate of F0 is equivalent to write as follows:

Re
[
F 0 e

iωt
]
= Re

[
F0 e

−iωt
]
= Re

[
F1 e

iωt
]
. (4.99)

This relation means that reversing the time in the radiation problem is equivalent to considering the wave

absorption problem; that is, the reciprocity relation holds in the linear wave theory.

To summarize the above, we need not consider explicitly the diffraction problem and only the infor-

mation of the radiation problem combined with various hydrodynamic relations suffices for the analysis

in the wave-energy absorption problem.

4.7 Revisiting Wave-energy Absorption Theory

In order to make clearer what is noted in the last paragraph of the preceding section, let us revisit the

wave absorption problem and analyze in a different manner. First, as explained in connection with the

wave drift force in Section 4.3, the energy relation in the case of absorbing the wave energy with certain

method is expressed in the form

∆E

EW
≡ η = 1− |CR |2 − |CT |2 (4.100)

where
EW =

1

2
ρga2

ω

2K
=

1

2
ρga2 cg (4.101)

is the wave power of incident wave per unit area on the free surface, and hence η defined in (4.100) may

be regarded as the efficiency of wave-energy absorption.
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By the way, the coefficients of reflection and transmission waves can be computed from (3.37) and

(3.40), respectively; these may be expressed as

CR = R− iKXjH
+
j , CT = T − iKXjH

−
j (4.102)

Here Xj is meant to be normalized as Xj/a and the summation sign with respect to index j is deleted

for simplicity, with the summation convention that any term containing the same index twice should be

summed over that index.

In the analysis to follow, we will need the following hydrodynamic relations:

H
+

j R+H
−
j T = H+

j (4.103)

|R |2 + |T |2 = 1 (4.104)

These are already proven as (3.79) and (3.70). Then from (4.102) we have the followings:

|CR |2 = |R |2 − iKXjH
+
j R+ iKXjH

+

j R+ |KXjH
+
j |2

|CT |2 = |T |2 − iKXjH
−
j T + iKXjH

−
j T + |KXjH

−
j |2

 (4.105)

Substituting these into (4.100) and taking account of (4.103) and (4.104), we have

η = 2Re
{
iKXjH

+

j

}
−K2|Xj |2

(
|H+

j |2 + |H−
j |2

)
≡ 2Re (γ)− |γ|2

1− δ
(4.106)

where γ ≡ iKXjH
+

j , 1− δ =
|H+

j |2

|H+
j |2 + |H−

j |2
> 0 (4.107)

Here we note that δ is defined only with the Kochin function and thus can be determined uniquely,

once the body shape is given. On the other hand, γ includes the complex amplitude of body motion Xj

and the wave absorption efficiency η may vary depending on the value of γ. By viewing (4.106) as a

function of γ, we can see that the maximum of η is taken if γ = 1 − δ. Therefore the maximum of the

wave absorption efficiency is given as

ηmax = γmax = 1− δ =
|H+

j |2

|H+
j |2 + |H−

j |2
(4.108)

Next, let us consider CR and CT when the maximum in the wave absorption efficiency is achieved.

Since γ is of real quantity for the case of (4.108), we can transform |CR |2 in (4.105) in the form

|CR |2 = |R |2 −Rγ H+
j /H

+

j −Rγ H
+

j /H
+
j + γ2 (4.109)

On the other hand, eliminating T from (4.103) and (4.104), we have the following:

|R |2
{
|H+

j |2 + |H−
j |2

}
= RH

+2

j +RH+2
j + |H−

j |2 − |H+
j |2 (4.110)

By substituting this relation in (4.109) and using the definition of (4.108), the following result may be

obtained

|CR |2 = 1− 2 γ + γ2 = (1− γ)2 = δ2 (4.111)

|CT | expressed in a similar way can be obtained by substituting (4.108) and (4.111) into (4.100), and

the result takes the form

|CT |2 = 1− |CR |2 − η = γ
(
1− γ

)
=
(
1− δ

)
δ (4.112)
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Namely |CR | = 1− γ = δ

|CT | =
√
γ(1− γ) =

√
δ(1− δ)

}
(4.113)

Looking at the results obtained so far in this section, we see that all results are described only with

quantities in the radiation problem, irrespective of whether the body is fixed or free to respond in waves.

Considering a one-side waveless body with H−
j = 0, it is obvious from (4.108) that ηmax = 1 is achieved

only with a single j-th mode of motion. In this case, δ = 0 and γ = 1 and hence from (4.107), it follows

that

Xj =
1

iKH
+

j

(4.114)

This result for the complex amplitude of the j-th mode of motion is the same as that at resonance and

can be obtained from (4.81) for the case of E = 0 and β = 1. In this case, it is also obvious from (4.113)

that |CR | = |CT | = 0, implying that the perfect wave absorption is realized.

Furthermore, for a symmetric body, H+
j = (−1)jH−

j holds and thus from (4.108) we have ηmax = 1/2,

which is the result already explained in Section 4.4. In this case, we can see from (4.113) that |CR | =
|CT | = 1/2.
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5. Wave Interaction Theory among Multiple Bodies

Wave interactions will be important in the analysis for a catamaran or an offshore structure composed

with multiple colums. This chapter is concerned with the so-called wave-interaction theory that can

compute interaction effects among multiple bodies only with the diffraction characteristics of elementary

bodies. In order to focus on the essence of the theory, explanation in this chapter is limited to 2D

problems.

5.1 Diffraction Characteristics of Elementary Bodies

In the wave-interaction theory, all waves reflected by other bodies but incoming to the body under

consideration are regarded as incident waves. Thus it is a premise that the diffraction characteristics

of each elementary body to “generalized” incident waves (not only propagating but also evanescent

components) are known. The calculation method for the diffraction problem was already explained in

Chapter 2 but for subsequent convenience, let us summarize it again here.

1st i-body

L

x

j-body N-th

y

o
x

ij

Lj j xNxix1

Incident 

wave

Fig. 5.1 Coordinate system and notations for multiple-body problem.

The number of bodies and the shape of each body can be arbitrary in the theory. However, for

simplicity, it is assumed that the shape of elementary bodies is identical and symmetric with respect to

the centerline of the body. Thus it is enough to know the diffraction characteristics for one body.

The velocity potential is expressed as

Φ(x, y, t) = Re

[
ga

iω

{
ϕI(x, y) + ϕS(x, y)

}
eiωt

]
ϕD(x, y) = ϕI(x, y) + ϕS(x, y)

 (5.1)

Here ϕI denotes the velocity potential of an incident wave incoming from outside, ϕS is the scattering

potential, and ϕD is the sum of those which is referred to as the diffraction potential.

Then the diffraction potential ϕD is governed by the Laplace equation and must satisfy appropriate

boundary conditions; those are written as follows:

[H]
∂ϕD
∂n

= 0 on SH (5.2)

[F ]
∂ϕD
∂y

+KϕD = 0 on y = 0, K =
ω2

g
(5.3)

[B]
∂ϕD
∂y

= 0 on y = h (5.4)
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where the water depth is denoted as h but it may be treated as h→ ∞ afterward.

When applying Green’s theorem, we should note that the radiation condition of outgoing waves to be

satisfied at infinity (S∞) is not satisfied by ϕD, because ϕD includes ϕI representing the incoming wave.

Thus we obtain the following:

CϕD(P) +

∫
SH

ϕD(Q)
∂

∂nQ
G(P;Q) ds(Q) =

∫
S∞

{
∂ϕD(Q)

∂nQ
− ϕD(Q)

∂

∂nQ

}
G(P;Q) ds(Q) (5.5)

Here C is called the solid angle, equal to 1 when the field point P(x, y) is located in the fluid region and

equal to 1/2 when P(x, y) is on a smooth surface of the body. G(P;Q) denotes the free-surface Green

function and for the case of finite water depth h, it may be expressed as follows:

G(P;Q) = i C0 Y0(y)Y0(η) e
−ik0|x−ξ| +

∞∑
n=1

Cn Yn(y)Yn(η) e
−kn|x−ξ| (5.6)

where C0 =
k0

K + h(k20 −K2)
Cn =

kn
K − h(k2n +K2)

Y0(y) =
cosh k0(y − h)

cosh k0h
, Yn(y) =

cos kn(y − h)

cos knh

 (5.7)

k0 tanh k0h =
ω2

g
= K, kn tan knh = −K (5.8)

(5.8) is the dispersion relation for finite water depth, and k0 = K and C0 = 1 at h→ ∞.

Let us consider the right-hand side of (5.5) for ϕS and ϕI separately. Since ϕS satisfies the radiation

condition of outgoing wave and ϕI has nothing to do with the presence of a body, we have the following

relations:

0 =

∫
S∞

{
∂ϕS(Q)

∂nQ
− ϕS(Q)

∂

∂nQ

}
G(P;Q) ds(Q) (5.9)

ϕI(P) =

∫
S∞

{
∂ϕI(Q)

∂nQ
− ϕI(Q)

∂

∂nQ

}
G(P;Q) ds(Q) (5.10)

Thus, summing up these two, we see that the right-hand side of (5.5) can be expressed simply as ϕI and

hence we can obtain the following:

CϕD(P) +

∫
SH

ϕD(Q)
∂

∂nQ
G(P;Q) ds(Q) = ϕI(P) (5.11)

This equation can be regarded as an integral equation for ϕD on the body surface, when the field point

P(x, y) is located on the body surface (i.e. C = 1/2). It is important to note that the necessary (satisfying)

conditions for ϕI on the right-hand side of (5.11) are the Laplace equation and the free-surface boundary

condition; that is, the radiation condition needs not to be satisfied and thus evanescent waves can also

be included in ϕI , not necessarily propagating waves only.

For this kind of “generalized” incident waves, the corresponding scattering potential ϕS can be com-

puted and expressed with C = 1 in (5.11), in the form

ϕS(x, y) = −
∫
SH

ϕD(Q)
∂

∂nQ
G(P;Q) ds(Q)

= A±
0 Y0(y) e

∓ik0x +
∞∑

n=1

A±
n Yn(y) e

∓knx (5.12)

where A±
0 = − i C0

∫
SH

ϕD(ξ, η)
∂

∂n
Y0(η) e

±ik0ξ ds(ξ, η)

A±
n = −Cn

∫
SH

ϕD(ξ, η)
∂

∂n
Yn(η) e

±knξ ds(ξ, η)

 (5.13)
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and the double sign (±) should be taken according as x > 0 and x < 0, respectively.

if the incident-wave potential ϕI is known (explicitly given), coefficients A±
0 and A±

n in (5.13) can be

computed directly. However, as in the wave-interaction problem explained here, the complex amplitude

of the waves reflected by other bodies is unknown until the problem will be solved, but these reflected

waves must be treated as incident waves when viewed from the body concerned. To resolve this situation,

we separate the complex amplitude from the other function part of spatial variables and write (5.12) in

the following matrix form:

ϕiS(xi, y) =
{
Ai

}T{
ψi
S(xi, y)

}
(5.14)

Here index i is used to denote the i-th body (see Fig. 5.1), and
{
Ai

}T
represents a vector consisting of

unknown coefficients
{
A+

i0, A
−
i0, A

+
in, A

−
in

}
(n = 1, 2, · · · ) in the scattering potential. On the other hand,{

ψi
S(xi, y)

}
is defined as

{
ψi
S(xi, y)

}
=


u(+xi)Y0(y) e

−ik0xi

u(−xi)Y0(y) eik0xi

u(+xi)Yn(y) e
−knxi n = 1, 2, · · ·

u(−xi)Yn(y) eknxi n = 1, 2, · · ·

 (5.15)

which is the vector consisting of the function part of the scattering potential, where { }T means the

transpose and u(x) is the unit step function equal to 1 for x > 0 and zero for x < 0.

By the way, (5.14) and (5.15) are the exact expression, but the effects of evanescent-wave components

are very small in practice due to exponential decay except when the bodies are extremely in close prox-

imity. Therefore it is practical to neglect the evanescent components of n ≥ 1 and to consider only the

progressive components in treating the reflected wave by other bodies as an incident wave.

5.2 Diffraction Problem of Multiple Bodies

Let us consider the diffraction problem first, where all bodies are fixed and, as in Fig. 5.1, the incoming

wave from outside is assumed to be propagating from the positive x-axis. Normalizing the velocity

potential of this incident wave as in (5.1), it can be written as

ϕI(x, y) = Y0(y) e
ik0x (5.16)

Rewriting this with the j-th local coordinate system, we have

ϕI(xj , y) = eik0Lj Y0(y) e
ik0xj

=
{
0, eik0Lj

}{ Y0(y) e
−ik0xj

Y0(y) e
ik0xj

}
≡
{
aj
}T{

ψj
I(xj , y)

}
(5.17)

Here x = xj + Lj (see Fig. 5.1 for the definition of Lj) has been substituted.

As mentioned before, incident waves to the j-th body include not only ϕI given above but also reflected

waves from other bodies. For instance, the reflected wave by the i-th body, given by (5.14), can be

rewritten with the j-th local coordinate system as follows:

u(+xi)Y0(y) e
−ik0xi = δij e

−ik0Lij Y0(y) e
−ik0xj

u(−xi)Y0(y) eik0xi = δji e
−ik0Lij Y0(y) e

ik0xj

}
(5.18)

Here we have introduced a special symbol δij meaning

δij =

{
1 i < j の時
0 i > j の時

(5.19)
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and Lij is, as shown in Fig. 5.1, the distance between the i-th and j-th bodies. Neglecting evanescent-

wave components (n ≥ 1) in the scattering potential of (5.15) by the i-th body and then substituting

(5.18) into (5.15), we can obtain the following expression:{
ψi
S(xi, y)

}
=

[
δij e

−ik0Lij , 0
0, δji e

−ik0Lij

]{
Y0(y) e

−ik0xj

Y0(y) e
ik0xj

}
≡
[
Tij
]{
ψj
I(xj , y)

}
(5.20)

Here
{
ψj
I(xj , y)

}
in the above is the vector of “generalized” incident waves, which consists of nor-

malized incident-wave components propagating from the left (for the first term) and from the right (for

the second term) of the j-th body, respectively, with unit amplitude.
[
Tij
]
is called the coordinate

transformation matrix.

Considering (5.20) for all bodies except for the j-th body, we can obtain an expression for the total

incident wave impinging upon the j-th body in the form

ϕjI(xj , y) =

({
aj
}T

+
N∑
i=1
i ̸=j

{
Ai

}T [
Tij
]){

ψj
I(xj , y)

}
(5.21)

The diffraction characteristics of the j-th body in response to
{
ψj
I(xj , y)

}
can be obtained in the same

manner as that in the diffraction problem for a single body, simply by substituting the component waves

in the “generalized” incident-wave vector as ϕI on the right-hand side of (5.11). Specifically, by denoting

the scattering potential in response to
{
ψj
I(xj , y)

}
as
{
φj
S(xj , y)

}
and the total diffraction potential as{

φj
D(xj , y)

}
, the following expression may be obtained

{
φj
S(xj , y)

}
=

[
iH−

4 (k0), iH+
4 (k0)

iH+
4 (k0), iH−

4 (k0)

] {
ψj
S(xj , y)

}
≡
[
B
]T{

ψj
S(xj , y)

}
(5.22)

where H±
4 (k0) = −C0

∫
SH

φj
D(Q)

∂

∂nQ
Y0(η) e

±ik0ξ ds (5.23)

and
[
B
]
in (5.22) is referred to as the diffraction characteristics matrix.

Summarizing above, the scattering potential of j-th body in response to the total incident wave given

by (5.21) can be expressed in the following form:

ϕjS(xj , y) =

({
aj
}T

+

N∑
i=1
i ̸=j

{
Ai

}T [
Tij
])[

B
]T{

ψj
S(xj , y)

}
(5.24)

The scattering potential of j-th body is also given by (5.14), with i replaced with j, and that expression

of the potential must be the same as (5.24). Thus the following relation can be obtained:

{
Aj

}T
=
{
aj
}T [

B
]T

+
N∑
i=1
i ̸=j

{
Ai

}T [
Tij
] [
B
]T

(5.25)

Rewriting this equation by taking the transpose, we can obtain simultaneous equations for the unknown

coefficient vector
{
Aj

}
of the scattering potential in the form

{
Aj

}
−
[
B
] N∑
i=1
i ̸=j

[
Tij
]T{

Ai

}
=
[
B
]{
aj
}

(j = 1 ∼ N) (5.26)
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Now that we could determine the scattering potential, we will consider next the wave-exciting force on

each body. The total incident wave impinging upon the j-th body is given by (5.21) and the amplitude

part in parentheses is determined by solving (5.26). Thus what we should do is to compute the elementary

wave-exciting force to each component in the ‘generalized’ incident-wave vector
{
ψj
I(xj , y)

}
.

In fact, necessary computations for that purpose have been already finished in the process of comput-

ing the matrix
[
B
]
, because the diffraction potential

{
φj
D(xj , y)

}
is already computed for computing{

φj
S(xj , y)

}
. Therefore, with this diffraction potential to the ‘generalized’ incident-wave vector, the

elementary wave-exciting-force vector acting in the k-th direction can be computed from{
Ej

k

}
=

∫
SH

{
φj
D(xj , y)

}
nk ds (5.27)

Multiplying this by the amplitude of total incident wave, the wave-exciting force in the k-th direction on

the j-th body can be computed in the form

W j
k = ρga

({
aj
}T

+

N∑
i=1
i̸=j

{
Ai

}T [
Tij
]){

Ej
k

}
(5.28)

5.3 Diffraction Problem of a Catamaran

j=1

x2    xR

j=2

y

OL R
x

P P

=x1    xL=

Fig. 5.2 Notations in catamaran problem.

　 The theory in the preceding section can

be applied irrespective of the number of

floating bodies, but for clear understand-

ing let us consider the simplest but prac-

tical case of N = 2; that is, the case of

catamaran. For brevity the water depth

is assumed infinite; that is, k0 = K and

C0 = 1.

　 The separation distance between the

centerlines of demihull is, as shown in

Fig. 5.2, denoted as L12 = 2P , and Lj used

in (5.17) is given by L1 = −P and L2 = P . When necessary, notations xL and xR will be used instead

of x1 and x2, respectively.

With these notations, (5.17)，(5.20), and (5.22) can be written for a catamaran as follows:

{
a1
}
=

{
0

e−iKP

}
,
{
a2
}
=

{
0

eiKP

}
,
[
B
]
=

[
iH−

4 , iH+
4

iH+
4 , iH−

4

]
(5.29)

[
T12

]T
=

[
e−i2KP , 0

0 0

]
,

[
T21

]T
=

[
0 0
0 e−i2KP

]
(5.30)

Therefore, (5.26) can be written specifically in a form of simultaneous equations for four unknowns.

A+
1 − iH+

4 e−i2KP A−
2 = iH+

4 e−iKP (5.31)

A−
1 − iH−

4 e−i2KP A−
2 = iH−

4 e−iKP (5.32)

A+
2 − iH−

4 e−i2KP A+
1 = iH+

4 eiKP (5.33)

A−
2 − iH+

4 e−i2KP A+
1 = iH−

4 eiKP (5.34)

From (5.31) and (5.34), we can solve for A+
1 and A−

2 and the results can be expressed as
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A+
1 =

iH+
4

(
1 + iH−

4

)
e−iKP

1 +
{
H+

4 e
−i2KP

}2 (5.35)

A−
2 = − eiKP +

(
1 + iH−

4

)
eiKP

1 +
{
H+

4 e
−i2KP

}2 (5.36)

Here A+
1 is the complex amplitude of the wave generated by body L and propagating to body R. From

(5.18), this quantity can be expressed with the local coordinate system at body R in the form

A+
1 e

−i2KP ≡ DR(K) =
iH+

4

(
1 + iH−

4

)
e−i3KP

1 +
{
H+

4 e
−i2KP

}2 (5.37)

On the other hand, A−
2 is the complex amplitude of the wave generated by body R and propagating

to body L. Combining this wave with the incident wave (which is assumed to propagate in the same

negative x-axis), we can write from (5.17) and(5.18) the total wave with the local coordinate system at

body L as follows:

e−iKP +A−
2 e

−i2KP ≡ DL(K) =

(
1 + iH−

4

)
e−iKP

1 +
{
H+

4 e
−i2KP

}2 (5.38)

This result is the same as that derived originally by Ohkusu with the concept of infinite number of wave

reflections between two demihulls.

Having obtained A+
1 and A−

2 , we may substitute these in (5.32) and (5.33) and then obtain the results

of A−
1 and A+

2 in the form

A−
1 = iH−

4 e−iKP + iH−
4 A−

2 e
−i2KP = iH−

4 DL(K) (5.39)

A+
2 = iH+

4 eiKP + iH−
4 A+

1 e
−i2KP = iH+

4 eiKP + iH−
4 DR(K) (5.40)

Up to this point, the problem has been solved completely. Next, in terms of the results so far, let us

obtain the reflection wave (R) and transmission wave (T ) coefficients. By recalling that the reflection

wave coefficient is the wave amplitude at x→ +∞, it takes the following form with the global coordinate

system O-xy

R = A+
1 e

−iKP +A+
2 e

iKP

= iH+
4 ei2KP +

(
1 + iH−

4

)
DR(K) eiKP (5.41)

On the other hand, the transmission wave coefficient is defined at x → −∞ including the incident

wave, and thus it takes the following form

T = 1 +A−
1 e

iKP +A−
2 e

−iKP

=
(
1 + iH−

4

)
DL(K) eiKP (5.42)

Next let us consider the wave-exciting force. As the first step, we consider
{
Ej

k

}
defined by (5.27). This

is the elementary wave-exciting-force vector in response to each component in
{
ψj
I(xj , y)

}
, and as one

can understand from (5.20), each component in
{
ψj
I(xj , y)

}
corresponds to the incident wave incoming

from the negative and positive x-axis, respectively. Therefore, according to Haskind-Newman’s relation,

the following result must be readily obtained:

{Ej
k} = {H−

k (K), H+
k (K)} (k = 1 ∼ 3) (5.43)

Here H±
k (K) denotes the Kochin function in the radiation problem of the k-th mode of motion. Since

k = 1, 2, 3 correspond to sway, heave, and roll respectively, H−
k (K) = (−1)kH+

k (K) holds for a symmetric

floating body.
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Using this relation together with (5.29) and (5.30), we can write (5.28) explicitly as follows:

WL
k = ρga

{
e−iKP +A−

2 e
−i2KP

}
H+

k (K)

= ρgaDL(K)H+
k (K) (5.44)

WR
k = ρga

{
eiKPH+

k (K) +A+
1 e

−i2KPH−
k (K)

}
= ρga

{
eiKP + (−1)kDR(K)

}
H+

k (K) (5.45)

5.4 Radiation Problem of Multiple Bodies

The basic idea for considering multiple-body hydrodynamic interactions in the radiation problem can

be the same as that in the diffraction problem. Only the difference is to view the wave radiated by

oscillation of another body as the incident wave in place of the incoming wave from outside.

Let us consider the radiation wave by forced oscillation in the ℓ-th mode of motion of the n-th body,

with its velocity potential expressed as

Φ(x, y, t) = Re
[
iωXn

ℓ φ
n
ℓ (xn, y) e

iωt
]

= Re

[
g

iω
(−KXn

ℓ )φ
n
ℓ (xn, y) e

iωt

]
(5.46)

where Xn
ℓ denotes the complex motion amplitude. We note that the summation sign with respect to

mode index ℓ is omitted for simplicity with summation convention.

The solution of φn
ℓ (xn, y) can be obtained in a form of (5.12), but as we did before, local waves may

be neglected except near the n-th body. Then the solution can be expressed in the form

φn
ℓ (xn, y) =

{
iH+

ℓ (k0), iH
−
ℓ (k0)

}{
ψn
S(xn, y)

}
≡
{
bℓ
}T{

ψn
S(xn, y)

}
(5.47)

where
H±

ℓ (k0) = C0

∫
SH

{
∂φℓ(Q)

∂nQ
− φℓ(Q)

∂

∂nQ

}
Y0(η) e

±ik0ξ ds (5.48)

is the Kochin function for the ℓ-th mode of the radiation problem; which must be the same irrespective

of the body number n, if the body geometry of all bodies is the same. With this reason, its vector is

denoted simply as
{
bℓ
}
in (5.47).

By applying (5.20), the velocity potential (5.47) can be written with the local coordinate system at

the j-th body as follows:

φj
ℓ(xj , y) =

{
bℓ
}T [

Tnj
]{
ψj
I(xj , y)

}
(5.49)

Here we should note that this ‘incident wave’ is radiated from the n-th body and thus
[
Tnn

]
= 0 for the

case of j = n.

Since the quantity of (5.49) multiplied by −KXn
ℓ can be regarded as an incident wave corresponding to

(5.17), the scattered velocity potential at j-th body including multiple-body interactions can be expressed,

as in (5.24), in the form

ϕjS(xj , y) = −KXn
ℓ

({
bℓ
}T [

Tnj
]
+

N∑
i=1
i ̸=j

{
Ai

}T [
Tij
])[

B
]T{

ψj
S(xj , y)

}
(5.50)
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Similarly, the simultaneous equations for unknown coefficient vector
{
Aj

}
can be given in a similar

form to (5.26) and its result is expressed as

{
Aj

}
−
[
B
] N∑
i=1
i ̸=j

[
Tij
]T{

Ai

}
=
[
B
] [
Tnj

]T{
bℓ
}

(j = 1 ∼ N) (5.51)

The hydrodynamic force associated with multiple-body interactions can be given in a similar form to

(5.28), with amplitude a replaced with −KXn
ℓ . Thus it takes the form

F jn
kℓ = −ρg KXn

ℓ

({
bℓ
}T [

Tnj
]
+

N∑
i=1
i ̸=j

{
Ai

}T [
Tij
]){

Ej
k

}
(5.52)

This hydrodynamic force should be interpreted as the interaction force on the j-th body in the k-th

direction when the n-th body oscillates in the ℓ-th mode. In the radiation problem, in addition to the

interaction force derived above, we must add the hydrodynamic radiation force (added mass and damping

coefficient) on the n-th body oscillating as a single body.

5.5 Radiation Problem of a Catamaran

Let us consider specifically the case of catamaran. For simplicity, the water depth is assumed to be

infinite. First, we consider the case of n = 1, i.e. when body L oscillates. Since the left-hand side of

(5.51) is completely the same as that for the diffraction problem, we can obtain the following equations

corresponding to (5.31)∼(5.34):

A+
1 − iH+

4 e−i2KPA−
2 = 0 (5.53)

A−
1 − iH+

4 e−i2KPA−
2 = 0 (5.54)

A+
2 − iH+

4 e−i2KPA+
1 = iH−

4

(
iH+

ℓ e
−i2KP

)
(5.55)

A−
2 − iH+

4 e−i2KPA+
1 = iH+

4

(
iH+

ℓ e
−i2KP

)
(5.56)

Solving these equations, we can obtain solutions for the unknown coefficients in the scattered wave and

the results are expressed as(
iH+

ℓ +A+
1

)
e−i2KP = iH+

ℓ

e−i2KP

1 +
{
H+

4 e
−i2KP

}2 ≡ iH+
ℓ ER(K) (5.57)

A−
2 e

−i2KP = iH+
ℓ

iH+
4 e

−i4KP

1 +
{
H+

4 e
−i2KP

}2 ≡ iH+
ℓ EL(K) (5.58)

A−
1 = iH−

4 e−i2KPA−
2 = iH+

ℓ

{
iH−

4 EL(K)
}

(5.59)

A+
2 = iH−

4 e−i2KP
(
iH+

ℓ +A+
1

)
= iH+

ℓ

{
iH−

4 ER(K)
}

(5.60)

With these results, the interaction force can be computed from (5.52). Specifically the hydrodynamic

interaction forces on body j = 1 (body L) and body j = 2 (body R) due to forced oscillation of body L

in the ℓ-th mode can be obtained as follows:

FLL
kℓ = −ρg KXL

ℓ

(
A−

2 e
−i2KP

)
H+

k

= −ρg KXL
ℓ

{
iEL(K)

}
H+

k H
+
ℓ ≡ XL

ℓ fkℓ (5.61)

FRL
kℓ = −ρg KXL

ℓ

(
iH+

ℓ +A+
1

)
e−i2KPH−

k

= −ρg KXL
ℓ (−1)k

{
iER(K)

}
H+

k H
+
ℓ ≡ XL

ℓ (−1)kgkℓ (5.62)
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Here fkℓ = −ρgK
{
iEL(K)

}
H+

k H
+
ℓ = fℓk

gkℓ = −ρgK
{
iER(K)

}
H+

k H
+
ℓ = gℓk

}
(5.63)

and it is worthwhile to note that the symmetry relation holds.

Similarly the progressive wave at infinity can be computed. Writing with the global coordinate system

O-xy, the progressive waves at x→ ±∞ can be obtained and expressed as follows:

ζL+∞ = −KXL
ℓ

[ (
iH+

ℓ +A+
1

)
e−iKP +A+

2 e
iKP

]
= −KXL

ℓ

{(
1 + iH−

4

)
ER(K)

}
iH+

ℓ eiKP ≡ −KXL
ℓ αℓ (5.64)

ζL−∞ = −KXL
ℓ

[ (
iH−

ℓ +A−
1

)
eiKP +A−

2 e
−iKP

]
= −KXL

ℓ

{
(−1)ℓ +

(
1 + iH−

4

)
EL(K)

}
iH+

ℓ eiKP ≡ −KXL
ℓ βℓ (5.65)

where αℓ =
(
1 + iH−

4

)
ER(K) iH+

ℓ eiKP

βℓ =
{
(−1)ℓ +

(
1 + iH−

4

)
EL(K)

}
iH+

ℓ eiKP

}
(5.66)

In the same manner, let us consider the case of n = 2, i.e. when body R oscillates in the ℓ-th mode.

The calculation procedure for this case is almost the same as the previous case and the solutions can be

obtained in the following form

A+
1 e

−i2KP = iH−
ℓ EL(K) (5.67)(

iH−
ℓ +A−

2

)
e−i2KP = iH−

ℓ ER(K) (5.68)

A−
1 = iH−

ℓ

{
iH−

4 ER(K)
}

(5.69)

A+
2 = iH−

ℓ

{
iH−

4 EL(K)
}

(5.70)

The hydrodynamic interaction forces can be computed by substituting these results in (5.52) and ex-

pressed as

FLR
kℓ = −ρg KXR

ℓ (−1)ℓ
{
iER(K)

}
H+

k H
+
ℓ = XR

ℓ (−1)ℓ gkℓ (5.71)

FRR
kℓ = −ρg KXR

ℓ (−1)k+ℓ
{
iEL(K)

}
H+

k H
−
k = XR

ℓ (−1)k+ℓ fkℓ (5.72)

The progressive waves at x→ ±∞ can be computed in the same way and expressed as

ζR+∞ = −KXR
ℓ

{
(−1)ℓ +

(
1 + iH−

4

)
EL(K)

}
(−1)ℓ iH+

ℓ eiKP

= −KXR
ℓ (−1)ℓ βℓ (5.73)

ζR−∞ = −KXR
ℓ

{ (
1 + iH−

4

)
ER(K)

}
(−1)ℓ iH+

ℓ eiKP

= −KXR
ℓ (−1)ℓ αℓ (5.74)

From the results obtained above, the total interaction force on body L (denoted as Lkℓ) must be sum of

(5.61) and (5.71) and the total interaction force on body R (denoted as Rkℓ) must be sum of (5.62) and

(5.72). Their results can be written in the form

Lkℓ = FLL
kℓ + FLR

kℓ = XL
ℓ fkℓ +XR

ℓ (−1)ℓ gkℓ (5.75)

Rkℓ = FRL
kℓ + FRR

kℓ =
[
XL

ℓ gkℓ +XR
ℓ (−1)ℓ fkℓ

]
(−1)k (5.76)
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In the same way, the total progressive wave at x → ±∞ must be sum of (5.64) and (5.73) at x → +∞
and (5.65) and (5.74) at x→ −∞. Those results are given as follows:

ζ+∞ = ζL+∞ + ζR+∞ = −K
[
XL

ℓ αℓ +XR
ℓ (−1)ℓ βℓ

]
(5.77)

ζ−∞ = ζL−∞ + ζR−∞ = −K
[
XL

ℓ βℓ +XR
ℓ (−1)ℓ αℓ

]
(5.78)
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6. Numerical Computations Based on Free-Surface

Green Function Method

In order to compute hydrodynamic forces acting on a body and the amplitude function (Kochin

function) of body-generated waves, the velocity potential on the body surface (which is equivalent to the

pressure) must be obtained. In this chapter, explanation will be made on a numerical calculation method

based on the boundary element (or free-surface Green function) method.

6.1 Boundary Integral Equation

The boundary integral equation to be solved can be derived from Gauss’ theorem and its result is

known as Green’s formula. As already explained in Chapter 2, we introduce first the free-surface

Green function which satisifes the same homogeneous bounday conditions as those to be satisfied by

the velocity potential. In that sense, the calculation method which will be explained in this chapter is

referred to as the boundary integral equation method or free-surface Green function method.

The derivation for the integral equation to be solved has already been described, and the resultant

integral equations to be solved are (2.49) for the radiation problem and (3.21) for the diffraction problem.

Those can be written in a unified form as follows:

1

2
φj(P) +

∫
SH

φj(Q)
∂

∂nQ
G(P;Q) ds(Q) =


∫
SH

nj(Q)G(P;Q) ds(Q) , j = 1 ∼ 3

φ0(P) , j = D

(6.1)

where P = (x, y)，Q = (ξ, η) and G(P;Q) denotes the free-surface Green function. Since the Green

function satisifies all homogeneous boundary conditions, the integral surface in (6.1) is only the wetted

surface of a body (SH) on which the bounday condition is inhomogeneous, as given specifically by (3.9).

6.2 Free-Surface Green Function

There are several ways for deriving the free-surface Green function G(P;Q), but probably the simplest

among them may be the use of Fourier transform; its detail was already described in Section 2.1. Here

as the representative from various expressions, let us rewrite (2.33):

G(x, y; ξ, η) =
1

2π
log

r

r1
− 1

π

∫ ∞

0

k cos k(y + η)−K sin k(y + η)

k2 +K2
e−k|x−ξ| dk

+i e−K(y+η)−iK|x−ξ| (6.2)

where r
r1

}
=
√

(x− ξ)2 + (y ∓ η)2 (6.3)

The term 1
2π log r in the above is known as the fundamental (or principal) solution of the 2D Laplace

equation; that is, the velocity potential due to a hydrodynamic source with unit strength, and the

remaining terms are supplemented to satisfy the free-surface and radiation conditions. It should be noted

that the first line in (6.2) represents the local wave (or evanescent wave) which decays as |x− ξ| → ∞,

and the second line (last term) in (6.2) represents the progressive wave propagating outwards from the

source point.
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Now we must consider how to evaluate numerically (6.2) particularly the local-wave integral term with

respect to k. In order to explain necessary mathematical transformation, let us consider the following

integral denoted as I

I ≡
∫ ∞

0

k cos ky −K sin ky

k2 +K2
e−k|x| dk (6.4)

This function satisfies the following differential equation:

dI
dy

+K I = −
∫ ∞

0

e−k|x| sin ky dk =
−y

x2 + y2
(6.5)

Therefore its solution can be readily obtained and written as follows:

I = e−Ky

[ ∫ y

−∞

−η
x2 + η2

eKη dη

]
= e−Ky

∫ ∞

−y

v

x2 + v2
e−Kv dv = e−Ky Re

∫ ∞

−y

e−Kv

v − ix
dv (6.6)

m=0
Re(m)

y

ix

v
1

1

 ikx1

Integration path in the complex plane for x>0

K(y+ix)

Fig.6.1 Deformation of integration path in the complex plane.

With variable transformation of K(v − ix) = m, the integration path in the complex m-plane may be

taken as shown in Fig. 6.1. Since there is no singularity inside the enclosed integration path, the residue

theorem provides the following result:

I = Re

[
e−K(y+ix)

∫ ∞

−K(y+ix)

e−m

m
dm

]
= Re

[
e−zE1(−z)

]
(6.7)

where
E1(ζ) =

∫ ∞

ζ

e−t

t
dt , z = K(y + ix) (6.8)

Here E1(−z) denotes the exponential integral function with complex variable; its computation method

is well studied and summarized in Appendix A2, with which we can perform the fast computation with

desired accuracy.

To summarize, the free-surface Green function can be expressed as follows:

G(x, y; ξ, η) =
1

2π

{
log

r

r1
− 2FC(x− ξ, y + η)

}
(6.9)

where FC(x− ξ, y + η) = Re
[
e−ZE1(−Z)

]
− iπ e−Z

Z = K(y + η) + iK
∣∣x− ξ

∣∣
 (6.10)

In solving the integral equation, as will be shown in the next section, it may be expedient to introduce

a function which is conjugate to FC(x−ξ, y+η) defined by (6.10). This conjugate function FS(x−ξ, y+η)
must satisfy the following relations:

∂FC

∂n
=
∂FS

∂s
,

∂FC

∂ξ
=
∂FS

∂η
,

∂FC

∂η
= −∂FS

∂ξ
(6.11)
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Thus it may be easier to confirm that the desired function takes the following form

FS(x− ξ, y + η) = sgn(x− ξ)

{
−
∫ ∞

0

k sin k(y + η) +K cos k(y + η)

k2 +K2
e−k|x−ξ| dk

−π e−K(y+η)−iK|x−ξ|
}

= sgn(x− ξ)

{
Im
[
e−ZE1(−Z)

]
− π e−Z

}
(6.12)

It may be noteworthy that r1 appearing in the first term on the right-hand side of (6.9) is given by

reversing the sign of η in r, but in fact it can also be given by reversing the sign of y, which will be

convenient when integrating with respect to Q = (ξ, η).

6.3 Numerical Solution Method for Integral Equation

In fact there exist several different methods for solving the boundary integral equation (6.1); among

them a fundamental and commonly used method, i.e. the constant panel method using zeroth order

element combined with the collocation method will be explained in this section.

j=N+1 j=1

入射波

O

y

SF

SH

SB

ns

N−1
N 2

3
4

S S11−

x

Fig.6.2 Coordinate system and notations for numerical computations.

First, as shown in Fig. 6.2, the body surface in y > 0 is divided into N elements i.e. segments (sn;

n = 1 ∼ N ), and we assume that the velocity potential on each segment is of constant value. In this

case, the number of unknowns is N . Thus by selecting N different points of P(x, y) at which both sides

of (6.1) are enforced to be equal, the integral equation (6.1) may be converted into a linear system of

simultaneous equations with N×N matrix and then solved using a conventional method for simultaneous

equations. This solution method is referred to as the collocation method, in which the positions as N

different points of P(x, y) are normally placed at the center of each segment.

Multiplying both sides of (6.1) by 2π and then adopting the zeroth-order element and collocation

method, we can recast the integral equation in the following discretized form:

π φj(Pm) +
N∑

n=1

φj(Qn)Dmn =


N∑

n=1

nj(Qn)Smn (j = 1 ∼ 3)

2π φ0(Pm) (j = D)

(6.13)

Here m = 1 ∼ N and the matrix coefficients in the above are defined as follows:

Dmn =

∫
sn

∂

∂nQ

{
log

r

r1
− 2FC(xm − ξ, ym + η)

}
ds(ξ, η) , (6.14)
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Smn =

∫
sn

{
log

r

r1
− 2FC(xm − ξ, ym + η)

}
ds(ξ, η) (6.15)

Let us describe how to evaluate analytically these matrix coefficients on each segment. As shown

in Fig. 6.3, we introduce a local polar coordinate system (r, δ) with the origin placed at a nodal point

(ξn, ηn). Then, since the value of δ is constant on the segment, the integrals of Dmn and Smn on the

segment will be functions of r only. We can write (ξ, η) as

ξ = ξn + r cos δ

η = ηn + r sin δ

}
(6.16)

with cos δ and sin δ given by

cos δ =
ξn+1 − ξn

D
, sin δ =

ηn+1 − ηn
D

D =
√
(ξn+1 − ξn)2 + (ηn+1 − ηn)2

 . (6.17)

Then we can see that the range of integration with respect to r is from r = 0 to r = D.

η

η

ξ

n

r

O n

ξn n,( )

ηξn+1 n+1,( )

δ

Fig. 6.3 Definition of local coordinate
system.

　 In terms of (6.17), the components of normal vector

on a segment can be computed as follows:

nx = n1 = sin δ

ny = n2 = − cos δ

}
(6.18)

　 Details of analytical integration are shown in the ap-

pendices in the reference book written in a footnote;

Appendix A2.1 for the integrals related to the loga-

rithmic function log r − log r1 and Appendix A2.2 for

the integrals related to the free-surface-effect function

FC(xm−ξ, ym+η). For brevity in expressions, (xm, ym)

will be written simply as (x, y) by omitting subscript m.

Then the results after analytical integration over a segment for the matrix coefficients Dmn and Smn can

be summarized as follows:

Dmn =
(
1− δmn

)
Tn(x, y)− Tn(x,−y)− 2

[
FS(x− ξ, y + η)

]n+1

n

(6.19)

Smn = Ln(x, y)− Ln(x,−y)− 2 Ŝn(x, y) (6.20)

where

Tn(x, y) =
(x− ξn) sin δ − (y − ηn) cos δ

|(x− ξn) sin δ − (y − ηn) cos δ|

[
tan−1 (x− ξ) cos δ + (y − η) sin δ

|(x− ξn) sin δ − (y − ηn) cos δ|

]n+1

n

(6.21)

Ln(x, y) =−
[{

(x− ξ) cos δ + (y − η) sin δ
}
log
√

(x− ξ)2 + (y − η)2
]n+1

n

−
∣∣∣(x− ξn) sin δ − (y − ηn) cos δ

∣∣∣ [ tan−1 (x− ξ) cos δ + (y − η) sin δ

|(x− ξn) sin δ − (y − ηn) cos δ|

]n+1

n

(6.22)

実践　浮体の流体力学　前編－動揺問題の数値計算法，海洋工学委員会性能部会編，

成山堂書店，ISBN4-425-71321-4
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Ŝn(x, y) =− 1

K

[
sin δ log

√
(x− ξ)2 + (y + η)2 + cos δ tan−1 y + η

x− ξ

]n+1

n

− 1

K

[
sin δ FC(x− ξ, y + η)− cos δ FS(x− ξ, y + η)

]n+1

n

(6.23)

In the above,
[
· · ·
]n+1

n
means the difference of the quantity in brackets evaluated at Qn+1 = (ξn+1, ηn+1)

and Qn = (ξn, ηn) must be taken. δmn in (6.19) denotes Kroenecker’s delta, equal to 1 for m = n and zero

otherwise. Thus the first term on the right-hand side of (6.19) becomes zero for m = n. FS(x− ξ, y + η)

appearing in (6.19) and (6.23) is the conjugate function to FC(x − ξ, y + η); its calculation formula is

already described in (6.12). We can see from above results that the matrix coefficients in (6.13) can be

computed only in terms of logarithmic, arctangent, and exponential integral functions.

By the way, there will be an unfortunate case where the matrix determinant becomes almost zero

at a certain special frequency and the solution is indeterminate. This special frequency is referred to

as irregular frequency, around which resultant hydrodynamic forces computed with obtained velocity

potential become unreasonable. Several methods have been proposed to get rid of irregular frequencies.

In this section, a slightly modified version of Haraguchi-Ohmatsu’s method will be explained briefly and

incorporated in the computer code to be explained afterward.

First we should recognize that the occurrence of irregular frequency is not physical but mathematical

due to the characteristic of a matrix and thus cannot be removed simply by increasing the number of

divided panels. Therefore, to resolve this problem, it is necessary to change the matrix characteristic

by adding an integral equation which is similar but different in nature. For that purpose, we put the

field point P on the interior free surface inside the floating body (which is outside of the fluid region

considered). In this case, the first term on the left-hand side of (6.13) must be zero, which makes the

matrix characteristic change so that a stable solution can be obtained. With this idea, let us add a

few extra equations with the field point Pm taken on the interior free surface and hence the first term

πφj(Pm) being zero. Denoting the right-hand side of (6.13) as Rjm and φj(Qn) on the left-hand side

simply as φn
j , we can obtain the following expression for overconstrained simultaneous equations

N∑
n=1

Dmn φ
n
j = Rjm (m = 1 ∼ N,N + 1, · · · ,M) (6.24)

where
Dmn =

{
πδmn +Dmn (m = 1 ∼ N)

Dmn (m = N + 1 ∼M)
(6.25)

and the field points taken on the interior free surface are numbered as m = N + 1, · · · ,M . (In reality,

taking 3 ∼ 5 additional points on the interior free surface would be sufficient.)

Since the number (M) of equations is larger than the number (N) of unknowns in (6.24), we must

use the least-squares method to solve (6.24). To apply that method, we consider a square of the error

(difference) defined by

E ≡
M∑

m=1

[ N∑
n=1

Dmn φ
n
j −Rjm

]2
, N < M (6.26)

Then, applying the conditions ∂E/∂φk
j = 0 (k = 1, 2, · · · , N) for minimizing squared error, we can obtain

a modified system of simultaneous equations in the following form:

N∑
n=1

{
M∑

m=1

Dmn Dmk

}
φn
j =

M∑
m=1

Rjm Dmk for k = 1 ∼ N (6.27)
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We can see that this equation provides N simultaneous equations for N unknowns, and thus we can solve

this by using a conventional method like Gauss’ elimination method and determine the velocity potential

on the body surface.

6.4 Hydrodynamic Forces and Kochin Function

Once the velocity potential on the body surface has been obtained, we can compute hydrodynamic

forces and the Kochin function. Since the velocity potential is assumed constant on each segment of

the body surface, the added mass (Aij) and damping coefficient (Bij) in nondimensional form may be

computed from the following:

Z ′
ij ≡ A′

ij − i B ′
ij =

Aij

ρb2ϵiϵj
− i

Bij

ρωb2ϵiϵj

= −
∫
SH

φj(x, y)ni ds = −
N∑

n=1

(
φj niD

)
n

(6.28)

Here the half breadth b (= B/2) on the still water plane is taken as the representative length for nor-

malization, and symbol ϵj means that ϵj = 1 for j = 1, 2 and ϵj = b for j = 3. Moreover n in (6.28)

denotes the sequential number of segments on the body surface, D is the length of each segment defined

in (6.17), and the component of normal vector ni is also constant on each segment.

The wave-exciting force in the diffraction problem can be computed in nondimensional form by the

following:

E ′
i =

Ei

ρgζabϵi
=

∫
SH

φD(x, y)ni ds =
N∑

n=1

(
φD niD

)
n

(6.29)

The Kochin function is, as defined by (3.13) and (3.22), the complex wave-amplitude function repre-

senting effects of the body geometry and the mode of motion on generated waves. This Kochin function

was defined in the form

H±
j =

∫
SH

(
∂φj

∂n
− φj

∂

∂n

)
e−Kη±iKξ ds (j = 1 ∼ 3) (6.30)

H±
4 = −

∫
SH

φD
∂

∂n
e−Kη±iKξ ds (6.31)

Let us consider a numerical calculation method for these equations. Recalling that the body boundary

condition in the radiation problem was given as ∂φj/∂n = nj (which is constant on each segment) and

that the function conjugate to e−Kη±iKξ is given by ∓i e−Kη±iKξ, we can obtain the calculation formula

for the Kochin function as follows:

H±
j =

N∑
n=1

{(
nj
)
n
F±

n −
(
φj

)
n
G±
n

}
(j = 1 ∼ 3) (6.32)

H±
4 = −

N∑
n=1

(
φD

)
n
G±
n (6.33)

where
F±

n =

∫
sn

e−Kη±iKξ ds = ∓ i

K
e∓iδ

[
e−Kη±iKξ

]n+1

n
(6.34)

G±
n =

∫
sn

∂

∂n
e−Kη±iKξ ds = ∓i

[
e−Kη±iKξ

]n+1

n
(6.35)

Details of analytical integration of the exponential function shown in (6.34) on each segment can be seen

in page 52 of the reference book introduced in a footnote.
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Whether computed values of hydrodynamic forces and the Kochin function are correct or not may

be confirmed by checking various relations that are proven theoretically. As examples of those relations,

the energy conservation associated with the damping force and the Haskind-Newman relation for the

wave-exciting force can be expressed in nondimensional form as follows:

B ′
ij = H+

i H
+

j , E ′
i = H+

i (6.36)

Furthermore, the relation between the Kochin functions in the radiation and diffraction problems is

expressed from (3.18) and (3.87) as follows:

H±
4 = i eiε2 cos ε2 ∓ eiεj sin εj

εj = arg
(
− iH+

j

) }
(6.37)

6.5 Motion Equations of a Floating Body

The motion equations of a floating body will be considered in terms of the coordinate system with the

origin taken at the center of gravity G. The analyses so far have been made using the coordinate system

with the origin on the calm water surface y = 0, and thus let us consider mutual relations first. With

assumption that the center of gravity G is located just below the origin O at y = 0 with vertical distance

ℓG ≡ OG, the relations between the motion amplitudes are given as

X1 = XG
1 + ℓGX

G
3 , X2 = XG

2 , X3 = XG
3 (6.38)

where XG
j denotes the complex amplitude of the j-th mode of motion at the center of gravity. On the

other hand, the outer product of the normal vector and the position vector from the center of gravity for

roll motion is given by

nG3 = yn2 − (z − ℓG)n1 = n3 + ℓGn1 (6.39)

Thus we can see that the velocity potential in roll around the center of gravity can be given as

φG
3 = φ3 + ℓGφ1 (6.40)

By using (6.39) and (6.40), the radiation forces measured at the center of gravity can be computed with

transfer function Tij defined by (3.31), in the form

FG
1 = T11X

G
1 + T12X

G
2 +

(
T13 + ℓGT11

)
XG

3 (6.41)

FG
2 = T21X

G
1 + T22X

G
2 +

(
T23 + ℓGT21

)
XG

3 (6.42)

FG
3 =

(
T31 + ℓGT11

)
XG

1 +
(
T32 + ℓGT12

)
XG

2 +
{(
T33 + ℓGT13

)
+ ℓG

(
T31 + ℓGT11

)}
XG

3 (6.43)

Likewise the wave-exciting forces measured at the center of gravity can be computed from

EG
1 = E1 , EG

2 = E2 , EG
3 = E3 + ℓGE1 (6.44)

In addition to hydrodynamic forces described above, we need to include the restoring force which can

be computed by integrating the variance in the hydrostatic pressure due to displacement of a body. Then

we can establish the coupled motion equations among sway, heave, and roll for an asymmetric general-

shaped body. Since the fluid forces are given in nondimensional form like (6.28) and (6.29), the motion
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equations are also nondimensionalized in terms of the half breadth b, and the results may be expressed

in the form

−
(
m′ + Z ′

11

)XG
1

ζa
− Z ′

12

XG
3

ζa
−
(
Z ′
13 + ℓ′GZ

′
11

)XG
3 b

ζa
=
E ′

1

Kb
(6.45)

−Z ′
21

XG
1

ζa
−
(
m′ + Z ′

22 −
C ′

22

Kb

)XG
2

ζa
−
(
Z ′
23 + ℓ′GZ

′
21

)XG
3 b

ζa
=
E ′

2

Kb
(6.46)

−
(
Z ′
31 + ℓ′GZ

′
11

)XG
1

ζa
−
(
Z ′
32 + ℓ′GZ

′
12

)XG
2

ζa

−
{
m′κ′ 2

xx + Z ′
33 + ℓ′GZ

′
13 + ℓ′G

(
Z ′
31 + ℓ′GZ

′
11

)
− C ′

33

Kb

}XG
3 b

ζa
=

1

Kb

(
E ′

3 + ℓ′GE
′
1

)
(6.47)

wherem′ and κ′xx denote the nondimensional mass of a body and the gyrational radius in roll, respectively.

Including these, the prime means nondimensional values defined as follows:

m′ =
ρ∇
ρb2

=
∇
b2
, κ′

xx =
κxx
b
, ℓ′G =

ℓG
b
,

Z ′
ij = A′

ij − i B ′
ij , C ′

22 =
C22

ρgb
=
B

b
,

C ′
33 =

C33

ρgb3
= m′ GM

b


(6.48)

It should be noted that GM can be calculated with ℓG = OG once the body geometry is given, and

the displacement volume (sectional area in 2D) ∇ and the distance to the center of buoyancy (center of

sectional area) OB can be calculated as well only with the body geometry. Therefore what is needed as

input data are the center of gravity and the gyrational radius in roll.
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Appendix

A1 Numerical Computation Method for Free-surface Green Function

It has been shown that the free-surface Green function (the velocity potential due to periodic source

with unit strength) is expressed as (2.31)–(2.33). However, for actual numerical computations, we must

consider how to treat the integral with respect to variable k. In this section, necessary mathematical

transformation will be shown for accurate and efficient numerical computations.

First, the singular integral part in the Green function, denoted as I1, can be expressed from (2.23)

and (2.30) in the form

I1 =

∫ ∞

0

C
e−ky cos kx

k −K
dk − iπe−Ky cosKx (A-1)

=

∫ ∞

0

k cos ky −K sin ky

k2 +K2
e−k|x| dk − iπe−Ky−iK|x| (A-2)

Denoting the integral appearing in (A-2) as

F (x, y) =

∫ ∞

0

k cos ky −K sin ky

k2 +K2
e−k|x| dk, (A-3)

we can see that this function satisfies the following differential equation

dF

dy
+KF = −

∫ ∞

0

e−k|x| sin ky dk = − y

x2 + y2
. (A-4)

Therefore its solution can be obtained as follows:

F = e−Ky

[
−
∫ y

0

η

x2 + η2
eKη dη + C

]
, (A-5)

where C in the unknown coefficient in a homogeneous solution of the differential equation, but it can be

determined by considering the value at y = 0, i.e. C = F (x, 0). Thus from (A-3) it may be explicitly

given as

C =

∫ ∞

0

k

k2 +K2
e−k|x| dk = −

∫ 0

−∞

η

x2 + η2
eKη dη (A-6)

Substituting this result, (A-5) can be written and transformed further as follows:

F = e−Ky

[
−
∫ y

−∞

η

x2 + η2
eKη dη

]
= e−Ky

∫ ∞

−y

v

x2 + v2
e−Kv dv = e−Ky Re

∫ ∞

−y

e−Kv

v − ix
dv (A-7)

m=0
Re(m)

y

ix

v
1

1

 ikx1

Integration path in the complex plane for x>0

K(y+ix)
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With variable transformation of K(v − ix) = m, the integration path in the complex m-plane may be

taken as shown in the figure above. Since there is no singularity inside the closed integration path, we

have the following expression by virtue of the residue theorem:

F = Re

[
e−Ky−iKx

∫ ∞

−K(y+ix)

e−m

m
dm

]
= Re

[
e−KzE1(−Kz)

]
E1(ζ) =

∫ ∞

ζ

e−m

m
dm, z = y + ix

 (A-8)

Here E1(ζ) denotes the exponential integral function with complex variable; its series expansion and

asymptotic expansion are well studied and summarized in Appendix A 2, with which we can perform the

fast computation with desired accuracy.

The transformation for (A-8) has been done with assumption of x > 0, but (A-8) is valid also for x < 0,

because the integration path in the v-plane should be taken below the real axis (in the 4th quadrant)

and again no singularity exists inside the closed path.

Substituting (A-8) for F (x, y) defined by (A-3) into (A-2), we have the final result in the form

I1 = Re
[
e−KzE1(−Kz)

]
− iπe−Ky−iK|x| (A-9)

Here, by writing E1(−Kz) in the form

E1(−Kz) = EC + iES (A-10)

we can transform I1 as follows:

I1 = e−Ky Re
[
e−Kx

(
EC + iES

)]
− πe−Ky

{
sgn(x) sinKx+ i cosKx

}
= e−Ky

[
EC cosKx+

{
ES − π sgn(x)

}
sinKx

]
− iπe−Ky cosKx (A-11)

= Re
[
e−Kz

{
E1(−Kz)− iπ sgn(x)

} ]
− iπe−Ky cosKx, (A-12)

where z = y + ix.

o

o

k

k

1

1

1

1

k=K n=0

n=0

n

n

Integration path for x>0

Integration path for x<0

The integral along this path provides
the exponential integral function

K(y+ix)

 K(y+ix)
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It is noteworthy that the final result (A-9) or (A-11) is expedient for numerical computations, but its

derivation might be not smart. Thus we will show that (A-12) can be obtained directly from (A-1).

First we note that (A-1) can be written in the form

I1 = Re

∫ ∞

0

C
e−k(y+ix)

k −K
dk − iπe−Ky cosKx (A-13)

Therefore, comparing (A-13) with (A-12), we can expect the following result:∫ ∞

0

C
e−k(y+ix)

k −K
dk = e−KZ

{
E1(−Kz)− iπ sgn(x)

}
(A-14)

This result can be proven by the variable transformation (k − K)(y + ix) = n and deformation of the

integration path in the complex plane. As shown in the figure above, for x > 0 the integration path in the

k-plane should be taken in the 4th quadrant, and reversely for x < 0 it should be taken in the 1st quadrant

for ensuring the convergence along an arc at infinity. Then, through the variable transformation, we can

see the corresponding integration path in the n-plane is taken as shown in the figure above. We note

that the direction of integration along half a small circle around the singular point at n = 0 is opposite

depending on x > 0 or x < 0. Therefore by virtue of the residue theorem and Cauchy’s integral theorem,

we can obtain the following result:∫ ∞

0

C
e−k(y+ix)

k −K
dk + iπsgn(x) e−K(y+ix) − e−K(y+ix)

∫ ∞

−K(y+ix)

e−n

n
dn = 0 (A-15)

Namely ∫ ∞

0

C
e−k(y+ix)

k −K
dk = e−Kz

{
E1(−Kz)− iπsgn(x)

}
(A-16)

where z = y + ix

We can confirm that (A-16) provides us with the same result for the integral I1 as (A-12).

Summarizing above, the variable transformation (k −K)(y + ix) = n applied to (A-1) is efficient for

the purpose of proving the final result of (A-9). However, mathematical transformation from (A-2) might

be useful and educational in extending the present treatment to 3D problems.

A2 Numerical Computation for Exponential Integral Function

Details for mathematical derivation are omitted, but it is known that the exponential integral function

with complex argument can be expressed in several ways as written below. By combining these expressions

appropriately, the exponential integral function can be computed for all values of complex variable z =

x+ iy with high acuracy and efficiency.

(1) Series Expansion

E1(z) = γ − log z −
∞∑

n=1

(−z)n

n · n!
, (A-17)

where γ = 0.57721 · · · denotes Euler’s constant.

(2) Continued Fraction

ezE1(z) =
1

z +
1

1 +
1

z +
2

1 +
2

z +
3

1 +
3

z + · · ·

(A-18)
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(3) Asymptotic Expansion

ezE1(z) =
1

z

∞∑
n=0

n!

(−z)n
. (A-19)

A3 Lewis-Form Approximation

As shown in Fig.A-1, the conformal mapping of a real body (in the physical plane of z = x + iy )

onto a circle with unit radius (in the transformed plane of ζ = ξ + iη ) is considered. In terms of the

expansion-contraction coefficient (scale factor) M and two more coefficients a1 and a3, the equation for

this conformal mapping can be written in the form

x+ iy =M

{
ζ +

a1
ζ

+
a3
ζ3

}
. (A-20)

Since the body surface is defined as r = 1 (the radius equal to 1), ζ = sin θ+ i cos θ = i e−iθ is substituted

in the above. Then the coordinates (x, y ) can be expressed with θ in the form

x =M
{
(1 + a1) sin θ − a3 sin 3θ

}
y =M

{
(1− a1) cos θ + a3 cos 3θ

}
 (A-21)

The body shape represented by (A-21) is called Lewis form.

The unknowns areM , a1, and a3, which may be determined by specifying the following three quantities:

1) Half breadth B/2 =M ( 1 + a1 + a3 ), (A-22)

2) Draft d =M ( 1− a1 + a3 ), (A-23)

3) Sectional area S =
π

2
M2
(
1− a21 − 3a23

)
(A-24)

The typical procedure for determining M , a1, and a3 is as follows. First, nondimensional parameters,

the half-breadth-to-draft ratio H0 and the sectional area ratio σ, are defined as follows:

H0 =
B/2

d
=

1 + a1 + a3
1− a1 + a3

, (A-25)

σ =
S

Bd
=
π

4
H0

1− a21 − 3a23
(1 + a1 + a3)2

. (A-26)

x

y

d

B/2-B/2

Conformal mapping

Transformed planePhysical plane

ξ

θ

+1-1

+1

η

O O

Area =S

Fig.A-1 Coordinate system in the Lewis-form approximation.
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From (A-22) and (A-23), we can obtain

a1 =
H0 − 1

2(M/d)
, a3 =

H0 + 1

2(M/d)
− 1 (A-27)

Then substituting these in (A-26), a quadratic equation forM/d will be obtained. Selection of the correct

solution from two possible solutions can be done with physical argument by considering a special case.

Namely a flat plate (which is described by a1 = −1 and a3 = 0, resulting from B/2 = 0, H0 = σ = 0 ) is

considered. In this case, we can see that M/d must be equal to 1/2. From this consideration, it follows

that
M

d
=

3(H0 + 1)−
√
(H0 + 1)2 + 8H0(1− 4σ/π)

4
(A-28)

On the other hand, the coordinates for the contour of body shape can be given in nondimensional

form as follows:

x′ =
x

B/2
=

1

H0

(
M

d

){
(1 + a1) sin θ − a3 sin 3θ

}
y ′ =

y

B/2
=

1

H0

(
M

d

){
(1− a1) cos θ + a3 cos 3θ

}
 (A-29)

To sum up, M/d is computed first from (A-28) in terms of H0 and σ, then a1 and a3 are computed

from (A-27), and finally the nondimensional coordinates (x′, y ′) for the body shape are computed from

(A-29).
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Source program for a general-shaped 2D floating body

0001 C MAIN FILE NAME:( OEPANEL/IEM2D.F )
0002 C ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
0003 C + 2-D RADIATION AND DIFFRACTION PROBLEMS +
0004 C + OF A GENERAL-SHAPED 2-D BODY +
0005 C + +
0006 C + BY INTEGRAL-EQUATION METHOD +
0007 C + WITH THERAPY FOR IRREGULAR FREQUENCIES +
0008 C + +
0009 C + ADDED-MASS AND DAMPING COEFFICIENTS, +
0010 C + WAVE EXCITING FORCE, WITH ACCURACY CHECK +
0011 C + SWAY, HEAVE, & ROLL MOTIONS AND +
0012 C + TRANSMISSION & REFLECTION COEFFICIENTS +
0013 C + +
0014 C + CODED BY M. KASHIWAGI ON 1994 8/18 +
0015 C + MODIFIED FOR OE-PANEL ON 2001 9/21 +
0016 C + AT R.I.A.M. KYUSHU UNIVERSITY +
0017 C ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
0018 IMPLICIT DOUBLE PRECISION (A-H,K,O-Z)
0019 COMMON /PAI/ PI,PI05,PI2
0020 C
0021 PI =3.14159265358979D0
0022 PI05=PI*0.5D0
0023 PI2 =PI*2.0D0
0024 IPRINT=1
0025 NPRINT=0
0026 C
0027 C **********************( INPUT DATA )**************************
0028 C NB : NUMBER OF PANELS OVER SUBMERGED BODY (MAX=100)
0029 C H0 : RATIO OF HALF-BREADTH TO DRAFT (=B/2/D)
0030 C SIGMA: SECTIONAL AREA RATIO (=S/B/D)
0031 C
0032 C OGD : CENTER OF GRAVITY / DRAFT =OG/D
0033 C KZZB : GYRATIONAL RADIUS / HALF-BREADTH =KZZ/(B/2)
0034 C
0035 C AKB : NONDIMENSIONAL WAVENUMBER =W*W/G*(B/2)
0036 C **************************************************************
0037 C
0038 READ(5,*) NB,H0,SIGMA
0039 WRITE(6,600) NB,H0,SIGMA
0040 OGD =0.05D0
0041 KZZB=0.35D0
0042 C
0043 NT=NB+3
0044 CALL OFFSET(NB,NT,H0,SIGMA,OGD,KZZB,NPRINT)
0045 C ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
0046 1 READ(5,*,END=9) AKB
0047 C /
0048 CALL SOLVE (NB,NT,AKB)
0049 CALL KOCHIN(NB,AKB,IPRINT)
0050 CALL FORCE (NB,AKB,IPRINT)
0051 CALL MOTION(AKB,IPRINT)
0052 CALL TRCOEF(AKB,IPRINT)
0053 C /
0054 GOTO 1
0055 9 STOP
0056 600 FORMAT(//14X,48(’*’)
0057 & /19X,’2-D RADIATION AND DIFFRACTION PROBLEMS’,
0058 & /19X,’ OF A GENERAL-SHAPED 2-D BODY’,
0059 & /19X,’ BY INTEGRAL-EQUATION METHOD’,/14X,48(’*’),
0060 & //15X,’NUMBER OF PANELS OVER WHOLE BODY (NB)=’,I4,
0061 & /15X,’HALF-BEAM TO DRAFT RATIO H0(=B/2/D)=’,F8.4,
0062 & /15X,’SECTIONAL AREA RATIO SIGMA(=S/B/D)=’,F8.4/)
0063 END
0064 C *********************************************************************
0065 C ** OFFSET DATA FOR THE LEWIS FORM SHIP **
0066 C ** THIS SUBROUTINE ASSUMES THE BODY GEOMETRY TO BE SYMMETRIC **
0067 C *********************************************************************
0068 SUBROUTINE OFFSET(NB,NT,H0,SIGMA,OGD,KZZB,IPRINT)
0069 IMPLICIT DOUBLE PRECISION (A-H,K,O-Z)
0070 C
0071 PARAMETER (MX=105,NP=100,NQ=101)
0072 COMMON /PAI/ PI,PI05,PI2
0073 COMMON /MDT/ CMAS,C22,OG,KZZ,GM
0074 COMMON /ELM/ XP(MX),YP(MX),XQ(NQ),YQ(NQ)
0075 COMMON /VN2/ VN(3,NP)
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0076 C
0077 IAD=NT-NB
0078 C /
0079 RSUB=(H0+1.0D0)**2+8.0D0*H0*(1.0D0-4.0D0*SIGMA/PI)
0080 AMD =0.25D0*(3.0D0*(H0+1.0D0)-DSQRT(RSUB))
0081 A1 =0.5D0*(H0-1.0D0)/AMD
0082 A3 =0.5D0*(H0+1.0D0)/AMD-1.0D0
0083 AMB =AMD/H0
0084 C /
0085 DTH=PI/DFLOAT(NB)
0086 DO 100 J=1,NB+1
0087 TH=PI05-DTH*DFLOAT(J-1)
0088 XQ(J)=AMB*((1.0D0+A1)*DSIN(TH)-A3*DSIN(3.0D0*TH))
0089 YQ(J)=AMB*((1.0D0-A1)*DCOS(TH)+A3*DCOS(3.0D0*TH))
0090 100 CONTINUE
0091 C /
0092 DO 110 I=1,NB
0093 XP(I)=(XQ(I+1)+XQ(I))/2.0D0
0094 YP(I)=(YQ(I+1)+YQ(I))/2.0D0
0095 DX=XQ(I+1)-XQ(I)
0096 DY=YQ(I+1)-YQ(I)
0097 D =DSQRT(DX*DX+DY*DY)
0098 VN(1,I)= DY/D
0099 VN(2,I)=-DX/D
0100 VN(3,I)=XP(I)*VN(2,I)-YP(I)*VN(1,I)
0101 110 CONTINUE
0102 C /
0103 IF(IAD.EQ.0) GOTO 130
0104 DS=(XQ(1)-XQ(NB+1))/DFLOAT(IAD+1)
0105 DO 120 I=1,IAD
0106 II=NB+I
0107 XP(II)=XQ(NB+1)+DS*DFLOAT(I)
0108 YP(II)=0.0D0
0109 120 CONTINUE
0110 C /
0111 130 CMAS=2.0D0*SIGMA/H0
0112 C22 =(XQ(1)-XQ(NB+1))/XQ(1)
0113 OG =OGD/H0
0114 KZZ =KZZB
0115 SUM=0.0D0
0116 DO 200 J=1,NB
0117 S1 =YQ(J+1)-YQ(J)
0118 S2 =XQ(J )*(2.0D0*YQ(J )+YQ(J+1))
0119 S3 =XQ(J+1)*(2.0D0*YQ(J+1)+YQ(J ))
0120 SUM=SUM+S1*(S2+S3)
0121 200 CONTINUE
0122 OBM=SUM/6.0D0
0123 GM =(2.0D0/3.0D0-OBM)/CMAS+OG
0124 C /
0125 WRITE(6,600) CMAS,C22,OGD,KZZ,GM
0126 IF(IPRINT.EQ.0) RETURN
0127 WRITE(6,610)
0128 DO 300 J=1,NB+1
0129 300 WRITE(6,620) J,XQ(J),YQ(J),XP(J),YP(J)
0130 600 FORMAT(
0131 & 15X,’NONDIMENSIONAL MASS------- S/(B/2)**2=’,F8.5,
0132 & /15X,’HEAVE RESTORING FORCE COEFF--AW/(B/2)=’,F8.5,
0133 & /15X,’CENTER OF GRAVITY----------------OG/D=’,F8.5,
0134 & /15X,’GYRATIONAL RADIUS-----------KZZ/(B/2)=’,F8.5,
0135 & /15X,’METACENTRIC HEIGHT-----------GM/(B/2)=’,F8.5/)
0136 610 FORMAT(/15X,’***** CHECK OF ORDINATES *****’
0137 & /8X,’J’,6X,’XQ’,8X,’YQ’,10X,’XP’,8X,’YP’)
0138 620 FORMAT(7X,I2,1X,2F10.5,2X,2F10.5)
0139 RETURN
0140 END
0141 C *********************************************************************
0142 C ** INFLUENCE COEFFICIENTS DUE TO LOG-TYPE SINGULAR TERMS **
0143 C *********************************************************************
0144 SUBROUTINE SDSUB(XPI,YPI,NB,SS,DD)
0145 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
0146 C
0147 PARAMETER (MX=105,NQ=101)
0148 DIMENSION SS(NB),DD(NB)
0149 COMMON /ELM/ XP(MX),YP(MX),XQ(NQ),YQ(NQ)
0150 C
0151 DO 100 J=1,NB
0152 SWA=0.0D0
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0153 DWA=0.0D0
0154 IF(DABS(YPI).LT.1.0D-8) GOTO 10
0155 DX=XQ(J+1)-XQ(J)
0156 DY=YQ(J+1)-YQ(J)
0157 D =DSQRT(DX*DX+DY*DY)
0158 CDEL=DX/D
0159 SDEL=DY/D
0160 XA=XPI-XQ(J )
0161 XB=XPI-XQ(J+1)
0162 C /
0163 SL=-1.0D0
0164 DO 200 L=1,2
0165 SL=-SL
0166 YA=SL*YPI-YQ(J )
0167 YB=SL*YPI-YQ(J+1)
0168 SUBA=XA*CDEL+YA*SDEL
0169 SUBB=XB*CDEL+YB*SDEL
0170 COEF=XA*SDEL-YA*CDEL
0171 ABSC=DABS(COEF)
0172 WA1=0.5D0*(SUBB*DLOG(XB*XB+YB*YB)-SUBA*DLOG(XA*XA+YA*YA))
0173 IF(ABSC.LT.1.0D-10) THEN
0174 WA2=0.0D0
0175 WA3=0.0D0
0176 ELSE
0177 WA2=ABSC*(DATAN(SUBB/ABSC)-DATAN(SUBA/ABSC))
0178 WA3=WA2/COEF
0179 ENDIF
0180 SWA=SWA-(WA1+WA2)*SL
0181 DWA=DWA+ WA3*SL
0182 200 CONTINUE
0183 C /
0184 10 SS(J)=SWA
0185 DD(J)=DWA
0186 100 CONTINUE
0187 RETURN
0188 END
0189 C *********************************************************************
0190 C ** INFLUENCE COEFFICIENTS DUE TO FREE-SURFACE WAVE TERM **
0191 C *********************************************************************
0192 SUBROUTINE SDCAL(XPI,YPI,AK,NB,ZS,ZD)
0193 IMPLICIT DOUBLE PRECISION (A-H,O-Y)
0194 IMPLICIT COMPLEX*16 (Z)
0195 C
0196 PARAMETER (MX=105,NQ=101)
0197 DIMENSION ZS(NB),ZD(NB)
0198 COMMON /PAI/ PI,PI05,PI2
0199 COMMON /ELM/ XP(MX),YP(MX),XQ(NQ),YQ(NQ)
0200 C
0201 Z0=(0.0D0,0.0D0)
0202 ZI=(0.0D0,1.0D0)
0203 DO 100 J=1,NB
0204 ZS(J)=Z0
0205 ZD(J)=Z0
0206 100 CONTINUE
0207 C /
0208 C+-+-+-+-+-+-+-+ INITIALIZATION +-+-+-+-+-+-+-+
0209 XX=XPI-XQ(1)
0210 YY=YPI+YQ(1)
0211 SGNX=DSIGN(1.0D0,XX)
0212 IF(DABS(XX).LT.1.0D-10) SGNX=0.0D0
0213 XE=-AK*YY
0214 YE=-AK*DABS(XX)
0215 ZETA=DCMPLX(XE,YE)
0216 CALL EZE1Z(XE,YE,EC,ES)
0217 RFL1=0.5D0*DLOG(XX**2+YY**2)
0218 RFT1=DATAN2(YY,XX)
0219 ZFC1= EC-PI*CDEXP(ZETA)*ZI
0220 ZFS1=(-ES+PI*CDEXP(ZETA))*SGNX
0221 C+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+
0222 DO 200 J=1,NB
0223 XX=XPI-XQ(J+1)
0224 YY=YPI+YQ(J+1)
0225 SGNX=DSIGN(1.0D0,XX)
0226 IF(DABS(XX).LT.1.0D-10) SGNX=0.0D0
0227 XE=-AK*YY
0228 YE=-AK*DABS(XX)
0229 ZETA=DCMPLX(XE,YE)
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0230 CALL EZE1Z(XE,YE,EC,ES)
0231 RFL2=0.5D0*DLOG(XX**2+YY**2)
0232 RFT2=DATAN2(YY,XX)
0233 ZFC2= EC-PI*CDEXP(ZETA)*ZI
0234 ZFS2=(-ES+PI*CDEXP(ZETA))*SGNX
0235 C /
0236 DX=XQ(J+1)-XQ(J)
0237 DY=YQ(J+1)-YQ(J)
0238 D =DSQRT(DX*DX+DY*DY)
0239 CDEL=DX/D
0240 SDEL=DY/D
0241 SUB =SDEL*(RFL2-RFL1)+CDEL*(RFT2-RFT1)
0242 ZSUB=SDEL*(ZFC2-ZFC1)+CDEL*(ZFS2-ZFS1)
0243 ZS(J)=ZS(J)+2.0D0/AK*(SUB+ZSUB)
0244 ZD(J)=ZD(J)+2.0D0*(ZFS2-ZFS1)
0245 RFL1=RFL2
0246 RFT1=RFT2
0247 ZFC1=ZFC2
0248 ZFS1=ZFS2
0249 200 CONTINUE
0250 RETURN
0251 END
0252 C *********************************************************************
0253 C ** SOLUTION OF INTEGRAL EQUATION FOR THE VELOCITY POTENTIAL **
0254 C ** INCLUDING ELIMINATION OF IRREGULAR FREQUENCIES **
0255 C *********************************************************************
0256 SUBROUTINE SOLVE(NB,NT,AK)
0257 IMPLICIT DOUBLE PRECISION (A-H,O-Y)
0258 IMPLICIT COMPLEX*16 (Z)
0259 C
0260 PARAMETER (MX=105,NP=100,NQ=101,NEQ=4,SML=1.0D-15)
0261 DIMENSION ZSA(MX,NP),ZSB(MX,NEQ),ZAA(NP,NP),ZBB(NP,NEQ)
0262 DIMENSION ZS(NP),ZD(NP),SS(NP),DD(NP)
0263 C
0264 COMMON /PAI/ PI,PI05,PI2
0265 COMMON /ELM/ XP(MX),YP(MX),XQ(NQ),YQ(NQ)
0266 COMMON /VN2/ VN(3,NP)
0267 COMMON /FAI/ ZFI(4,NP)
0268 C
0269 Z0=(0.0D0,0.0D0)
0270 ZI=(0.0D0,1.0D0)
0271 DO 10 I=1,NB
0272 DO 20 J=1,NB
0273 20 ZAA(I,J)=Z0
0274 DO 10 M=1,NEQ
0275 ZBB(I,M)=Z0
0276 10 CONTINUE
0277 C /
0278 DO 30 I=1,NT
0279 DO 40 J=1,NB
0280 40 ZSA(I,J)=Z0
0281 DO 50 M=1,NEQ
0282 50 ZSB(I,M)=Z0
0283 IF(I.LE.NB) ZSA(I,I)=DCMPLX(PI,0.0D0)
0284 30 CONTINUE
0285 C
0286 DO 100 I=1,NT
0287 CALL SDSUB(XP(I),YP(I),NB,SS,DD)
0288 CALL SDCAL(XP(I),YP(I),AK,NB,ZS,ZD)
0289 C +-+-+-+-+-+-+-+-+-( LEFT-HAND SIDE )-+-+-+-+-+-+-+-+-+-+-+
0290 DO 110 J=1,NB
0291 ZSA(I,J)=ZSA(I,J)+DD(J)+ZD(J)
0292 110 CONTINUE
0293 C +-+-+-+-+-+-+-+-+-( RIGHT-HAND SIDE )+-+-+-+-+-+-+-+-+-+-+
0294 DO 120 M=1,3
0295 DO 120 J=1,NB
0296 ZSB(I,M)=ZSB(I,M)+(SS(J)+ZS(J))*VN(M,J)
0297 120 CONTINUE
0298 ZSB(I,4)=PI2*CDEXP(-AK*(YP(I)-ZI*XP(I)))
0299 100 CONTINUE
0300 C
0301 C ++++++++++++ LEAST-SQUARES METHOD ++++++++++++++++
0302 DO 200 I=1,NB
0303 DO 210 J=1,NB
0304 DO 210 K=1,NT
0305 ZAA(I,J)=ZAA(I,J)+ZSA(K,I)*ZSA(K,J)
0306 210 CONTINUE
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0307 DO 220 M=1,NEQ
0308 DO 220 K=1,NT
0309 ZBB(I,M)=ZBB(I,M)+ZSA(K,I)*ZSB(K,M)
0310 220 CONTINUE
0311 200 CONTINUE
0312 C ++++++++++++++++++++++++++++++++++++++++++++++++++
0313 C
0314 CALL ZSWEEP(NP,NB,ZAA,ZBB,NEQ,SML)
0315 IF(CDABS(ZAA(1,1)).LT.SML) WRITE(6,600)
0316 600 FORMAT(//10X,’*** ERROR: ZSWEEP IN SUBROUTINE (SOLVE)’,
0317 & ’ WAS ABNORMALLY DONE.’,/23X,’PLEASE CHECK!’///)
0318 C
0319 DO 250 M=1,NEQ
0320 DO 250 I=1,NB
0321 ZFI(M,I)=ZBB(I,M)
0322 250 CONTINUE
0323 RETURN
0324 END
0325 C *********************************************************************
0326 C ** CALCULATION OF KOCHIN FUNCTION **
0327 C ** WHICH WILL BE USED FOR NUMERICAL CHECK OF VARIOUS RELATIONS **
0328 C *********************************************************************
0329 SUBROUTINE KOCHIN(NB,AK,IPRINT)
0330 IMPLICIT DOUBLE PRECISION (A-H,O-Y)
0331 IMPLICIT COMPLEX*16 (Z)
0332 C
0333 PARAMETER (MX=105,NP=100,NQ=101)
0334 DIMENSION ABAR(3),EPS(3)
0335 COMMON /PAI/ PI,PI05,PI2
0336 COMMON /ELM/ XP(MX),YP(MX),XQ(NQ),YQ(NQ)
0337 COMMON /VN2/ VN(3,NP)
0338 COMMON /FAI/ ZFI(4,NP)
0339 COMMON /KCH/ ZHA(4),ZHB(4)
0340 C
0341 Z0=(0.0D0,0.0D0)
0342 ZI=(0.0D0,1.0D0)
0343 DO 10 M=1,4
0344 ZHA(M)=Z0
0345 ZHB(M)=Z0
0346 10 CONTINUE
0347 C /
0348 ZETA=-AK*(YQ(1)-ZI*XQ(1))
0349 ZEOLD=CDEXP(ZETA)
0350 DO 100 J=1,NB
0351 DX=XQ(J+1)-XQ(J)
0352 DY=YQ(J+1)-YQ(J)
0353 D =DSQRT(DX*DX+DY*DY)
0354 CDEL=DX/D
0355 SDEL=DY/D
0356 ZSUB=-(SDEL+ZI*CDEL)/AK
0357 ZETA=-AK*(YQ(J+1)-ZI*XQ(J+1))
0358 ZENEW=CDEXP(ZETA)
0359 ZFHA =ZSUB*(ZENEW-ZEOLD)
0360 ZFGA =-ZI*(ZENEW-ZEOLD)
0361 ZFHB =DCONJG(ZFHA)
0362 ZFGB =DCONJG(ZFGA)
0363 ZEOLD=ZENEW
0364 C /
0365 DO 110 M=1,3
0366 ZHA(M)=ZHA(M)+VN(M,J)*ZFHA-ZFI(M,J)*ZFGA
0367 ZHB(M)=ZHB(M)+VN(M,J)*ZFHB-ZFI(M,J)*ZFGB
0368 110 CONTINUE
0369 ZHA(4)=ZHA(4)-ZFI(4,J)*ZFGA
0370 ZHB(4)=ZHB(4)-ZFI(4,J)*ZFGB
0371 100 CONTINUE
0372 C /
0373 DO 200 I=1,3
0374 ABAR(I)=AK*CDABS(ZHA(I))
0375 EPS (I)=DATAN2(-DREAL(ZHA(I)),DIMAG(ZHA(I)))
0376 200 CONTINUE
0377 ZSYM=CDEXP(ZI*EPS(2))*DCOS(EPS(2))*ZI
0378 ZANT=CDEXP(ZI*EPS(1))*DSIN(EPS(1))
0379 ZHRA=ZSYM-ZANT
0380 ZHRB=ZSYM+ZANT
0381 C
0382 C ++++++++++++++++++++( PRINT OUT FOR CHECK )+++++++++++++++++++++++++
0383 IF(IPRINT.EQ.0) RETURN
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0384 RTD=180.0D0/PI
0385 WRITE(6,600) AK,(ABAR(I),EPS(I)*RTD,I=1,3)
0386 WRITE(6,610) ZHA(4),ZHRA,ZHB(4),ZHRB
0387 600 FORMAT(/6X,’******* KOCHIN FUNCTION & ACCURACY CHECK ( ’,
0388 & ’K*B/2=’,F8.4,’ ) *******’,//5X,2(15X,’A-BAR’,6X,’EPS(DEG)’),
0389 & /9X,’SWAY: ’,E12.5,2X,F9.3,4X,’HEAVE: ’,E12.5,2X,F9.3,
0390 & /9X,’ROLL: ’,E12.5,2X,F9.3)
0391 610 FORMAT(/27X,’DIRECT CALCULATION’,7X,’COMPUTED FROM RADIATION’,
0392 & /5X,’DIFFRACTION (+) ’,2E13.4,2X,2E13.4,
0393 & /5X,’DIFFRACTION (-) ’,2E13.4,2X,2E13.4)
0394 RETURN
0395 END
0396 C *********************************************************************
0397 C ** PRESSURE INTEGRAL FOR ADDED-MASS, DAMPING & EXCITING FORCES **
0398 C ** INCLUDING ACCURACY CHECK OF THE ENERGY CONSERVATION **
0399 C ** AND HASKIND-NEWMAN RELATION **
0400 C *********************************************************************
0401 SUBROUTINE FORCE(NB,AK,IPRINT)
0402 IMPLICIT DOUBLE PRECISION (A-H,O-Y)
0403 IMPLICIT COMPLEX*16 (Z)
0404 C
0405 PARAMETER (MX=105,NP=100,NQ=101)
0406 DIMENSION A(3,3),B(3,3),BE(3,3),EAMP(3),EPHA(3)
0407 C
0408 COMMON /PAI/ PI,PI05,PI2
0409 COMMON /ELM/ XP(MX),YP(MX),XQ(NQ),YQ(NQ)
0410 COMMON /VN2/ VN(3,NP)
0411 COMMON /FAI/ ZFI(4,NP)
0412 COMMON /KCH/ ZHA(4),ZHB(4)
0413 COMMON /FCE/ ZAB(3,3),ZEXF(3)
0414 C
0415 Z0=(0.0D0,0.0D0)
0416 ZI=(0.0D0,1.0D0)
0417 DO 10 I=1,3
0418 DO 11 J=1,3
0419 11 ZAB(I,J)=Z0
0420 ZEXF( I)=Z0
0421 10 CONTINUE
0422 C
0423 DO 100 K=1,NB
0424 DX=XQ(K+1)-XQ(K)
0425 DY=YQ(K+1)-YQ(K)
0426 D =DSQRT(DX*DX+DY*DY)
0427 DO 110 I=1,3
0428 DO 120 J=1,3
0429 120 ZAB(I,J)=ZAB(I,J)-ZFI(J,K)*VN(I,K)*D
0430 ZEXF(I )=ZEXF(I )+ZFI(4,K)*VN(I,K)*D
0431 110 CONTINUE
0432 100 CONTINUE
0433 C /
0434 DO 150 I=1,3
0435 DO 160 J=1,3
0436 A (I,J)= DREAL(ZAB(I,J))
0437 B (I,J)=-DIMAG(ZAB(I,J))
0438 BE(I,J)=0.5D0*(ZHA(I)*DCONJG(ZHA(J))+ZHB(I)*DCONJG(ZHB(J)))
0439 160 CONTINUE
0440 EAMP(I)=CDABS(ZEXF(I))
0441 EPHA(I)=DATAN2(DIMAG(ZEXF(I)),DREAL(ZEXF(I)))*180.0D0/PI
0442 150 CONTINUE
0443 C
0444 C ++++++++++++++++++++++++++( PRINT OUT )+++++++++++++++++++++++++++++
0445 IF(IPRINT.EQ.0) RETURN
0446 WRITE(6,600) NB,AK
0447 DO 300 I=1,3
0448 C1=B (I,I)
0449 C2=BE(I,I)
0450 CHK=DABS(C1-C2)/DABS(C1+C2)*200.0D0
0451 300 WRITE(6,610) I,I,A(I,I),B(I,I),BE(I,I),CHK
0452 WRITE(6,615)
0453 DO 310 I=1,3
0454 DO 310 J=1,3
0455 IF(I.EQ.J) GOTO 310
0456 WRITE(6,610) I,J,A(I,J),B(I,J),BE(I,J)
0457 310 CONTINUE
0458 WRITE(6,630)
0459 DO 320 I=1,3
0460 WRITE(6,640) I,ZEXF(I),ZHA(I),EAMP(I),EPHA(I)
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0461 320 CONTINUE
0462 C /
0463 600 FORMAT(//5X,’+++++++ ADDED-MASS & DAMPING COEFF. ( ’,
0464 & ’NB=’,I3,’, K*B/2=’,F8.4,’ ) +++++++’,//10X,
0465 & ’I J’,8X,’ADDED-MASS’,6X,’DAMPING’,9X,
0466 & ’ENERGY’,8X,’ERROR(%)’)
0467 610 FORMAT(8X,’(’,I2,’,’,I2,’)’,3X,E13.4,3(2X,E13.4))
0468 615 FORMAT(’ ’)
0469 620 FORMAT(8X,’(’,I2,’,’,I2,’)’,3X,E13.4,2(2X,E13.4))
0470 630 FORMAT(//5X,’+++++ WAVE EXCITING FORCE +++++’,
0471 & //17X,’PRESSURE INTEGRAL’,13X,’HASKIND-NEWMAN’,/9X,’J’,
0472 & 2(7X,’REAL’,9X,’IMAG’,4X),7X,’AMP’,5X,’PHASE(DEG)’)
0473 640 FORMAT(8X,I2,2E13.4,2X,2E13.4,3X,E11.4,2X,F9.3)
0474 RETURN
0475 END
0476 C *********************************************************************
0477 C ** CALCULATION OF WAVE-INDUCED MOTIONS (SWAY, HEAVE & ROLL) **
0478 C ** THE OUTPUT IS ABOUT THE CENTER OF GRAVITY **
0479 C *********************************************************************
0480 SUBROUTINE MOTION(AK,IPRINT)
0481 IMPLICIT DOUBLE PRECISION (A-H,K,O-Y)
0482 IMPLICIT COMPLEX*16 (Z)
0483 C
0484 DIMENSION ZAA(3,3),ZBB(3)
0485 DIMENSION AMPG(3),PHAG(3),ZMTNG(3)
0486 COMMON /PAI/ PI,PI05,PI2
0487 COMMON /MDT/ CMAS,C22,OG,KZZ,GM
0488 COMMON /FCE/ ZAB(3,3),ZEXF(3)
0489 COMMON /MTN/ ZMTNO(3)
0490 C
0491 SML=1.0D-14
0492 C /
0493 ZAA(1,1)=-AK*(CMAS+ZAB(1,1))
0494 ZAA(1,2)=-AK* ZAB(1,2)
0495 ZAA(1,3)=-AK*(ZAB(1,3)+OG*ZAB(1,1))
0496 ZBB(1 )= ZEXF(1)
0497 C /
0498 ZAA(2,1)=-AK* ZAB(2,1)
0499 ZAA(2,2)=-AK*(CMAS+ZAB(2,2))+C22
0500 ZAA(2,3)=-AK*(ZAB(2,3)+OG*ZAB(2,1))
0501 ZBB(2 )= ZEXF(2)
0502 C /
0503 ZAA(3,1)=-AK*(ZAB(3,1)+OG*ZAB(1,1))
0504 ZAA(3,2)=-AK*(ZAB(3,2)+OG*ZAB(1,2))
0505 ZAA(3,3)=-AK*(CMAS*KZZ**2+ZAB(3,3)+OG*ZAB(1,3)
0506 & +OG*(ZAB(3,1)+OG*ZAB(1,1)))+CMAS*GM
0507 ZBB(3 )= ZEXF(3)+OG*ZEXF(1)
0508 C /
0509 C +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0510 CALL ZSWEEP(3,3,ZAA,ZBB,1,SML)
0511 IF(CDABS(ZAA(1,1)).LT.SML) WRITE(6,600)
0512 600 FORMAT(///10X,’+++ ERROR: ZSWEEP IN (MOTION) +++’///)
0513 C +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0514 DO 100 I=1,3
0515 ZMTNG(I)=ZBB(I)
0516 100 CONTINUE
0517 ZMTNO(1)=ZMTNG(1)+OG*ZMTNG(3)
0518 ZMTNO(2)=ZMTNG(2)
0519 ZMTNO(3)=ZMTNG(3)
0520 C /
0521 DO 200 I=1,3
0522 AMPG(I)=CDABS(ZMTNG(I))
0523 IF(I.EQ.3) AMPG(I)=AMPG(I)/AK
0524 PHAG(I)=DATAN2(DIMAG(ZMTNG(I)),DREAL(ZMTNG(I)))*180.0D0/PI
0525 200 CONTINUE
0526 C ++++++++++++++++++++++++++( PRINT OUT )++++++++++++++++++++++++++++++
0527 IF(IPRINT.EQ.0) RETURN
0528 WRITE( 6,610) AK,(AMPG(I),PHAG(I),I=1,3)
0529 610 FORMAT(//5X,’+++++ MOTIONS ABOUT ’’G’’ FOR K*B/2=’,F7.3,
0530 & ’ +++++’,/20X,’AMP.’,7X,’PHASE’,/9X,’SWAY ’,E11.4,
0531 & 2X,F9.3,’ (DEG)’,/9X,’HEAVE ’,E11.4,2X,F9.3,’ (DEG)’,
0532 & /9X,’ROLL ’,E11.4,2X,F9.3,’ (DEG)’)
0533 RETURN
0534 END
0535 C *********************************************************************
0536 C ** TRANSMISSION AND REFLECTION WAVE COEFFICIENTS **
0537 C ** INCLUDING NUMERICAL CHECK OF ENERGY RELATION **
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0538 C *********************************************************************
0539 SUBROUTINE TRCOEF(AK,IPRINT)
0540 IMPLICIT DOUBLE PRECISION (A-H,O-Y)
0541 IMPLICIT COMPLEX*16 (Z)
0542 C
0543 COMMON /KCH/ ZHA(4),ZHB(4)
0544 COMMON /MTN/ ZMTN(3)
0545 C
0546 ZI=(0.0D0,1.0D0)
0547 C /
0548 ZTDIF=1.0D0+ZI*ZHB(4)
0549 ZRDIF=ZI*ZHA(4)
0550 TT =CDABS(ZTDIF)
0551 RR =CDABS(ZRDIF)
0552 CDIF =TT**2+RR**2
0553 C /
0554 ZTFRE=ZTDIF
0555 ZRFRE=ZRDIF
0556 S=1.0D0
0557 DO 100 I=1,3
0558 S=-S
0559 ZTFRE=ZTFRE-ZI*AK*ZMTN(I)*ZHB(I)
0560 ZRFRE=ZRFRE-ZI*AK*ZMTN(I)*ZHA(I)
0561 100 CONTINUE
0562 CT =CDABS(ZTFRE)
0563 CR =CDABS(ZRFRE)
0564 CFRE =CT**2+CR**2
0565 C /
0566 C ++++++++++++++++++++++++++( PRINT OUT )++++++++++++++++++++++++++++++
0567 IF(IPRINT.EQ.0) RETURN
0568 WRITE(6,600) AK,TT,RR,CDIF,CT,CR,CFRE
0569 600 FORMAT(//5X,’******* TRANSMISSION & REFLECTION COEFF. ( K*’,
0570 & ’B/2=’,F8.4,’ ) *******’,/29X,’CT’,12X,’CR’,8X,’CT**2+CR**2’,
0571 & /10X,’DIFFRACTION’,2X,E11.4,3X,E11.4,3X,E12.5,
0572 & /10X,’MOTION FREE’,2X,E11.4,3X,E11.4,3X,E12.5)
0573 RETURN
0574 END
0575 C *********************************************************************
0576 C ** SUBROUTINE OF THE EXPONENTIAL INTEGRAL **
0577 C *********************************************************************
0578 SUBROUTINE EZE1Z(XX,YY,EC,ES)
0579 IMPLICIT DOUBLE PRECISION (A-H,O-Y)
0580 IMPLICIT COMPLEX*16 (Z)
0581 DOUBLE PRECISION NEW
0582 C
0583 DATA PI,GAMMA/3.14159265358979D0,0.5772156649015D0/
0584 C
0585 X =XX
0586 Y =DABS(YY)
0587 R =DSQRT(X*X+Y*Y)
0588 C =DATAN2(Y,X)
0589 C
0590 IF(R.GT.25.0D0) GO TO 30
0591 IF(X.GT.0.0D0.AND.R.GT.8.0D0) GO TO 20
0592 IF(X.LE.0.0D0.AND.Y.GT.10.0D0) GO TO 20
0593 C+++++++++++++ SERIES EXPANSION +++++++++++++++++++++++++++
0594 ER=-GAMMA-DLOG(R)+R*DCOS(C)
0595 EI=-C+R*DSIN(C)
0596 SB=-R
0597 DO 100 N=2,100
0598 FN=DFLOAT(N)
0599 CN=C*FN
0600 SB=-SB*R*(FN-1.0D0)/FN/FN
0601 ER=ER-SB*DCOS(CN)
0602 EI=EI-SB*DSIN(CN)
0603 IF(N.EQ.100) GO TO 1
0604 IF(EI.EQ.0.0D0) GO TO 10
0605 IF(DABS(SB/EI).LE.1.0D-8) GO TO 10
0606 GO TO 100
0607 10 IF(DABS(SB/ER).LE.1.0D-8) GO TO 1
0608 100 CONTINUE
0609 1 CC=DEXP(X)*DCOS(Y)
0610 SS=DEXP(X)*DSIN(Y)
0611 EC=CC*ER-SS*EI
0612 ES=CC*EI+SS*ER
0613 IF(YY.LT.0.0D0) ES=-ES
0614 RETURN
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0615 C+++++++++++++ CONTINUED FRACTION +++++++++++++++++++++++++
0616 20 Z =DCMPLX(X,Y)
0617 Z1=(1.0D0,0.0D0)
0618 ZSUB=(10.0D0,0.0D0)
0619 ZS =Z+ZSUB/(Z1+ZSUB/Z)
0620 DO 200 J=1,9
0621 ZSUB=DCMPLX(DFLOAT(10-J),0.0D0)
0622 ZS =Z+ZSUB/(Z1+ZSUB/ZS)
0623 200 CONTINUE
0624 ZSUB=Z1/ZS
0625 EC=DREAL(ZSUB)
0626 ES=DIMAG(ZSUB)
0627 IF(YY.LT.0.0D0) ES=-ES
0628 RETURN
0629 C++++++++++++ ASYMPTOTIC EXPANSION ++++++++++++++++++++++++
0630 30 OLD=-1.0D0/R
0631 EXC=OLD*DCOS(C)
0632 EXS=OLD*DSIN(C)
0633 DO 300 N=2,100
0634 NEW=-OLD/R*DFLOAT(N-1)
0635 IF(EXS.EQ.0.0D0) GO TO 31
0636 IF(DABS(NEW/EXS).LE.1.0D-8) GO TO 31
0637 GO TO 32
0638 31 IF(EXC.EQ.0.0D0) GO TO 32
0639 IF(DABS(NEW/EXC).LE.1.0D-8) GO TO 33
0640 32 IF(DABS(OLD).LT.DABS(NEW)) GO TO 33
0641 OLD=NEW
0642 EXC=EXC+OLD*DCOS(C*DFLOAT(N))
0643 EXS=EXS+OLD*DSIN(C*DFLOAT(N))
0644 300 CONTINUE
0645 33 EC=-EXC
0646 ES= EXS
0647 IF(DABS(PI-DABS(C)).LT.1.0D-10) ES=-PI*DEXP(X)
0648 IF(YY.LT.0.0D0) ES=-ES
0649 RETURN
0650 END
0651 C *********************************************************************
0652 C ** SIMPLE GAUSS SWEEPING METHOD FOR SOLVING COMPLEX MATRIX **
0653 C *********************************************************************
0654 SUBROUTINE ZSWEEP(NDIM,N,ZA,ZB,NEQ,EPS)
0655 IMPLICIT DOUBLE PRECISION (A-H,O-Y)
0656 IMPLICIT COMPLEX*16 (Z)
0657 C
0658 DIMENSION ZA(NDIM,NDIM),ZB(NDIM,NEQ)
0659 DO 5 K=1,N
0660 P=0.0D0
0661 DO 1 I=K,N
0662 IF(P.GE.CDABS(ZA(I,K))) GO TO 1
0663 P=CDABS(ZA(I,K))
0664 IP=I
0665 1 CONTINUE
0666 IF(P.LE.EPS) GO TO 6
0667 IF(IP.EQ.K) GO TO 7
0668 DO 2 J=K,N
0669 ZW=ZA(K,J)
0670 ZA(K,J)=ZA(IP,J)
0671 2 ZA(IP,J)=ZW
0672 DO 20 J=1,NEQ
0673 ZW=ZB(K,J)
0674 ZB(K,J)=ZB(IP,J)
0675 20 ZB(IP,J)=ZW
0676 7 CONTINUE
0677 IF(K.EQ.N) GO TO 70
0678 DO 3 J=K+1,N
0679 3 ZA(K,J)=ZA(K,J)/ZA(K,K)
0680 70 DO 30 J=1,NEQ
0681 30 ZB(K,J)=ZB(K,J)/ZA(K,K)
0682 DO 5 I=1,N
0683 IF(I.EQ.K) GO TO 5
0684 IF(K.EQ.N) GO TO 40
0685 DO 4 J=K+1,N
0686 4 ZA(I,J)=ZA(I,J)-ZA(I,K)*ZA(K,J)
0687 40 CONTINUE
0688 DO 45 J=1,NEQ
0689 45 ZB(I,J)=ZB(I,J)-ZA(I,K)*ZB(K,J)
0690 5 CONTINUE
0691 ZA(1,1)=(1.0D0,0.0D0)
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0692 RETURN
0693 6 ZA(1,1)=DCMPLX(DABS(P),0.0D0)
0694 RETURN
0695 END
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$ chk
40 1.0 0.8

************************************************
2-D RADIATION AND DIFFRACTION PROBLEMS

OF A GENERAL-SHAPED 2-D BODY
BY INTEGRAL-EQUATION METHOD

************************************************

NUMBER OF PANELS OVER WHOLE BODY (NB)= 40
HALF-BEAM TO DRAFT RATIO H0(=B/2/D)= 1.0000
SECTIONAL AREA RATIO SIGMA(=S/B/D)= 0.8000

NONDIMENSIONAL MASS------- S/(B/2)**2= 1.60000
HEAVE RESTORING FORCE COEFF--AW/(B/2)= 2.00000
CENTER OF GRAVITY----------------OG/D= 0.05000
GYRATIONAL RADIUS-----------KZZ/(B/2)= 0.35000
METACENTRIC HEIGHT-----------GM/(B/2)= 0.03817

1.0

******* KOCHIN FUNCTION & ACCURACY CHECK ( K*B/2= 1.0000 ) *******

A-BAR EPS(DEG) A-BAR EPS(DEG)
SWAY: 0.10974E+01 -16.048 HEAVE: 0.77236E+00 -25.214
ROLL: 0.18508E-01 163.952

DIRECT CALCULATION COMPUTED FROM RADIATION
DIFFRACTION (+) 0.6511E+00 0.7421E+00 0.6511E+00 0.7421E+00
DIFFRACTION (-) 0.1197E+00 0.8949E+00 0.1197E+00 0.8949E+00

+++++++ ADDED-MASS & DAMPING COEFF. ( NB= 40, K*B/2= 1.0000 ) +++++++

I J ADDED-MASS DAMPING ENERGY ERROR(%)
( 1, 1) 0.5831E+00 0.1205E+01 0.1204E+01 0.3517E-01
( 2, 2) 0.9761E+00 0.5969E+00 0.5965E+00 0.5948E-01
( 3, 3) 0.6037E-03 0.3427E-03 0.3426E-03 0.3604E-01

( 1, 2) -0.1839E-15 0.3053E-15 0.2220E-15
( 1, 3) -0.6261E-02 -0.2032E-01 -0.2031E-01
( 2, 1) -0.5774E-15 0.1730E-15 0.2220E-15
( 2, 3) 0.1741E-17 -0.3286E-17 -0.9541E-17
( 3, 1) -0.6258E-02 -0.2032E-01 -0.2031E-01
( 3, 2) 0.5150E-18 -0.4337E-18 -0.9541E-17

+++++ WAVE EXCITING FORCE +++++

PRESSURE INTEGRAL HASKIND-NEWMAN
J REAL IMAG REAL IMAG AMP PHASE(DEG)
1 0.3035E+00 0.1055E+01 0.3034E+00 0.1055E+01 0.1098E+01 73.952
2 0.3292E+00 0.6992E+00 0.3290E+00 0.6988E+00 0.7728E+00 64.786
3 -0.5118E-02 -0.1779E-01 -0.5116E-02 -0.1779E-01 0.1852E-01 -106.048

+++++ MOTIONS ABOUT ’G’ FOR K*B/2= 1.000 +++++
AMP. PHASE

SWAY 0.4378E+00 -76.956 (DEG)
HEAVE 0.9316E+00 -69.197 (DEG)
ROLL 0.1596E+00 -76.956 (DEG)

******* TRANSMISSION & REFLECTION COEFF. ( K*B/2= 1.0000 ) *******
CT CR CT**2+CR**2

DIFFRACTION 0.1593E+00 0.9872E+00 0.10000E+01
MOTION FREE 0.1350E+00 0.9908E+00 0.10000E+01
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