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1. Fundamental Theories on Water Waves

In order to understand theoretically the dynamics of a floating body in waves, it is indispensable
to understand the theories related to water waves, that is, the free-surface hydrodynamics. Starting
with reviewing the hydrodynamics as a subject of ‘mechanics’, fundamental knowledge concerning the

characteristics of water waves will be summarized in this chapter.

1.1 Continuity Equation and Euler’s Equations

Since the hydrodynamics is a subject of ‘mechanics’ of the fluid, its fundamental equations must be
obtained from the conservation laws of physics, such as mass, momentum, and energy, as in the general
mechanics. Let us consider first the conservation of mass. We focus our attention on a group of fluid
particles (or a material volume of fluid) so that we always examine the same group of particles. Thus we
define a volume of fluid V' (¢) subject to the above restriction, which changes in time. Then by denoting

the density of fluid as p, the principle of conservation of mass can be written in the form

I o

Next let us consider the principle of conservation of momentum. According to the Newton’s second
law, the sum of all forces acting on the volume of fluid must be equal to the time rate-of-change of
its momentum. Since viscous effects are normally small in the water-wave phenomena, we neglect the
viscous shear stress and consider only the normal pressure stress and the gravity force. Then the i-th

component (i =1, 2, and 3 correspond to z, y, and z) in the conservation of momentum can be written

d
—/// puidV:f// pn,;dSJr/// pgkdV. (1.2)
dt V) S() V)

Here p denotes the normal pressure acting on the surface S of a prescribed volume of fluid V; n; the i-th

in the following form

component of the unit normal vector pointing out of V' on the surface S; u; the i-th component of the
velocity vector; g the acceleration due to gravity; k is the elementary vector along the z-axis which is
taken vertically downwards (in the direction of the gravity force acting).

In the theory of water waves, it is customary to assume that the fluid density p is given and unchanged
with time. Thus the unknowns in (1.2) are the components of the velocity vector u; (¢ = 1 ~ 3) and
the pressure p; hence the total number of unknowns is four. We can see that (1.1) provides one equation
and (1.2) provides three equations. Therefore by solving (1.1) and (1.2) with appropriate boundary and
initial conditions applied, the flow of a fluid under consideration can be determined.

In (1.1) and (1.2) especially their left-hand sides, it is supposed that the fluid particles confined by
region V are always the same at all times and their movement will be pursued in a Lagrangian way. In

order to describe this with a spaced-fixed coordinate system, let us consider a general volume integral of

I(t) = ///m) Fla,t)dV, (1.3)

where F' is an arbitrary differentiable scalar function of position vector & and time t. We should bear in

the form

mind that the volume of integration is itself a function of time. Therefore the boundary surface S of this

volume will change in time and move; let its normal velocity be denoted by U,,.



We consider the variation of (1.3) after a short time interval A¢, which can be written as

AL=I(t+ At) - ///M (@, + Aty dV /// F(z,t)d (1.4)

With the Taylor-series expansion, we can write as

OF(z,t)
ot
Neglecting all terms higher than (At#)?, the difference between V(t + At) and V() is a thin volume
contained between the adjacent surfaces S(¢t + At) and S(¢) in the time A¢t. Thus, denoting the nor-
mal velocity of the boundary surface by U, we can write AV = S(t)U,, At. With these taken into

F(x,t+ At) = F(z,t) + At +0[(At)?]. (1.5)

consideration, AJ in (1.4) can be approximated as

=], (s~ ff 7o
_At// —dV+///AVFdV+O[(Af)2]

_At///—dv+At/sFUndS+O[(At)2]. (1.6)

Finally, by dividing both sides by At and taking the limit as At — 0, the time derivative of I(t) defined

by (1.3) takes the form
// —dV+/ FU,dS. (1.7)
s

Equation (1.7) is known as the transport theorem. The surface integral in this equation represents
the transport of quantity F' out of the volume V', as a result of the movement of the boundary.

When V is a material volume, always composed of the same fluid particles, the surface S moves with
the same normal velocity as the fluid and hence U,, = w-n = u;n;. In this case, in terms of the transport

theorem (1.7), the conservation of mass (1.1) can be transformed as follows:

= 1] o
/// [ pug)} av =0. (1.8)

Here Gauss’ theorem written in the indicial notation
0A;
v 0z; S

Since the last integral in (1.8) is evaluated at a fixed instant of time, the distinction that V is a

has been used in obtaining (1.8).

material volume is unnecessary at this stage. Moreover, this volume can be composed of an arbitrary
group of fluid particles; hence the integrand itself is equal to zero throughout the fluid. Thus, the volume

integration in (1.8) can be replaced by a partial differential equation of the form

op O
=0. 1.10
This is referred to as the continuity equation, derived from the conservation of mass.
For an incompressible fluid, the density is constant, and thus (1.10) can be simplified to give the

following:



9 ) or V=0 (1.11)
8xj

Likewise, by applying the transport theorem (1.7) to the conservation of momentum (1.2), it follows
p

that
///V[;(Pui)‘f'aij(fmiuj)]dv:///v{—gmi

The right-hand side of this equation has been obtained by using Gauss’ theorem (1.9), and d;3 denotes

+pg§i3} dv. (1.12)

the Kroenecker’s delta, equal to 1 if ¢ = 3 and 0 otherwise.
Once again the volume of fluid in question is arbitrary; hence (1.12) must hold for the integrands

alone, in the form
0 0 op

—_— i _— U5 ) = — i3 1.1
8t(pu)+axj(puuj) 8mi+p953 (1.13)

Finally, if the derivatives of products on the left-hand side of this equation are expanded with the chain
rule, and the continuity equation (1.10) is invoked, we obtain Euler’s equation in the form
Du; 0 0 10p
Y AL 5is. 1.14
Dt (8t+u]6xj>u p@xi+g ’ (1.14)

We note that this equation is obtained from the conservation of momentum, corresponding to the

Newton’s second law on the motion equation in the general mechanics. Therefore, the left-hand side of
(1.14), denoted as Du;/Dt, is the time rate-of-change in a coordinate system with the fluid particle and
can be interpreted as the acceleration of a material particle of fluid. Thus D/Dt defined in (1.14) is

referred to as the substantial derivative.

1.2 Potential Flows

In most problems related to water waves, we may assume that the motion of fluid is irrotational; that
is, V x u = 0. In other words, the vorticity (w = V x u) is zero throughout the fluid. For this particular
case, let us consider how (1.11) and (1.14) can be transformed.

According to the formulae in the vector analysis, for an arbitrary scalar function @(x,t), an identity
of V x V& =0 (rot grad ® = 0) holds. Therefore, if V x w = 0 is satisfied, the velocity vector u can be
represented as u = V@ in terms of a scalar function @, which is called the velocity potential, and the
flows that can be described with the velocity potential are referred to as the potential flows.

Introducing the velocity potential may at first seem an unnecessary complication, but it is advantageous
in a mathematical treatment. The velocity is a vector quantity with three unknown scalar components,
whereas the velocity potential is a single scalar unknown from which all three velocity components may
be computed.

If u = V@ is substituted for the velocity vector in the continuity equation (1.11), it follows that
V-V = V0 =0. (1.15)

This is the Laplace equation which expresses the conservation of mass for potential flows and provides a
partial differential equation as the governing equation to be solved for the function @.

We will consider next how Euler’s equation (1.14) can be recast for potential flows. For that purpose,
we note that the nonlinear term on the left-hand side of Euler’s equation can be transformed in the
following form with indicial notations

9
al’j

Uy U; = ujﬁjui = uj(ajui — &-uj) + Ujai’u]‘
1 1
= ujekj,»(V X u)k + §8i(u]'uj‘) = §V(V© . VQS), (116)

3



because V x u = 0 is satisfied for potential flows.
Using this relation and substituting w = V& in (1.14), it follows that

od 1 P
V|—+=-V& - Vo + = — =0. 1.17
5 T3 +, ez (1.17)
Integrating this with respect to the three space variables gives the following expression:
od 1
p+pa+§pV¢~V©—pgz=po, (1.18)

where pg is a constant, independent of the space coordinates, which may be taken as the atmospheric
pressure, p,, on the undisturbed still water surface.

Once the velocity potential is determined, the pressure in the fluid can be computed from (1.18); hence
(1.18) is referred to as Bernoulli’s pressure equation. We should note again that Bernoulli’s pressure

equation is obtained from the conservation of momentum.

1.3 Boundary Conditions

In order to solve the Laplace equation, appropriate boundary conditions must be imposed on the
boundaries of the fluid domain. Normally we consider a kinematic boundary condition corresponding to
a statement regarding the velocity of the fluid on the boundary. This kinematic boundary condition can
always be applied on any boundary surface with a specified geometry and position.

Suppose that the boundary surface is represented with a function F(x,t) = 0 in a space-fixed co-
ordinate system. Then the kinematic boundary condition can be derived readily by considering the
substantial derivative of this function, because the fluid particles on a wetted boundary surface must

follow the movement of the boundary surface. Therefore we may write as follows:

DF OF

Dividing both sides with |VF| and noting that the normal vector can be computed by n = VF/|VF|,

we may have

0P 1 OF
Ve = = ar

This equation provides the boundary condition of Neumann type for the velocity potential, and physically

=V,) onF=0. (1.20)

implies that the normal velocity of a fluid particle, denoted by 0®/dn, is equal to the normal velocity of
the body surface, denoted by V,,. This boundary condition is called the kinematic condition.

In a problem of water waves, the water surface (which is referred to as the free surface) is a boundary
surface. Suppose that the wave elevation is given by z = ((z,y,t), then the function representing the

boundary surface can be expressed as
F=z—-{(z,y,t)=0. (1.21)

Substituting this in (1.19) gives the kinematic boundary condition in the form

DF 3¢ 399 090  0b

Dt~ ot Ozox 8y8y+8z7

Here we note that the wave elevation ( is also unknown. Thus we need one more boundary condition on the

0 on z={((z,y,t). (1.22)

free surface, relating @ with {. In order to realize this requirement, we consider the dynamic condition
which states that the pressure on the free surface is equal to the atmospheric pressure. Considering

p=pe on z=( in (1.18), we can obtain the desired boundary condition in the form
op 1

4



In principle, by eliminating ¢ from (1.22) and (1.23), the boundary condition only for the velocity
potential @ on the free surface may be derived. However, the resulting equation will be a complicated
nonlinear one and must be imposed on the exact free surface z = ¢ which is unknown at this stage.

In order to understand fundamental and important characteristics of these equations analytically,
we adopt a technique of linearization. That is, we assume that the wave elevation ¢ and the velocity
potential @ representing the associated fluid motion are both sufficiently small. Then the derivatives of
these quantities will be also of small first order. With these assumptions, we neglect all higher-order
terms than O(9?) in (1.22) and (1.23).

First, from (1.23), the linearized equation for the free-surface elevation is obtained as

109
=-— %), 1.24
¢= 15+ o) (1.24)
Next, (1.22) may be approximated as
o¢ 0P
a = & + O(C@) (1.25)

This equation simply states that the vertical velocities of the free surface and fluid particles are equal,
ignoring the small departure of that surface from the horizontal orientation.

Eliminating ¢ from (1.24) and (1.25) gives the following equation:

0’® 0P
—g=— £+ O(P%. (D) = 0. 1.26
Although not explicitly shown, this equation must be imposed on the exact free surface z = (. To
simplify this complication further, we apply to the velocity potential the Taylor-series expansion about
the undisturbed free surface z = 0, in the form
0P
0z z=0

Since ¢ is assumed small, we can see that the errors induced by applying the boundary condition on
z = 0 may be higher than O(®?). Therefore, it is consistent with the linearizations already carried out to
impose (1.26) on z = 0, and thus the linearized free-surface boundary condition for the velocity potential
can be expressed in the following form:

0*® 0P

— —g9g=—=0 on z = 0. 1.28

o2~ oz (1.28)

The derivation shown above may seem rather complicated, but there exists a more expedient approach,
which is suitable for considering the nonlinear free-surface boundary condition for the velocity potential.
That approach is to replace the kinematic condition (1.22) by the statement that the substantial derivative
of the pressure is zero on the free surface. This is a rather pragmatic mixture of the dynamic and
kinematic boundary conditions, because the statement that Dp/Dt¢ = 0 on the free surface implies that
this is precisely the appropriate moving surface on which the pressure is constant.
Substituting (1.18) for the pressure, we obtain the desired boundary condition in the form

B o 1
(at+v¢-v)<at+2v¢-v¢>—gz)_o on z = (. (1.29)

Working out the indicated derivative gives

0*® 0P P 1
52 93, T \Y V@t + 2V V(VP-VP) =0 onz=( (1.30)



It should be noted however that the wave elevation ¢ must be evaluated from (1.23). If the technique
of linearization described above is applied to (1.30), we can readily obtain the linearized free-surface
boundary condition (1.28). Other boundary conditions to be imposed will be explained subsequently

when they are needed.

1.4 Principle of Energy Conservation

As a preparation for investigating the characteristics of progressive waves and hydrodynamic forces
on a body, the energy and its rate of change with respect to time of ideal fluids will be explained in this
section.

According to the knowledge in the general mechanics, the total energy in the fluid is the sum of kinetic

and potential energies. Thus, in a prescribed volume V', the total energy is given by the integral

E:///V(t)p{;(f—gz} dvz///v(t)pBVg@-WS—gz} av, (1.31)

where ¢ = |u| and the positive z-axis is taken vertically downward.
Next, let us consider the rate of change with respect to time of the total energy (1.31). Allowing
the boundary surface S of the volume V' to move with the normal velocity U,, and using the transport

theorem (1.7), we have

de d 1 5
i =7 [ L2707 7
o1, 1,
:p///[q —gz} dV+p// [q —gz} U,dS. 1.32
v ot |2 52 (1:32)

Since z is independent of time, the only contribution to the volume integral in (1.32) is from the kinetic-

energy term, which takes the form

91,1 o1 - 0 (09
athq}_atbv@.v@}_wﬁ Vo=V (mwp). (1.33)

Here the Laplace equation has been used in the last transformation. For the integrand of the surface

integral in (1.32), Bernoulli’s equation (1.18) can be used to write as

1 2 P—DPa 0P
“—gr=— =). 1.34
54" — 9% ( 5 +at) (1.34)

Then, substituting these results and applying Gauss’ theorem, we can rewrite the volume integral with

the surface integral in the form

dE 8&758@_ P — Da 82

As the boundary surface of a volume of fluid, let us consider the hull surface of a body Sy, the free

surface Sr, and a control surface S¢ which is at rest and located far from a body. Then the boundary

conditions on these surfaces can be written as

onSe U,=0
oD
0]
on Sf P =Un, pP=0na
on



Therefore (1.35) can be recast in the form

0P 0P
- - == L.
//SH(p pa)VndS—i—p//SC 8t8nds (1.37)

If the time average over one cycle is considered, the rate of change of the total energy in the entire fluid
(left-hand side) must be zero in time average. The first term on the right-hand side is the work done by
a body onto the fluid, because V,, is the normal velocity of the body and the normal vector is defined
positive when directing out of the fluid into the body. Denoting this work as Wp, the relation to be

obtained from (1.37) for the time average can be expressed as

8@3@
W ——// p— panSf—// 1.38
b SH p Sc 8t a’l’b ( )

This equation can be used in deriving a relation of the damping force on a body with the energy of

progressive waves generated by an oscillation of that body. That relation is known as the principle of
energy conservation. Of course, if the body is fixed in space (V,, = 0) or if no body exists, the left-hand

side of (1.38) is zero; thus in these cases, the principle of energy conservation can be written in the form
([ 090P

dS =0. 1.39

/ / ot on ( )

1.5 Plane Progressive Waves of Small Amplitude
1.5.1 Phase function and phase velocity

The simplest solution of the free-surface condi-

o —>C tion (1.28), which nevertheless has great practical

SF O - . .
> significance, is the plane progressive wave system.

As shown in Fig.1.1, a plane wave is supposed to
propagate to the positive z-axis in water of finite

constant depth (y = h). The motion of fluid is two

2
]
0

8

dimensional in the z-y plane, but the wave propa-

7 gates only in the x-axis; thus this wave is sometimes
Y called one-dimensional wave.

Fig.1.1 Coordinate system for a Let us consider a wave which is sinusoidal in time

plane progressive wave with circular (or angular or radian) frequency w;

thus the period is given by T' = 27 /w. Denoting the

amplitude of the wave as a, the elevation of this sinusoidal plane progressive wave can be written as
y =n(z,t) = acos(wt — koz), (1.40)

where ky denotes the wavenumber, the number of waves per unit distance along the z-axis. Thus, in
terms of the wavelength A, it is given by ko = 27/,

We should note that the phase function in (1.40) is written as wt — kox, which represents a wave
propagating in the positive z-axis without changing the profile. In order to confirm this, let us introduce
a coordinate system (2’-y) moving in the positive z-axis with the same velocity as that of the wave (which
is denoted as ¢). To an observer moving with this velocity, the wave must appear steady-state. Thus,

from the following relation

wt — kox = wt — ko(z' + ct) = (w — koe)t — koz' = —koa',



we can see that w
w—kic=0 — c=—>0. (1.41)
ko
This velocity is the propagation velocity of the wave profile and referred to as the phase velocity. With
the same discussion, the phase function for a wave propagating in the negative x-axis takes the form of
wt + kox.
These characteristics can be written in another way. We can confirm that an arbitrary function f(«)

with the phase function ¥ = wt — kgx satisfies

of  of
ot T T

Namely, a function f satisfying the advection equation of the above form represents the propagation with

(w—rcko) f' =0. (1.42)

velocity c¢ in the positive x-axis without changing its profile.

1.5.2 Velocity potential
Let us derive the velocity potential @ for one-dimensional progressive waves. The governing equation
of @ is the Laplace equation, subject to the boundary conditions on the free surface S, the water bottom

Sp, and an artificial vertical surface S+, at x = +0o. Those are written as

2¢ ¢
Continuity equation [L)] g? + g? =0 fory>0 (1.43)
2p b
Free-surface condition [F] %? - gg—y =0 ony=0 (1.44)
. oP
Bottom condition [B] v 0 ony=nh (1.45)
Y

The boundary condition on St (which is usually called the radiation condition) is not specified
above, but it must be a physically relevant condition. In the present problem, it should state that the
wave propagates in the positive z-direction; which can be realized if the phase function takes the form of
fwt — ko).

With this consideration, the velocity potential to be obtained is assumed to have the following form:

&(x,y,t) =Y (y)sin(wt — kox). (1.46)

Substituting this assumed form into the Laplace equation (1.43), we obtain the ordinary differential

equation for Y (y) in the form

A’y
a7 —k2Y =0. (1.47)
The general solution of (1.47) is given as
Y (y) = Cp efo¥ 4 CyeFov, (1.48)

Here C; and Cs are constants to be determined from the boundary conditions on the free surface and
the bottom.

Substituting (1.48) in (1.44) and (1.45) gives the following equations:
Ci(w? + gko ) + C2(w? — gko ) = 0 (1.49)
& ghoh _ Cy e koh — .

The necessary and sufficient condition for existence of non-trivial solutions except for C; = Cy =0 is

w2+ gky w? — gko

b ton | =0 (1.50)




2
Namely Y = K = ko tanh koh (1.51)
9

is the required condition; which may be regarded as an equation for the eigen-value to be satisfied between
the wavenumber kg and the frequency w.
The corresponding eigen-solution can be obtained as follows. By eliminating one unknown from (1.49)

and introducing

1
C, efoh = ¢y e7Foh = 3D (1.52)
the eigen-solution can be written in the form
&(x,y,t) = Dcoshkg(y — h) sin(wt — kox) (1.53)

in terms of an unknown coefficient D.

It should be noted that D cannot be determined from (1.49), because the boundary conditions on [F]
and [B] are both homogeneous. In order to determine this unknown, the wave elevation on y = 0 will be
required to be equal to (1.40). Since the linearized free-surface elevation can be computed from (1.24),

we have the following relation:

1 /0P
n=- () — DY cosh koh cos(wt — kox)
g y=0 g

ot
= a cos(wt — kox). (1.54)
From this, it follows that ga
? D=———. 1.55
w cosh koh ( )

Finally, substituting this result in (1.53) gives the velocity potential for the plane progressive wave in the

form
_ gacoshko(y —h)

] t) =
(@,9,%) w  coshkoh

In terms of a complex notation, the above result can be written in the following form

sin(wt — kox). (1.56)

&(z,y,t) = Re[d)(x,y) ei“’t] , (1.57)

_ ga coshko(y —h)

o(z,y) = (1.58)

iw cosh kqgh

Here Re in (1.57) means only the real part to be taken. This way of writing, separating the time-dependent
term e“! from the spatial part ¢(z,y), is commonly adopted; which makes various calculations easier.
However, with this way of writing, the phase function wt — kgz cannot be indicated in an explicit form.
Nevertheless, under the assumption that the time-dependent part is expressed as e“?, we must be able
to understand that the complex term e~ "% in the spatial part represents a wave propagating in the
positive z-axis.

Likewise, we should understand that e™%*0® represents a wave propagating in the negative z-axis.

1.5.3 Dispersion relation
We will examine more the meaning of (1.51). Since ky and w are mutually related through (1.51),

the phase velocity ¢ defined by (1.41) can be written only with the wavenumber kg (or equivalently the

w g g 27h
= — = ,/—tanh kgh = 4/ =— tanh —. 1.
c T Mk’o anh ko 5, tanh = (1.59)

wavelength \), in the form



We can see from (1.59) that the phase velocity varies with the wavelength, and the longer the waves are,
the faster they propagate.

In general, ocean waves may be described with a super-
position of various components of sinusoidal waves with
different wavelength, as can be envisaged from the Fourier- A
series expansion for an arbitrary function. Each sinusoidal %

. . . tanh kh
component wave in the ocean propagates with different 1

phase velocity; thus the pattern of ocean waves varies from
moment to moment. This characteristic is called the dis-
persion of waves, and the relation of (1.59) or (1.51), asso-

ciating the phase velocity with the wavelength, is referred

Y
N

to as the dispersion relation. O'K k
The wavenumber kg satisfying (1.51) cannot be written Fig.1.2 The wavenumber k¢ in finite
in an explicit form as a function of the frequency, because depth is larger than K in deep
of the hyperbolic tangent. However, since y = tanh kh is water.
a function of monotonically increasing as schematically
shown in Fig. 1.2, we can see that the solution of (1.51), denoted as k = ko, can be obtained uniquely. For
the infinite-depth limit (kh — oo), tanh kh = 1 and thus the wavenumber of progressive wave becomes
ko = K. That is, kg > K is always satisfied for waves in finite depth; hence the shallower the water
depth, the shorter the wavelength, as compared to the infinite-depth value K.
Considering the two limiting cases for sufficiently deep (kh = 27h/A\ — o0) and shallow (kh =

27h/A — 0) in the water depth, it follows from (1.59) that

C—\/> \/7 (kh — c0), (1.60)
=Vgh  (kh—0). (1.61)

In the shallow-water limit (1.61), where the corresponding wave is called the shallow-water wave or
the long-wave approximation, the phase velocity depends only on the depth, and the resulting wave
motion is no longer dispersive. On the other hand, in order for the deep-water wave to be practically
valid, tanh kh ~ 1 must be satisfied with sufficient accuracy. When kh = 2wh/A > 7w, i.e. h > A/2,
tanh kh =~ 0.996 and thus the error is less than 0.4%. We can see from this estimation that large errors
may not be caused even if the free-surface wave in finite depth is approximated as the deep-water wave,
provided that the water depth is larger than half of the wavelength. This condition looks applicable to
substantially almost all waves in the field of ocean engineering. The case of deep water makes various
equations explained in this section simpler. Thus some important equations for the deep-water case are

summarized below:

k<_7)_K_g, T_w_\/j_O.S\[\ (A 1.5677), (1.62)

c= % ( - %) - % ~ 1567, (1.63)
By, 1) = Re [d(z,9) €], o(a,y) = L2 e Kvike, (1.64)

W
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1.5.4 Group velocity

In this section, we consider a narrow band of the component waves, with nearly equal wavelength
and direction. A characteristic of the resulting distribution is that the waves travel in a group. The
propagation velocity of the group of these waves is not the phase velocity but the group velocity, which
is important in understanding the propagation of the wave energy, as will be explained later. However,
as a complementary explanation for the group velocity, we consider here a purely kinematic analysis for

the group of waves formed by two nearly equal plane waves.

':>Cg
2T
ok

Fig.1.3 The amplitude modulation is represented by an envelope encompassing fundamental car-
rier waves and its propagation velocity (group velocity) is given by dw/dk.

Denoting the difference in the frequency and wavenumber of two nearly equal waves as dw = ws — w1

and 0k = ko — k1, we can write the resulting wave profile as follows:

n = Re {Al gilwit=ka) L 4 ei(u&tfkyc)}

=Re {Al gl(wrt=ha) {1 + % e/ (Owi=oka) }] : (1.65)
1

Here the factor in braces represents an amplitude modulation, which will be slowly varying in both space
and time, because both dk and dw are assumed small. Substituting A, = A; 4+ § A, taking the real
part, and neglecting higher-order terms in dk, dw, and § A, we can obtain the following expression as the

first-order approximation:
1
n = 2A; cos [2(§w~t—6k-x)] cos (wlt—klx). (1.66)

This type of wave motion is illustrated in Fig. 1.3.

The fundamental wave component is represented by the last cosine term with w; and kq, which is
called the carrier wave. The amplitude is slowly varying and its envelope encompasses a group of carrier
waves. As obvious from (1.66), the wavelength and period of the slowly varying part (the amplitude
modulation) are 4w /dk and 47 /dw, respectively; thus the length of one group of waves is 27 /d0k. The
group velocity ¢4, which is the propagation velocity of the group of waves represented by an envelope, is
given by Sw

== (1.67)

Cqg

We consider the limiting case where dw — 0 and 6k — 0, but at the same time both ¢ and x are large
enough so that the products dw-t and dk-x are finite. In this case, the amplitude modulation will persist

and the group velocity (1.67) will approach the finite limit:

_dw  d(kc) de de
T T T Y

(1.68)

Cg
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In general, the group and phase velocities differ, unless the phase velocity is independent of the
wavelength, as can be seen from (1.68). As already studied, longer waves propagate faster and thus
dc/dX > 0 except for the shallow-water limit. Thus we can see that ¢y < ¢ in general.

Let us work out the differentiation of (1.68) using the dispersion relation of (1.51). It may be convenient

to differentiate after taking the logarithm of the dispersion relation. The result will be of the form

2 dw 1 2h

wdky ko * sinh 2hoh”

Therefore,

Cq (1.69)

- lﬁ 1 Qkoh E 1 2k‘oh
2k sinh2koh | 2 sinh 2koh |’
where ¢ = w/ko is the phase velocity.

It is also obvious from (1.69) that ¢, < ¢ in general except for a special case of kgh — 0. In both

limiting cases of deep water (kh > 1) and shallow water (kh < 1), (1.69) reduces to

cg:%c (kh — o0), (1.70)
cg=c (kh — 0). (1.71)

Namely, in deep water, the group velocity is precisely half of the phase velocity, and in the shallow-water

limit, the group and phase velocities are the same.

1.6 Wave Energy and Its Propagation

By using the results in the preceding section, let us compute the energy density of the plane progressive
waves. As an appropriate volume of fluid, we consider a vertical column, extending throughout the depth
of the fluid and bounded above by the free surface. Then the energy density F, per unit area of the mean

free surface above this column, can be computed from

heq
E=p {§V¢-V@—gy}dy, (1.72)
n

where 7 denotes the free-surface elevation to be computed from

100

y=0

Thus we can see that n = O(®). In evaluating (1.72), contributions up to the 2nd order in @ will be
retained consistently and other higher-order terms will be discarded. Furthermore, the potential energy
of the fluid below the still water surface will be omitted, because this is unrelated to the wave motion.

With these taken into account, (1.72) can be written as

1 (M odN\2  0BN2 o, 5
Efip/o {(ax) +(a—y) }dy+2pgn +0(@%). (1.74)

Then this equation will be averaged with respect to time over one cycle of the wave motion. For the

calculation of the time average, it is convenient to use the following formula:

F =Re

_ 1 (T

A ei‘*’t} Re [ B ei“’t}
(1.75)

==

* * _1 *
(AB' + A"B) = ;Re(AB")
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The velocity potential @ for a plane progressive wave is given by (1.57) and (1.58). Thus by applying
(1.75) to (1.74), the time average of the energy density (1.74) can be evaluated as follows:

— 1 "[0¢0¢*  0p " 1,
E_Z'ORG/O {&xax+8y8y}dy+4pga

1 . 1 /h 1,
= - p(aw)” —s—— cosh 2k —h)dy + - pga

1 P law) Sb? koh Jo o(y —h)dy + 7 pg
= L pga? + X pga? = L pga? (1.76)
= g P9a” + 7 pga” =g pga’. :

We can see from this result that the kinetic and potential energies are the same and the density of the
total wave energy is % pga?, which has nothing to do with water depth, wavenumber, and frequency.
Next, let us consider the rate of change with respect to time of the wave-energy density of a plane
progressive wave. The calculation formula is already given by (1.37), but the first term on the right-hand
side must be omitted because of no body in the present case. The control surface can be taken as the
two vertical surfaces in the z-direction of a vertical column, separated with small distance dx, and these
two vertical surfaces are denoted as S(x) and S(z + dz). The width of a vertical column in the direction
parallel to the crest line of the wave is taken as unity. Then the rate of change of the wave energy within

this small vertical column can be evaluated from

ireo(f, )2
ot S(etoz) Js@) /) Ot Ox

a{ h od od

_ htalindinll 3
=29:| ) axdy}ém—l—O(@). (1.77)

Using the complex representation (1.57) and (1.58) for the velocity potential and the formula (1.75) for

the computation of time average, we obtain the following result:

Ynl h *
3£ 9 {1Re/ (iwgi))ad) dy}
0

ot~ Pox|2 oz
01 2 ko 1 /hl—i—costho(y—h)
L =0 d
ax[2p(ga) w cosh? koh Jo 2 Y
a1 ,lw 2o
- (%[QPQG 2k0{1+sinh2koh}]' (1.78)

Here we note that the quantity in brackets is the product of the energy density E given in (1.76) and the
group velocity ¢, given in (1.69). Therefore we may write (1.78) in the form
OFE OE
— — =0. 1.79
ot te ox (1.79)
This is written in a form of the advection equation with the group velocity as the transportation velocity.
Therefore we can understand that the time-averaged energy density of a plane progressive wave will be

transported with the group velocity in the same direction as that of the wave propagation.
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2. Free-Surface Green Function

The velocity potential describing the flow around a floating or submerged body near the free surface can
be expressed in a form of boundary integral equation by means of the Green’s theorem. The free-surface
Green function is a kernel function of the boundary integral equation, which is thus of great importance.
Physically this Green function is the velocity potential of a periodic source with unit strength, satisfying
all of the homogeneous boundary conditions except for a condition on the body surface. This chapter
explains the details of the derivation of the free-surface Green function for a simpler case; that is, the

2-D problem in deep water.

2.1 Velocity Potential of Periodic Source with Unit Strength

The velocity potential for a plane progressive wave has been already explained and given as (1.56). This
wave should be understood in a way that a disturbance (like an oscillating body or a wavemaker) exists
somewhere at a large distance and only the progressive-wave part arrives at an observation point as a
plane progressive wave. In other words, the fluid flow near the source of disturbance may be complicated,
including the local waves, which decay with increasing the distance from the disturbance, in addition
to the progressive wave. We shall consider an exact expression for this complicated flow induced by a
periodic hydrodynamic source with unit strength. For simplicity, only the 2-D problem in water of infinite
depth is considered here, but extension to more general or complex problems may be possible with the
knowledge to be obtained in this chapter. Writing the time-dependent part as e*“?, we shall obtain the
velocity potential in the form

®(z,y,t) = Re[ G(z,y) ™" ] (2.1)

The unit source is assumed to be placed at (0, 7).

Note that the induced flow is symmetric with re-

I spect to z, and thus we may assume x in subse-
—————————————— (9’—7—7)——————————— quent analyses to be positive (z > 0) and in the
final result, z can be replaced with |z| or more
generally |z — &| if the position of source in the

r-axis is x = €.
Y The spatial part of the velocity potential
(which may be called the Green function) must

Fig.2.1 Coordinate system . . .
satisfy the following equations:

(L] VG =6(x)d(y —n) (2.2)
oG w?

F — +KG=0 ony=0; K=— 2.3

7] dy g (2.3)

(B] % =0 as y — 0o (2.4)

[R] Radiation condition; generated waves must be outgoing. (2.5)

It should be noted that the right-hand side of (2.2) is not zero but the Dirac’s delta function with

unit magnitude, which is related to the amount of flow out of the source singularity located at z = 0 and
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y = n. The radiation condition is not written explicitly here with a mathematical equation, which must
be physically relevant and thus the waves generated must be outgoing from the source point. Since the
time-dependent part is written as e*“*, the solution satisfying the radiation condition must take a form
of G ~ Ae 8% at 2 — oo (in more general, G ~ A e K12l at |2| — oo) on the free surface.

To seek the solution of (2.2)—(2.5), we will use the Fourier transform:

G*(k;y) =/ G(z,y) e ™ d

1 [ ;
_ * k- ikx dk
G(z,y) 727r/_ooG (kiy)e
Utilizing the following relations

/00 S(z)e *dr =1, (2.7)

/O:O %ff) e~ dy = ik f*(k), (2.8)
we obtain the Fourier transforms of (2.2)—(2.4) as follows:

d;yG: —k2G*=6(y—mn) (2.9)

dz* +KG"=0 ony=0 (2.10)

d;: =0 as y — 0o (2.11)

Equation (2.9) is an ordinary differential equation with respect to y, subject to the boundary conditions
of (2.10) and (2.11).
In order to obtain a solution taking account of singular behavior at y = 1 due to the delta function on

the right-hand side of (2.9), we shall consider the analysis according to the following procedure:

1) To avoid a singularity at y = n for a moment, the fluid region is divided into the upper (Region I)
and lower (Region II) parts, separated at y = 1 as shown in Fig.2.1. The homogeneous solutions

valid in Region I and Region II are denoted as G7 and G3, respectively.

2) Since (2.9) is a quadratic differential equation and the right-hand side can be zero except at y = 7,

both G7 and G% includes two unknowns in general.

3) G% must satisfy the free-surface boundary condition on y = 0, and G% must satisfy the condition
of no disturbance as y — oo. With these requirements, each of G7 and G5 includes one unknown

(thus still two unknowns in total).

4) Two additional conditions which can be used to determine the remaining two unknowns may be
provided by considering the matching conditions between G and G5 at y = n. In order to consider
those conditions, let us integrate (2.9) over a small region crossing y = n; i.e. n—e <y <n+e

(where € is assumed very small). The result of integration is

da* n+e n+e n+e
{ } sz/ G*dy:/ dy—mn)dy =1. (2.12)
dy n—e n—e n—e
We can see that this relation can be satisfied, provided that
G3(n) = Gi(n), (2.13)
ddGQ - dfl =1 (2.14)
Y ly=n Y ly=n
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These two matching conditions determine both G7 and G¥% completely, thus we can obtain a unique
solution G*(k,y) valid in the entire fluid region. Considering the inverse Fourier transform of thereby
obtained solution in the Fourier-transformed domain may provide the desired solution in the physical
domain of the velocity potential of a periodic source with unit strength; that is, the Green function.

Here we note that the Green function is defined as a function satisfying homogeneous boundary
conditions like (2.3)—(2.5) and possessing a singularity like (2.2) at a particular point in the fluid region.

Let us obtain the Green function by the procedure described above. First a general homogeneous
solution of (2.9) is given by

G*(k;y) = Cy elFlY 4 Oy e~ Ikly (2.15)

Then G7 satisfying (2.10) and G% satisfying (2.11) can be easily obtained and expressed in the form
. . i 21k _
Gi(k;y) ZC{e“"y—e |k|y+7\k|—K€ |k|y}7 (2.16)
G3(k;y) = De kv, (2.17)

where C' and D are unknowns; which can be determined from (2.13) and (2.14) and hence the solutions

of G7 and G35. The obtained results may be expressed in a unified form as follows:

o)

G (ksy) = — W

{e—\kuyw\ _ e*lk\(ern)} _ (2.18)

2[k]|

The inverse Fourier transform of the above result can be written as
1 [ )
G(xv Y; 07 77) = 27 / G*(k7 y) eka dk
™ —00

L (% o=kly—nl —k(zH—n)} cos kx 1 /OO e kWM cos kx
T on R ——dk— = | ——————dk. (219
2m Jo { € € k 0 E— K ( )

Here the first term on the right-hand side of (2.19) can be integrated analytically, with the result

_ /OO {efkly*nl _ efk(ern)} cos kz dk = log L’ (2.20)
0 k 1

.
where . } = Va2 + (y F )2

Therefore the Green function in the physical domain satisfying the free-surface and bottom boundary

conditions are expressed in the form

0 e=k(y+n) cos ka

- (2.21)

1 1
G(ﬂc,y;O,n) = %(logrflogrl) — ;A

The first term on the right-hand side; i.e. % log r represents the velocity potential of a source with unit
strength in an unbounded fluid. As explained before, this term has the delta-function singularity on the
right-hand side of (2.2) and this term is referred to as the fundamental (or principal) solution in the
theory of partial differential equations. The other terms on the right-hand side of (2.21) represent the
free-surface effect and these are regular in the entire fluid domain under consideration.

Up to this point in our derivation, the radiation condition has not been considered explicitly. Let us
consider how the radiation condition will be satisfied through the treatment of the integral appearing in

(2.21). This integral is a singular integral, with its integrand becoming singular at k = K. Mathemati-
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cally, there can be three different ways in treating this kind of singular integrals. Namely,

—ky
lim / coske .
k— (K —ip)

pn—0
* e~ M cos kx ky k
————dk =< | = e Weoska dk =T (2.22)
/0 k- K 0 o k—(K+ip) 7

1
§(I1+IQ)513

Although these three are mathematically correct, the results to be obtained may be physically different.
Among these, we should select a physically relevant result, which satisfies the radiation condition and
thus must have a form of Ae~*%1?| as |2| — co. Through this kind of selection in the treatment of the

singular integral in (2.21), we can satisfy the radiation condition.

A A

> Lk = ——»h—»—»k
0 Sr=k-in Ol k=K

Fig.2.2 A treatment of singular point on the real axis.

First, let us consider the treatment of I in (2.22). Due to the existence of a small negative imaginary
part in the wavenumber (K — iy) and a limit of g — 0, we may deform the integration path on the real

axis as shown in Fig.2.2. Then with the residue theorem, the following relation holds:

I = lim dk — mie XY cos K. (2.23)

> e~k coskx dk_7§°° ek cos ka
n=0Jo k= (K —ip) 0

k—K

The first integral on the right-hand side must be treated as Cauchy’s principal-value integral; that is, the

integration range excludes a very small neighborhood of & = K as explicitly shown below

oo —ky K—e —ky
Lo = f CVCOSKET iy / / o8 k:'“" € O k. (2.24)
o k-K =0 K+e -

It is noteworthy that this principal-value integral must be of real quantity.

K 00

\ for x >0

-100

Fig.2.3 Transform of integration path in the complex plane.
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Next, to make clear the physical meaning of this principal-value integral, let us transform it by using

a complex-plane integral. For that purpose, we will consider the following integral in the complex plane

J VT e (2.25)
= ¢ T .

The integration path in the complex plane must be taken such that the integrand at infinity does not
diverge. To investigate the behavior at infinity, ( = Re? (R — oo) is substituted into the exponential

function in (2.25). Then we have

e—(y+i§x — e—R{y cos O+xsinf}—iR{ysin—xz cos O} ) (2.26)

For > 0, this function decays exponentially as R — oo, as long as 6 is taken within 0 < 6 < /2. (Note
that y > 0 in the fluid domain.) With this information, we take the integration path in the first quadrant
as shown on the left in Fig.2.3. Needless to say, for the case of x < 0, the path must be taken in the
fourth quadrant, i.e. —7/2 < 6 < 0 as shown on the right in Fig.2.3. Even in this case, the result to be
obtained will be the same as that for > 0, if « is replaced with |z| in the final result. (Physically this
is natural, because the flow induced by a source must be symmetric with respect to z.)

Once an appropriate integration path is taken in the complex plane depending on the sign of z, the
contribution from a path along the quadrant at infinity is zero. Since there are no singular points inside
the round integration path shown in Fig.2.3, integral J defined by (2.25) must be zero on account of
Cauchy’s fundamental theorem. Writing each contribution from the round integration path in Fig.2.3,

we can write the final result as follows:

[eS) efky%»ikz ) 0 efikyfkm
o —ky+ikx oo —iky—kx
Thus € € . —Ky+iKa
—dk = dk Y . 2.28
%o P /0 kK +mie ( )

The integration on the left-hand side is obtained from the integral on the real axis except at k = K
and thus associated with Cauchy’s principal-value integral. Therefore, by taking only the real part of
(2.28), we can see that Cauchy’s principal-value integral Le defined in (2.24) can be transformed in the
following form

e~k coska 00 o—hkytikz
Lo=¢ & 98 g~ 7
¢ 7’2 k- K Re}"ﬁ k- K

* (k—iK)e v & %
=R Ak —me M Ysin K
e/O (k—iK)(k+iK)e Te sin Kz
_/Ookcosky—KSinky

- o k2 1+ K2

e Mdk —me XY sin Kz (2.29)

We note again that Lo is of real quantity, despite that we have used a technique of complex integral.
Substituting this result as the first integral on the right-hand side of (2.23) and replacing = with ||,

we can obtain another expression for I defined in (2.22) in the form

I =Lc—nmie KYcos Kz

B /Oo kcosky — K sin ky
0

e e Mk — gri e~ Ky=iKlal, (2.30)

This expression enables us to understand the physical meaning of each term. As is clear by considering

the case of || — oo, the first term on the right-hand side in (2.30) represents a local wave which exists
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only near the source and decays rapidly as the distance from the source increases. The second term given
by a complex exponential function represents a progressive wave which propagates away from the source
and thus represents physically expected result. Therefore, we can conclude that the treatment of I for
the singular integral defined in (2.22) does satisfy the radiation condition.

Details of the transformation according to I in (2.22) will be omitted here, but it may be easily
understood from the difference between I; and I> that the final result to be obtained from Iy is just
the complex conjugate of the result obtained for I;. Therefore the result of I5 represents an incoming
progressive wave, which is physically inappropriate and thus must be discarded. The treatment of I3 in
(2.22) is the average of I; and I with equal magnitude, providing not progressive but stationary wave
which is also physically inappropriate.

Summarizing correct expressions of the free-surface Green function satisfying the radiation condition
of outgoing waves away from a point source, we have the following results:

1 ro1 =k cos k(x — &)

. = _—log— — =1
G,y &m) = 5 log - ™ a0 J, k— (K —ip)

dk (2.31)

1 1 [ e~ kWt cosk(x —
= —log r_z % c cosk(z — §) dk+ie KW cos K(z — &) (2.32)
2 r 7 J k—K

1 r 1/°°k;cosk(y+77)—KSink(y+n)
o k? + K?
L e K —iKla—g| (2.33)

e Flz—¢l gk

I
|
=}
|
|
|

2 grl T

As we can envisage from the transformation above, a key point to satisfy the correct radiation condition
is to regard the wavenumber K as not real but complex quantity with very small negative imaginary part
(K —ip, p>0). (However, we note that u must tend to zero in the end of analysis after transformation
of singular integrals.)

Next, let us consider a physical meaning of this small value of . In the problem treated here, the
unsteady motion of fluid is assumed to be harmonic in time with circular frequency w, which actually
makes it difficult a little to satisfy the radiation condition, as we have seen in the analysis shown above. In
reality, the unsteady motion may start from an initial state of rest and become steady state of harmonic
oscillation after going through a transient stage. Thus, if the problem is treated as an initial-value
problem, there must be no ambiguity in the solution, representing physically relevant phenomenon of
outgoing waves away from a disturbance. This situation in reality may be mimicked in an approximate
way simply by making the circular frequency w slightly complex, with negative imaginary part, so that
the flow induced vanishes for ¢ — —oco. Namely, the time-dependent part ! must be modified in the

form et 't = ¢@=19t and thus we should write (2.1) as
&(x,y,t) = Re [G(J;, Y) ei(‘*’_ie)t} . (2.34)

Starting with this expression using w — ie instead of w, the wavenumber K = w?/g appearing in the

free-surface boundary condition must be modified as follows:
2 2

~Y iy (Mzzg). (2.35)
g g

This is equivalent to the treatment of I; defined in (2.22), and thus we can obtain automatically the correct

expression of the Green function, without being annoyed with satisfaction of the radiation condition.
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Going back to the free-surface condition (2.3) with understanding of (2.34) and (2.35), we may write

the free-surface condition in the form

oG
oy + (K —ip)G=0 ony=0. (2.36)
This can be regarded as a combined expression of the free-surface and radiation conditions. In fact, by
following the solution procedure explained up to (2.21) in terms of (2.36) instead of (2.3), we can easily

confirm that the expression corresponding to (2.21) takes the form

e~ kW) cos ka

K= (2.37)

1 1
G(z,y;0,m) = %(bgr—logrl) — ;/O

This is completely the same as (2.31). Therefore by following the transformation explained as the treat-
ment of I;, we can obtain the correct result satisfying the radiation condition, without recourse to the

argument on whether the obtained result is physically plausible.

2.2 Green’s Theorem

Now that we have studied the Green function as the velocity potential of the flow generated by a
periodically oscillating source, we shall derive the velocity potential of the flow induced by a general-
shaped floating body by means of the Green function. Explanation here starts with Gauss’ divergence

theorem in a 2-D fashion:
/ V-AdS’:—%n-Ads. (2.38)
1% s

Here n denotes the normal vector, which is defined positive when pointing from the boundary into the
fluid domain, resulting in the minus sign on the right-hand side of (2.38).
Let us consider A = ¢V G, with ¢ the velocity potential to be obtained for a general-shaped body and

G the Green function obtained in the preceding section. The result can be written as

// (V¢~VG+¢V2G)dS:—j{¢8—Gds (2.39)
14
Similarly by considering A = GV ¢, we have the following
// (VG~V¢+GV2¢)dS:—]{G@ds. (2.40)
v s On

Subtracting (2.40) from (2.39), it follows that

// PV?G — GV?¢) dS = j{{g(bG ¢> }s (2.41)

Here we note that V2¢ = 0 throughout the fluid region but the Green function G has a singularity at
the source point (z,y) = (§,7n) and thus satisfies

V232G =6(z — &) d(y —n). (2.42)

In subsequent derivation we shall perform the integration with respect to the coordinates of the source

point (£,7); which may be allowed by noting the reciprocity property of the Green function:

G(z,y;6,m) = G(Emz,y). (2.43)

Substituting (2.42) in (2.41), we can readily obtain an important result of the form

o) = § { 5D - (@5 | e @ sl (2.49)
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Fig.2.4 Coordinate system and notations.

where P = (x,y) is the field point and Q = (£,7) is the integration (or the source) point. This form of
representation for the velocity potential is called Green’s theorem.

It should be noted that the area of integration (S) in (2.44) is all the boundary surrounding the fluid
under consideration, consisting of the hull surface of a floating body (Sg), the free surface (Sg), the
bottom of water (Sg) and artificial vertical lines far from the body as the radiation boundary (S+o), as
shown in Fig. 2.4.

At this moment, let us examine the value of integrand of (2.44) on the boundary surface, for which
we summarize here the boundary conditions satisfied by ¢(Q) and G(P; Q). With (2.43) kept in mind,

those can be expressed as

06 _0¢ _ .. 0G_0G _ _

[SF] oy K¢ ; on " oy KG onn=0
o0 _00_, . 9G_0G_

[SB] %—877—0 I T =0 asnp— o0 (2.45)
i_ 2 —KnFiKg . —KnFiK¢

[S+oo] 8n_:F8§’ ¢~ Ae . G~ Be

Substituting these into (2.44), we can see that the integrand of (2.44) becomes zero on Sg, Sp, and S .
As a result, the integral on the floating-body surface (Sg) remains only as nonzero contribution. Thus

we have an expression for the velocity potential at the field point P(z,y) in the fluid as follows:

o2) = [ { nl = 6(Q) 5o} GRS Q) () (2.40)

We should recall that the Green function was derived to satisfy all homogeneous boundary conditions
which are the same as those to be satisfied by the velocity potential to be obtained for a general-shaped
floating body. It may be clear from the argument above that the contribution becomes zero from the
boundary where a homogeneous boundary condition is imposed and the Green function is obtained
to satisfy the same homogeneous condition. This fact is greatly advantageous from the viewpoint of
reducing the number of unknowns in numerical computations (because generally d¢/On or ¢ is unknown
on boundaries). In return for this advantage, the free-surface Green function becomes complicated as
compared to the fundamental solution (logr ), as seen in (2.31)—(2.33), especially the integral term with
respect to k representing the local wave appears to cause a problem. However, with recent computers,

this integral term can be evaluated with great accuracy and less computation time.
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Although the free-surface Green function G(P;Q) can be evaluated without any problem and
06(Q)/0ng can be given explicitly through an inhomogeneous boundary condition on the body sur-
face, the velocity potential ¢(Q) on the body surface is unknown. Therefore (2.46) is useless as it is. To
determine the velocity potential on the body surface, we consider a limiting case where the field point
P(z,y) is placed on the body surface. In this case, (2.46) may provide an integral equation for the velocity
potential on the body surface, because both P and Q are on the body surface. However, there is one
important thing to be noted. In this limit, as is clear from the argument on the amount of net flux from
a point source, the amount of flux into the fluid region when P(x,y) is on the boundary must be just
half of that when P(z,y) is in the fluid (if the body surface is smooth). That is to say, (2.42) in this case
must be modified as

V3G = % Sz —&)d(y—n). (2.47)

Using this equation instead of (2.42) and following the same argument and transformation described

before, we can obtain the following equation:

Lo [ L99@ 0\ i onas
so) = [ {29 _oq) 5 Lawia)as@), (2.49)

where P(z,y) is situated on Spg.

Equation (2.48) can be rewritten in a form of integral equation as follows:

1 9 aporasio = [ 99Q
3o+ [ @ -cei@as@ = [ 7

G(P;Q)ds(Q). (2.49)

Since 0¢/In can be given from the body boundary condition (its explicit form will be explained later),
the integral on the right-hand side can be computed. Thus (2.49) can be regarded as an integral equation
for the velocity potential on the body surface. The method of solving this kind of integral equation for
the velocity potential on the body surface is referred to as the direct boundary element method or the
free-surface Green function method.

Once the velocity potential ¢(Q) on the body surface has been determined by solving (2.49) with an
appropriate numerical method, we can compute the velocity potential ¢(P) at any point in the fluid

region in terms of (2.46).

2.3 Kochin Function
Let us consider the behavior of the velocity potential given by (2.46) far from a floating body and

examine the difference in the asymptotic form of the velocity potentials (or equivalently wave elevations)
for a point source and for a floating body.

The field point P(z,y) on the right-hand side of (2.46) appears only in the Green function G(P; Q).
Thus an asymptotic form of the velocity potential ¢(P) as |x| — oo can be obtained by substituting the
asymptotic form of G(P; Q); which can be easily obtained simply by discarding the local-wave terms in

(2.33) and the result is expressed as
G(P; Q) ~ i e  KWIMFiK(@=8) _ j o= KnEiKe ~KyFiKe a9 0 400, (2.50)

Substituting this in (2.46), we can obtain the following result:

(x,y) ~ i HE(K) e KvFIET a5 4 — +o0, (2.51)
h ) ) 4
where HE(K) = /SH <aj§ _¢an> e KNEKE go(e Y. (2.52)
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In the linear theory, the wave elevation on the free surface can be computed in terms of the velocity
potential on y = 0, and thus the asymptotic form of the wave (which must be a progressive wave) can be

computed in terms of (2.51) in the form

((z,t) = Re [((a) e™" ],
(2.53)

((z) = Eéf’(x,o) ~ —gHi(K) eTET a5 2 — +00.
g g

We can see from (2.53) that H*(K) defined by (2.52) is equivalent to the complex amplitude (i.e. real
amplitude and phase) of the progressive wave generated by a floating body. Thus this function is called
the wave amplitude function or the Kochin function.

Comparing with (2.50) induced by a point source, we can see that characteristics of the wave outgoing
from a disturbance with wavenumber K is of course the same. However the amplitude and phase are
changed into a form of the Kochin function, which includes the effects of geometry and motion of a
floating body, because d¢/0n in the definition of (2.52) is given by the body boundary condition as a
function of body geometry and motion and thus the velocity potential ¢ as a solution of (2.49) is also a

function of body geometry and motion.
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3. Two-Dimensional Wave Making Theory

In order to understand the characteristics of wave-induced motions of a floating body and the theory
of wave-energy absorption and perfect reflection, it is necessary to understand properly the so-called radi-
ation and diffraction problems and various hydrodynamic relations satisfied between the waves generated

by the body and hydrodynamic forces acting on the body.

3.1 Boundary Condition on a Floating Body

As already explained in Section 1.3, the
Lo &3 boundary condition to be satisfied on an os-
¢ cillating body can be obtained by consider-

\k ) > | _ ing the kinematic condition; that is, the zero
y

i<

substantial derivative of a function describ-
ing the body surface. However, the substan-
tial derivative is defined in a space-fixed co-
ordinate system, whereas the body geometry

is normally defined as time invariable with

a body-fixed coordinate system. Thus the

7 ?; difference between these coordinate systems
associated with oscillation of a body must be
Fig.3.1 Coordinate system and notations. taken into account in evaluating the substan-

tial derivative.

As shown in Fig. 3.1, let the space-fixed coordinate system be denoted as O-zy and the body-fixed
coordinate system be denoted as O-Z7. With assumption of small amplitude of body motions, the relation
between the two coordinate systems can be written as @ = & + a(t), where = (z,y) and & = (Z, §) are

position vectors, and «a(t) denotes the displacement vector of body motion; which may be expressed as

at) =15 () + 5 &)+ k&) xx 3.1)

&(t) = Re { X; '} |
where %, j, k are unit vectors along the z-, y-, and z-axes in the space-fixed coordinate system, and j =1,
2, 3 in subscript denote sway, heave, and roll respectively, with complex amplitude X; in the j-th mode
of motion.

The geometry of body surface is time-independent with the body-fixed coordinates & = (Z,y), and

thus in terms of * = & + «(t), the body surface can be described generally as follows:
F(z) = F(x —a(t)) =0. (3.2)

Therefore the substantial derivative of (3.2) takes the form

DF OF
_ P - VF = —0 -.VF é-VF =0. .
D 8t+v v a(t)-VF+ Ve -V 0 (3.3)
Dividing this equation with |V F| and noting that the normal vector can be defined as n = VF/|VF|,

(3.3) may be rewritten as
0P
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Exactly speaking, the normal vector n and associated normal derivative in (3.4) are expressed in the
space-fixed reference frame. However, computing the normal vector is easier with body-fixed coordinates.
The distinction between the space-fixed and body-fixed coordinate systems may be a source of second-
order effects that can be neglected in the linear theory. With this understanding, we shall not distinguish
Z = (7,9) and = (z,y) in what follows. Then, writing the time-dependent term as e?“?
potential as ®(x,t) = Re{ ¢(x) ™'}, (3.4) can be expressed as follows:

and the velocity

o= > iwX;jn; (3.5)

where Ox dy
= = — N, =
on (3.6)

ng=xng —yny = (r X n)3 =ezjpxng (1 =2, T2 =1Y)

Since the right-hand side of (3.5) is in a form of linear superposition of each mode of motion, it looks

that we may write the velocity potential in a corresponding form, like
3 3
d@) =) o;(x) = iwX;p;(x).
j=1 j=1

However, we should note that the velocity potential ¢(a) must include the incident-wave potential, say
¢o(x), as an input of wave-induced motions. Therefore, in order to satisfy the body-boundary condition
(3.5), the velocity potential must include the scattering component, say ¢4(x), which represents the
interaction of incident waves with the body and the normal derivative of the sum ¢y + ¢4 must be equal
to zero on the body surface. Summarizing the above, we may write the velocity potentials and the

boundary conditions for each component as follows:

4 3
o(x) = Z(/)j(:c) = %{cpo(a:) + 904(33)} + ZiWXj‘pj(w)’ (3.7)
§=0 j=1
%(9004-904):0, (3.8)
% =n; (j=1,23). (3.9)

Here g denotes the incident-wave potential normalized with ga/iw (where a and w are the amplitude and
circular frequency of the incident wave, respectively). For the case of infinite water depth and incoming

from the positive z-axis, ¢q is given explicitly as
wolz,y) = e Kvtike, (3.10)

As already mentioned, 4 represents the scattering potential introduced to satisfy the boundary
condition (3.8), which has nothing to do with the body motions at all. Thus the physical situation in
considering 4 is that the body is fixed in space (no body motions) and incident waves are diffracted by
the presence of a body. The sum of ¢y 4+ 4 = @p is referred to as the diffraction potential in this
lecture note. (Note that some authors may call ¢4 the diffraction potential.)

On the other hand, ¢; (j = 1 ~ 3) represents the flow induced by the j-th mode of motion in an
otherwise calm water (without incident waves) and is referred to as the radiation potential, normalized

with velocity iwX;. Schematic illustration of the diffraction and radiation problems is shown in Fig. 3.2.
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Fig.3.2 Schematic illustration for the diffraction and radiation problems.

3.2 Decomposition of Kochin Function and Progressive Waves

As described in the preceding section, within the framework of linear theory, a complicated real problem
of a floating body oscillating in waves can be decomposed into the diffraction problem and the radiation
problems for each mode of motions. Thus the progressive waves generated by the body (equivalently the
Kochin function) can be decomposed in the same fashion; which will be described below.

The velocity potentials for the disturbance due to the presence of a body are given by (3.7) with
incident-wave term ¢ excluded. Thus, substituting those in the definition of the Kochin function (2.51),

we can write it in the form of superposition of each component as follows:

HE(K) = % HE(K) + iinjH]i(K) — ?j{Hf(K) - Ki )inji(K)}. (3.11)

j=1

Here the asymptotic form of each component of the disturbance potential can be written as follows:

;(x,y) ~ ZHJi(K) e KVFIET a2 — 400, (3.12)
) = [ (G2 e ) e st (= 1~4) (3.13)
7 sy \ On 7 on ’ ' '

It should be noted that d¢;/0n on the body surface is given by (3.9) as a real quantity but ¢; itself
is complex even on the body surface (because the free-surface Green function in the integral equation for
; is complex), and consequently the Kochin function by (3.13) is generally complex.

In terms of the Kochin function, the complex amplitude of progressive wave generated by the body is

expressed as

3
((z) = “’{?a Hi(K)+ ZiWXij(K)} (FiKz
=1

3
X; ;
= a{in(K) —iK Y JH;E(K)} eTHET a5 o — 4o0. (3.14)
a
Jj=1
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This wave elevation can be rewritten in a decomposed form as follows:

4
C(z,t) = Re[g(x) eiwt} =Re| S ¢ e“wﬂFKﬂ”)}, (3.15)

j=1
where Cf = —iKXij(K) for j =1~ 3: radiation wave, (3.16)
(G = ia H (K) for scattered wave. (3.17)

In the radiation problem, the wave amplitude of generated wave is usually expressed as the ratio to
the amplitude of body motion. Specifically, when the body motion is given by &;(t) = Re{ X, e’“*}, the
elevation of progressive wave far from the body is written as Re{ X;A; eisfi el (WiFKz) }, with A; and 5?
being the wave amplitude ratio and the phase difference, respectively. Comparing this expression with

(3.16), we can obtain the following relation:
A; e = —iKH*(K). (3.18)

Here the body is assumed implicitly symmetric about the centerline; thus the wave amplitudes on the
right and left sides of the body are the same. In this case, the phase of generated wave satisfies e] = &5
for the case of heave and sj = ¢, +m for the case of sway (j = 1) and roll (j = 3).

In the diffraction problem, by taking account of the boundary conditions satisfied by g and ¢4 and
Green’s theorem for ¢y, we can transform the integral equation for the diffraction potential and the
resultant calculation formula for the Kochin function in a more convenient form. Getting back to Green’s

theorem given by (2.43) and considering ¢p = ¢o + @4 as the velocity potential, we may obtain the

following:
¢p(P) = —/S %(Q)anaQ G(P;Q)ds(Q)
0@ o2 Vepiqas
! /‘Sﬂ:oo { Inq 0(Q) ong }G(P’ Q) ds(Q)- (3.19)

Here we have taken into account the body boundary condition (3.8) and that the scattering potential ¢4
satisfies the radiation condition of the wave outgoing on both sides of the body but the incident-wave
potential ¢g does not. The second line in (3.19) is the result of g not satisfying the radiation condition.
However this second line is equal to ¢o(P) itself on account of Green’s theorem for the case of no floating

body. Thus we can have the following expression

eilP) == [ on(@ 51-GPiQ) () (3.20)

when the field point P is in the fluid region.
In the same manner, when the field point P is take on the body surface, the coefficient on the left-hand

side of (3.19) must be equal to 1/2 and thus the integral equation for ¢ takes the following form:

1 0

390(®)+ [ (Q) 50— GPiQ)ds(Q) = a(P) (3.21)
SH nQ

Once the velocity potential ¢p has been determined, the asymptotic expression of ¢4(P) far from the

body can be obtained from (3.20) in the form

04(P) ~ i HE(K) e KvFiKT a5 4 — +00

+ 0 K +iK¢ (3'22)
HEE) == [ op e 8% as(eon)
H
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The numerical value from this expression must be identical to that from (3.13) for j = 4.

3.3 Calculation of Hydrodynamic Forces

Suppose that the velocity potentials on the body surface ¢; (j = 1 ~ 4) are obtained by solving an
integral equation (2.48) in the radiation and diffraction problems. Then we shall consider how to calculate
hydrodynamic forces acting on the body.

Since the force can be obtained by integrating the pressure on the wetted surface of a body, let us
consider the pressure first. In the linear theory, higher-order terms in Bernoulli’s pressure equation can
be discarded, and thus the total pressure with the reference value taken as the atmospheric pressure can
be written as

op
P(,y,t) = —p-g- + pgy + O(2?). (3.23)

The second term on the right-hand side represents the hydrostatic pressure. This term has nothing to
do with the velocity potential. However, since the body oscillates, variation in this hydrostatic pressure
due to body motions must be considered; which can be obtained by substituting the y-component of

x =7 + a(t) given by (3.1). Namely
y=7+&1) + &)z =7+ Re[ (X2 + Xzz) ™' ]. (3.24)

For the first term on the right-hand side of (3.23) representing the hydrodynamic pressure, ®(x,t) =
Re[¢(x) '] and (3.7) for ¢(x) will be substituted. The result may be written in the form

P(x,t) = Re|[p(z) e |
p(@) = pr(@) + po (@) + ps (@) } (329)
where 3
pr(x) = —piw Z wX;jpj(x), (3.26)
po(@) = —piw i { po(@) + pa(@) | = —pgasn (@), (3.27)
ps(®) = pg( X2+ X3z ). (3.28)

First we shall consider the force to be obtained by integrating the pressure (3.26) in the radiation
problem. Noting that the normal vector is defined as positive when directing from the body surface into
the fluid, the hydrodynamic force in the i-th direction can be obtained as follows:

3
F, = f/ pr(x)n;ds = p(iw)?
Su —

Jj=1

3
X /SH pj(x)n;ds = ; fig- (3.29)

Here the velocity potential ¢;(x) is generally given in complex (its imaginary part exists because the Green
function in the integral equation includes the imaginary part associated with generation of progressive
waves on the free surface). Therefore, by introducing a notation of ¢;(x) = pjc(x) + i pjs(x), fi; in

(3.29) can be written as
fij = pliw)?X; /s { ©ic(x) +i<pjs(a:)}ni ds
H

= —(iw)’X, [—p /S el ds] ~iwX; [ pu /S @, ds} (3.30)
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Thus f;; can be interpreted as the force component acting in the i-th direction due to the j-th mode of
motion. Together with time-dependent term e“!, we can see that (iw)?X j represents the acceleration
and iw X the velocity and hence A;; and B;; can be defined as the added mass and the damping co-
efficient, respectively. It should be noted these quantities are defined with minus sign in the acceleration
and velocity as in (3.30), because the radiation force is a component of the total force to be considered
on the right-hand side of the motion equation in Newton’s second law and will be transposed finally onto
the left-hand side of the motion equation. The force component f;; may be written as f;; = T;; X;, where
T;; can be regarded as the transfer function with respect to the displacement X; in the j-th mode of

motion and given in the form

3
) 1
by = ZTz‘ngv Ti; = —(Zw)2{ Aij + -~ Bij }
7=1 (3.31)

1 &pi
Aij + EBU = —p/SH pj(x)n;ds = —p/s vj(x) o ds

H
The body boundary condition for ¢; given by (3.9) has been substituted in the last expression.

Next we shall consider the force to be obtained by integrating the pressure (3.27) in the diffraction
problem. The resulting hydrodynamic force is referred to as the wave-exciting force, and the force
acting in the i-th direction can be calculated by

E; = _/ pp(x)n;ds = pga/ ep(x)n;ds
SH SH

_ pga/s {oo(@) + pa(a) } neds. (3.32)

Here the force component related to the incident wave, ¢o(x), is called Froude-Krylov force, which
was only the component of wave-exciting force considered in the beginning of the 20th century. With
the advent of computers, the effect of wave scattering could be computed and its importance became
realized.

Lastly we shall consider the restoring force to be obtained by integrating the variance in the hydrostatic
pressure (3.28) due to body motions. In the same way as that for the radiation and diffraction forces,
the final formulae may be obtained by the line integral on the wetted surface of a body. However, as an
effective alternative, Gauss’ theorem will be used here. We should note that the hydrostatic forces act
only in the vertical direction in parallel to the gravity in space; that is, contributions exist only in heave
and also in roll as the moment due to couple of vertical forces.

The restoring force in heave can be obtained as follows:

52:—/ ps(w)ngd.s:fpg/ (X2+X3x)n2ds
SH SH

B/2
:—pg/ (XQ-I-XgLL')dLE:—prXQE—CQQX27 (333)
—B/2

where B denotes the breadth of a floating body.

Similarly, the restoring moment in roll (about the origin of the coordinate system) becomes

S?,:*/ ps(x)nzds = *pg/ (X2 + Xz )(now —my) ds
S S

H
B/2
:—ngg/ x2dx+ng3// ydS
—B/2 1%

=pgX3{ —VBM+VOB} =—pgVOM X3, (3.34)
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where the Gauss theorem has been used in transformation, and V denotes the displacement volume,
BM the vertical length between the center of buoyancy and the metacenter, and OB the vertical length
between the origin of the coordinate system and the center of buoyancy.

In the motion equation, the moment about the center of gravity (denoted with G) may be needed,
which can be computed as follows:

S??:—/ ps(m)n?’GdS:—pg/ (X2 + Xz ){nezx —ni(y — OG) } ds
SH SH

=53 — pg@/ (X2+X3x)n1ds:Sg— pngg// ds
Su \%

=—pgV{OM +OG } X3 = — pgV GM X3 = — C33 X3. (3.35)

Here the center of gravity is assumed to be located below the free surface and hence GM = OG + OM.
The hydrodynamic force and moment related to the roll motion in the radiation and diffraction prob-
lems must also be evaluated about the center of gravity in considering the equations of body motion,

which will be described later when we shall consider them.

3.4 Reflection and Transmission Waves

The concept of reflection and transmission waves will be important in considering the deformation
of incident wave due to the presence of a body. Details of the characteristics of these waves will be
explained subsequently in connection with various hydrodynamic relations between the waves generated
by a floating body and hydrodynamic forces acting on that body. In this subsection, only the definition

of the reflection and transmission waves and their notations will be described.

Re[ CRei(wt—Kx)]

Transmission wave Reflection wave Incident wave
-— r— —_— t
VN aN o PN LN\ > T
< < \’ /{ N N ¢ -
i(wt+Kx) i(wt+Kx
Re[ (e ] n Re[ae 'l )
)
Yy

Fig.3.3 Case of incident wave incoming from the positive z-axis

First let us consider the case where the incident wave is incoming from the positive z-axis (see Fig. 3.3).
For generality, the shape of a floating body is assumed to be asymmetric in left and right. In this case,
the reflection wave can be defined as the wave propagating to the positive z-axis, opposite to the incident

wave, and hence from (3.14) the complex amplitude (r can be expressed as

3
(r=iaHf (K)—iKY X} HI(K). (3.36)
j=1
It should be noted that the complex motion amplitude in the case of Fig. 3.3 is written as X; to distinguish
from the case when the direction of incident wave is opposite (which will be considered next).
By dividing with the incident-wave amplitude, the nondimensional reflection wave is defined as
3 y+
Cr . X;
CRE—:szKZTJHj(K), (3.37)

a °
Jj=1
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where R =iH{ (K) (3.38)

is the reflection-wave (complex) coefficient when the body is fixed in space (in the diffraction problem),
whereas Cg is the corresponding coefficient when the body oscillates in an incident wave.

The transmission wave is defined as the wave passing the body and propagating to the infinity of
negative x-axis, which includes the incident wave. Thus the complex amplitude (r and its nondimensional

form are expressed in the form

(r = a{ 1+ z'H;(K)} —iK Y X} H;(K), (3.39)
j=1
3 X+
Cr = %T :TfiK;TJHj_(K), (3.40)
where T=1+iH, (K) (3.41)

is the coefficient of transmission wave when the body is fixed in space.
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Fig.3.4 Case of incident wave incoming from the negative z-axis

Next let us consider the case where the incident wave is incoming from the negative x-axis (see Fig. 3.4).
When the body is asymmetric, the scattered wave (Kochin function in the diffraction problem) is different
depending on the direction of the incident wave. To indicate this difference clearly, the Kochin function
in the diffraction problem of Fig. 3.4 is denoted by hi (K) in contrast to Hy (K) for the case of Fig. 3.3.

If the body is asymmetric, the wave-exciting force and hence the complex amplitude of the body motion
may also be different depending on the direction of the incident wave. Thus, for the case of Fig. 3.4, the
complex amplitude in the j-th mode of motion will be denoted as X;". On the other hand, the Kochin
function in the radiation problem is independent of the incident wave. With all these taken into account,

the complex coefficient of reflection wave for the case of Fig. 3.4 is given in the form

Cr X5

— _ . J p—

CR:?—R—ZKZITHj (K), (3.42)
=

Likewise, the coefficient of transmission wave for the case of Fig. 3.4 can be expressed as

Cr 3.0X
— _ : Z J +
where T =1+ih](K). (3.45)

Now that the definition of the reflection and transmission waves has been given, we shall consider

hydrodynamic relations in connection with these waves by using Green’s theorem.
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3.5 Hydrodynamic Relations Derived with Green’s Theorem

Green’s theorem has been applied in subsection 2.2 to derive an expression for the velocity potential
in the form of boundary integral. A result from Green’s theorem is given by (2.40), which can be written

for two different velocity potentials, ¢ and 1, in the form

f{¢;ﬁw }d 7/ (672 — V) dS (3.46)

Here, as shown in Fig. 3.5, the boundary S surrounding the fluid region V' consists of the hull surface of
a floating body Sy, the free surface Sg, the radiation surface far from the body S4.,, and the bottom

of water Sg.
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Fig.3.5 Application of Green’s theorem

We note that the velocity potentials ¢ and ¢ in (3.46) are regular in the fluid region and hence satisfy
V2¢p = 0 and V29 = 0. Namely the right-hand side of (3.46) is zero. Furthermore we assume in what
follows that both ¢ and v satisfy the same boundary conditions on Sr and Sp but not necessarily the

same on St and Sg. In this case, the line integrals on Sg and Sp on the left-hand side of (3.46) become

Y AN
/Sme (%n T ) ds = 0. (3.47)

Since the radiation boundaries are parallel to the y-axis, the following relations hold

zero and thus

on S_ o, £:£7 ds = dy, y:0— o0
on S 9 _ — 9 ds=—d :00—0
+00s on - 83:’ s = Yy, Yy
Therefore (3.47) can be written as follows:
Y 3¢ / / ¢
ds —
/ (d) 371 Sioo S—o00 (b 371
00 =400
(U @<Z>
= / [¢ — '(/} (3.49)
0 r=—00
where [ ] in the last expression of (3.49) denotes the difference of the quantity in brackets between

the values at ¢ = +00 and at x = —oo.

32



The y-dependence in the velocity potentials far from the body is, as explicitly shown in (3.12), expressed
as e %Y. Thus the integral with respect to y appearing in (3.49) may be performed in advance, and the

result takes the form

o 1
—2Ky -
/0 e dy 5% (3.50)
With this result, (3.49) can be written as
oY 9¢ 1 oy 9o p=teo
/SH <¢3n on > ds = 2K [ ((baz Ox =0 o= oo (3:51)

This is the base equation for deriving various hydrodynamic relations in subsequent sections.

3.5.1 Symmetry relations in the added mass and damping coefficient

We may choose any combination for ¢ and 1, as long as velocity potentials satisfy the same boundary
conditions on Sy and Sp. As the first choice, let us set ¢ = ¢; and ) = ¢; in the radiation problem.
Since both satisfy the same radiation condition of outgoing waves, the right-hand side of (3.51) must be

zero, which may be confirmed directly by substituting asymptotic forms of ¢; and ¢;:

(z,0) ~ i HE eFilz
#il2,0) o ik as & — oo (3.52)

3(@,0) ~ § HE eFike

Therefore it follows that 5 5
©i Pi

i s = . ds, 3.53
/SHSDan N /SH%an y (3:53)

and from (3.31) this relation is equivalent to writing as

Separating this expression into the real and imaginary parts, we have

Aji = Aij; Bji = Bij; (355)

which represents the symmetry relations in the added-mass and damping coefficients; that is, the radiation
force acting in the j-th direction due to the i-th mode of motion is equal to the corresponding value acting

in the i-th direction due to the j-th mode of motion.

3.5.2 Relations of energy conservation

Next let us take ¢ = ¢; and 1) = @, (where the overbar means the complex conjugate) and consider the
consequence of (3.51). We note that the complex conjugate of the velocity potential can be interpreted as
the reverse-time velocity potential (which was named first by Bessho), because this velocity potential
twt

with time-dependent part e’** can also be written in the form

®(x,t) = Re[p;(x) €' | = Re[yp;(z)e ™" ]. (3.56)

Thus considering the complex conjugate of the spatial part is equivalent to considering the original spatial
part with time reversed. We also note that the body boundary condition in the radiation problem is given

by (3.9) and the normal vector is of real quantity. Thus we have the followings for ¢, and @;

Oi _,. %
on " on

=7, =n, on Sy. (3.57)



Since the transfer function defined by (3.31) is of complex quantity, the left-hand side of (3.51) can be

op; 5%‘) / / .
Vi — P ds = win;ds — p;n;ds
/SH ( on J on SH ! Su /

1 1 1 2i
_2da, —B»i—(A,—,—Bi) = =L By, 3.58
p{ J +io.1 J ] } P (3.58)

written as

(N
Il

where the symmetry relations (3.55) have been taken into account in the last expression of (3.58).

On the other hand, the right-hand side of (3.51) can be evaluated with the following asymptotic

expressions:
0i(2,0) ~ i HE K, 9 ~ +K HE T2
o 3.59
TFE 4 9p; Tt +ik (3:59)
@(aj)(}) ~ —ZHj e:i:zKr’ 87; ~ ﬂ:KH] eTiK®
The result after substituting these takes the following form:
R=__ 095 _ 500 Y s 3.60
=k |99, P, ) | —H{HE e HE (3.60)
y= rT=—00
Therefore £ = R gives the following relation:
1 Lt Jp—
By = 5 pw{ H/H] + H H; |. (3.61)

For a body with port and starboard symmetry, the Kochin function in the radiation problem satisfies
a relation of H;” = (—1)J'HJT|r and hence

2
Bsy = pw| Hy |7, (3.62)
Bi; = pw H; Fj fori,7 =1 or 3. (3.63)

These are known as the energy conservation, relating the damping coefficient to the square of the ampli-
tude of body-generated progressive wave.
This relation of energy conservation can be derived in another way. The work done by the body motion

in the j-th mode on the fluid can be obtained by taking time average of the pressure integral as follows:

WD:/ sti/ Re[pR(ﬂf)eiwt]Re[injnjeiwt]ds
S S

%Re/ pr(x)( —iwX;n;)ds. (3.64)

Su
Here V,, denotes the normal velocity of the body, and a formula for taking time average of the product
of two different quantities in harmonic oscillation has been applied. Since the pressure in the radiation

problem is given by (3.26) with ¢;(x) = pjc(x) + ip;s(x), the result of (3.64) can be expressed as

1 N .
Wp = 3 Re {p (iw) (iwX;)? /S {@jc(@) + ipjs(x) }n;ds
H
1 9 1 9
5 (WX;) pw i js(@)njds = 5 (wX;)"Byj, (3.65)
H
where the definition of the damping coefficient in (3.30) has been used. We can see from this result that
only the damping force contributes to the work and the inertia force does not.

This work is imparted to the fluid and must be equal to the mean rate of energy flux of progressive

waves generated by the body. The energy density of progressive wave with amplitude a is % pga? and the
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amplitude of the radiation wave is given by (3.16). Therefore the energy density of outgoing waves on

both sides of the body is given by

1 1
Bt =2 pg| KX Hf [ = 5 pw(jo)Q]HﬂQ -
1 o 1 ) w (3.66)
E™ =5 pg| KX;H] | = DTS
The velocity of the energy flux is equal to the group velocity (which is given by ¢, = %% = %i in deep

water), and the rate of change of the total energy is the product of (E* + E~) and ¢,. Thus we have

dE
— =(ET+E )¢ (wX) fpw{|H+’ +| ‘2} (3.67)
Equating (3.65) and (3.67), we can obtain the relation (3.61) for the case of i = j.

The energy conservation in the diffraction problem may be derived in the same way. Let us consider a
combination of ¢ = ¢p and ¥ = Pp. In this case, with the body boundary condition (3.8), the integral

on the body surface becomes zero, and thus only the right-hand side of (3.51) must be zero. That is,

Folersy ) r=too
[ (QDDSOD _pp ¥ > } —0. (3.68)
y=0

Ox ox oo

Considering the case of Fig. 3.3 (incident wave incoming from the positive z-axis), the asymptotic form

of pp can be written in terms of the reflection and transmission wave coefficients in the form

2,0) ~ BT L Re™ K% as 1 — 400
#p(2,0) . (3.69)
op(x,0) ~ T et= as T — —o0
Substituting these into (3.68) gives the following result:
_ ZK(esz 4 Re—in ) (e—iKz _ RezKI) _ Z-K(e—iKr _’_RezK'E)(ezKr _ Re—iKz)
—(—iKTT—iKTT) =0,
Therefore IR |2 +|T |2 —1. (3.70)

Since R and T are the coefficients nondimensionalized with the incident-wave amplitude a, (3.70) can be

written in the form
*P9|CR| + 5 ngCTI —*pga (3.71)

The right-hand side, %pgaz, represents the energy density of incident wave as the input. Thus (3.71)
tells us that the total energy density after diffraction by the body remains the same as that of the input,

which means the energy conservation in the diffraction problem.

3.5.3 Haskind-Newman’s relation

Hydrodynamic relations between the radiation and diffraction problems may be derived by considering
a combination of ¢ = ¢p and ¢ = ¢; (j = 1,2,3). Taking account of the body boundary conditions (3.8)
for ¢pp and (3.9) for ¢; and the calculation formula for the wave-exciting force (3.32), the left-hand side
of (3.51) gives the following result:

a@] 0vp / E;
- A RPN JOR P P ds = I 72
£ /sH <<PD on ~ an )T s, TP T bga (3.72)
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On the other hand, the right-hand side of (3.51) can be evaluated with the following expressions for the

velocity potentials:

as ¥ — 400, ~ BT | RemiKe i~ i HE e K
oo . A (3.73)
as r — —oo, @p ~ Te"?%, pj ~iH en”
The result of the calculation for the right-hand side takes the form
1 . ,
o + —12Kx + —i2Kx
R = oo | KHF {1+ Re™57 ) 4 KHf {1 Re™2K* )
+KH; T Ko - KH;TeﬂKw] — O} (3.74)
Equating (3.72) and (3.74) gives the following relation
E; = pga Hj, (3.75)

which is known as Haskind-Newman’s relation.

We note that F; is the wave-exciting force acting in the j-th direction exerted by the incident wave
incoming from the positive z-axis, and H j‘ is associated with the complex amplitude of the radiation
wave generated by the j-th mode of motion, propagating to the positive x-axis (opposite to the direction
of propagation of the incident wave). Although the diffraction and radiation problems look superficially
unrelated, (3.75) states a remarkable relation that the wave-exciting force E; can be computed only from
the complex wave amplitude HJ+ in the radiation problem.

Since the damping coefficient can be computed from the square of the Kochin function, (3.61) and

(3.75) gives also the following relation:

2 2

w

pg*

!
2pgcy

E.
Bjj = pw | —=

3.76
o (3.76)

E; E;
a a

Namely the damping coefficient and the wave-exciting force are directly related.

As an easy extension, let us consider next a combination of ¢ = ¢p and 9 = ;. In this case, with
(3.57), the left-hand side of (3.51) turns out the same as (3.72). However, the right-hand side of (3.51)
will be different from (3.74) and evaluated in terms of (3.73). The result takes the form

R = % [Kﬁj{ ¢?Kr Ly RY — KH {5 — R} + KH, T + KF;T}
—H R+H, T (3.77)
Therefore the following relation can be obtained:
E; = pga{ H] R+ T, T }. (3.78)
This result must be equal to (3.75) and hence we have

+_gt 7o
Hf =H, R+H, T. (3.79)

We note that R = i H and T = 1+ i H;. Thus (3.79) implies that a relation exists between the
scattered wave in the diffraction problem and the radiated wave by forced oscillation in the radiation
problem. This relation will be investigated more in the next subsection for a floating body with port and

starboard symmetry.
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3.5.4 Relation between radiation and diffraction waves

The Kochin function for the radiation wave generated by a symmetric body has the property of

Hy = (—1)jHj+. Thus (3.79) can be written separately for the case of symmetric motion (j = 2 for

heave) and for the case of antisymmetric motion (j = 1 for sway or j = 3 for roll) as follows:

Hf =H, (i Hf +1+iHy ), (3.80)
Hf =H,(iH} —1-iH;) (j=1or3). (3.81)

Here we note that the Kochin function for the scattered wave, H. f (K), can be separated into the sym-
metric and antisymmetric components with respect to the y-axis. More specifically from (3.22), it can

be written as

Hf(K):—/S @D%e_K"cosKgdsi{—i/ ngé%e_K"siands}

Su
First, by substituting (3.82) in (3.80), we have
2Cy+1=Hy/Hy. (3.83)

It can be seen from this that the symmetric component of the scattered wave Cjy is given by the radiation
wave generated by the heave motion. In terms of (3.18) as an expression of H,, Cy can be expressed as

follows:
Cy =Im(Hy )/ﬁ; =ie2coses. (3.84)

Likewise, substituting (3.82) in (3.81), we have an expression for the antisymmetric component as follows:

208, —1=H}/H (j=1or3). (3.85)

Thus Sy =—i Re(H;r )/F;r = — €' sing;. (3.86)

By combining (3.84) and (3.86), the Kochin function in the diffraction problem Hy = Cy 4+ Sy can be

expressed as

i Re( H
Hf = Im(jiz ) Ti e(fﬁ )
I, H,

=ie'*2cosex F €I sine;. (3.87)

Thus we can see that the scattered wave can be obtained in terms of only the phase of the radiation
wave. This relation was proven first by Bessho and later by Newman with different analysis, and thus we

call (3.87) Bessho-Newman’s relation.

3.5.5 Bessho’s relation for damping coefficients

In the relations shown above, such as (3.81) and (3.87), the mode index j can be 1 or 3, which suggests
that some important relation exists between the Kochin functions for sway and roll.

Considering j = 1 and j = 3 for (3.81), we can obtain the relation
=+ =+
H1+/H1 :H:;F/Hg-
+ g+ it =
Thus HY [ HY =T, T =1, (3.88)

Since a complex quantity equals its conjugate, it must be of real quantity, and the ratio H;' /H f has a

dimension of length; this length (moment lever) of real quantity is denoted as £, in (3.88). We can see
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from this relation that the phase of the Kochin functions in sway and roll is exactly the same and that
is why the mode index j can be 1 or 3 in (3.87).

As shown by (3.63), the damping coefficient can be computed with the Kochin function. Substituting
(3.88) in (3.63), we can find the following relations:

Bi3 = B3y = By1 by, Bsz= By 03, (3.89)

We can see that the damping coefficient in roll ( Bsz) can be computed from the damping coefficient in
sway (Byp) and £, necessary in this computation can be provided by £,, = Bs;/ By only with solutions

of the boundary-value problem for sway. The relation (3.89) is also known as Bessho’s relation.

3.5.6 Reflection and transmission waves by an asymmetric body

In this subsection we consider an asymmetric body; for which, as described in section 3.4, the scattered
wave must be different depending on the direction of the incident wave. For the case of Fig. 3.3 (where
the incident wave is incoming from the positive z-axis), the Kochin function of the scattered wave was
denoted by H, f(K ), and for the case of Fig. 3.4 (where the incident wave is incoming from the negative
z-axis), the corresponding Kochin function was denoted by hf (K). In connection with these two cases,
the diffraction potential for the case of Fig. 3.3 is denoted as ¢p and the one for the case of Fig. 3.4 will
be denoted as ¢p. Then we consider a combination of ¢ = ¢p and ¢ = ¢p in Green’s theorem (3.51).

Since both cases are the diffraction problem, the left-hand side of (3.51) is equal to zero owing to

homogeneous boundary conditions on the body surface. Thus we have

r=-+00
p dep
—— —Yp—— = 0. 3.90
[(‘PD B Yp or ), (3.90)
y= Tr=—00
Here the asymptotic forms of pp and ¥ p at x = +oo are written in terms of the Kochin function in the
form
1,’0 ~ eiKa: +ZH+ efiKz
#p(2,0) ik ,4+ ik as T — 400, (3.91)
Yp(2,0) ~ e BT L jh e N7
ZC,O ~ eiKa: +ZH7 eiK;L'
#p(,0) K 4 K as & — —00. (3.92)
Yp(x,0) ~ e BT 4 g h e BT
Substitution of these in (3.90) can be written as
—iK (BT il ] e BT ) e K2 (1 4 i) —iK (T —iH em BT ) T KT (1 4 ih) )
iR e (14 iHy (e T —ihy B7) 1 iK e BT(1+iHy ) (e T 1ihy KT ) = 0.
Therefore the result is expressed in a compact form as follows:
hi (K) = Hy (K) (3.93)

As shown by (3.41) and (3.45), H, is associated with the transmission wave in Fig. 3.3 and h} is associated
with the transmission wave in Fig.3.4. Thus (3.93) means that the complex amplitude of transmission
wave (both amplitude and phase) past an asymmetric body must be the same irrespective of the incoming
direction of the incident wave.

Next let us consider a combination of ¢ = P and ¥ = ¥ p. The left-hand side of (3.51) is zero in this
case too; thus (3.90) holds with ¢p replaced with . Using (3.91) and (3.92), the result can be written
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as
—iK (e KT _ ] ) KT (] it ) +iK (e T 4 iH, K%Y e Ke(1 4+ ih])
+iK e (1 —iH, )(e ™" —ihg 7)) —iK e FF (1 —iH, )(e ™" iy e7) =0,
from which we can obtain the following relation:

H (1+iht)=hy(1—-iH, ). (3.94)

Taking account of (3.93), this relation can be expressed as

— 1++H, (K
hp () = T (i) L) (3.95)
1—iH, (K)
It is obvious from (3.95) that |hy (K)| = | Hf (K)|. Thus from the definition of the reflection wave

(3.38) for the case of Fig.3.3 and (3.43) for the case of Fig.3.4, we can see that the amplitude of the
reflection wave by an asymmetric body must be the same irrespective of the incoming direction of the
incident wave. However, we should note that the phase is different in general depending on the direction

of the incident wave.

3.5.7 Energy equally-splitting law
Let us consider a consequence of (3.95) for the case of symmetric bodies. Since Hf = hf holds for a
symmetric body, (3.95) can be expressed as

Hf (1—iH, ) =H, (1+iH;). (3.96)

In terms of the coefficients of the reflection wave R defined in (3.38) and the transmission wave 1" defined
in (3.41), (3.96) can be rewritten as
RT+RT =0. (3.97)

Thus we have Re{RT } =0. (3.98)

On the other hand, as shown by (3.70), | R|>+ | T |? = 1 was proven as the energy conservation in the

diffraction problem. Combining these relations, we can obtain the following relation:
|R+T|=1. (3.99)

This relation may be interpreted as the energy equally-splitting law by the following explanation.
The waves at © — +00 and £ — —oo can be written as {((x) = R and {(—x) = T, respectively. Thus

the wave can generally be decomposed in the form

(@) = 5{c@ + -0 b+ 3 { e - (-2 )
:%(R-{—T)—k%(R—T). (3.100)

Namely the first term on the right-hand side, %( R+T), represents the symmetric component of the wave
about the body and likewise the second term on the right-hand side, %( R —T), the antisymmetric com-
ponent of the wave. Therefore, (3.99) implies that the amplitudes of the symmetric and anti-symmetric
wave components about the body are the same. Since the wave amplitude is connected with the energy
density of incident wave, (3.99) tells us that the energy density of incident wave as the input will be

split equally into the energy density of symmetric and antisymmetric waves after the diffraction by the
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body. The proof shown here is only for the case of fixed body, but the same is true even for the case of

a symmetric body freely oscillating in waves; which will be described in the next chapter.

3.6 Characteristics of Wave-Induced Motions of a Floating Body

Various relations on hydrodynamic forces and body-generated waves have been derived. By taking
account of those relations, let us study the characteristics of wave-induced motions of a floating body.
To give the result analytically in a compact form and thereby understand the essence of the theory, a
floating body is assumed symmetric with respect to the centerline. For this case, the symmetric (heave)
and antisymmetric (sway and roll) modes of motion are not coupled, and thus they can be treated
independently.

First, let us consider heave as the symmetric mode of motion. The equation of motion can be provided
by the Newton’s second law, because all forces on a body have been analyzed using the inertial coordinate
system. The external forces to be considered as the right-hand side of the motion equation are the
radiation force, the wave-exciting force and the restoring force due to variation in the hydrostatic pressure.
Considering only the harmonic motion with circular frequency w and denoting the heave motion as

&(t) = Re{ X em}, the motion equation for the complex amplitude can be written as follows:

m(iw)2X2 = FQ -+ EQ -+ SQ
= —{ (7:LU)2A22 + iWBQQ }X2 + E2 — CQQXQ.

Therefore [022 — w2(m + A22) +iWB22:|X2 = EQ. (3101)

Here m denotes the mass of floating body. For the coefficients appearing in (3.101), the following relations

have been obtained:

(3.62) Bay = pw’ H(K) |2 Relation of energy conservation
(3.75) E» = pgaHy (K) Haskind-Newman’s relation

(3.18) Hy (K) = %flg e’*2  Expression of Kochin function

Substituting these and adopting the following notations

Cos — w?(m + Ag) = pw?E?,

E? Hy (3.102)

-1 — +
Tan W:abh Hyp = T

the solution for the complex amplitude can be written in the form

Xz _ 1 Hyp ___ _ lcosan] o, (3.103)
a  KE{1+ilHjy?}  KH,
_leosanl sy ey, (3.104)

Ag ’
Thus we can see that the amplitude is inversely proportional to the wave amplitude ratio Ay and the
phase of motion relative to the incident wave is given by do = apg + 2. At resonance, the restoring
and inertial forces are balanced and thus from (3.102) E = 0 and ay = 0. In this case, from (3.104)
Xs/a = 1/As and 3 = 2. We can see also in the limit of w — 0 (i.e. long wavelength) that H,” — B
and E?2 — B/K (because Ey — pgaB and Cy = pgB) and thus Ay — KB, g5 — —7/2, and ag — 7/2;
then X5/a — 1 and §2 — 0.
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Next, as the antisymmetric motion, let us consider the coupled motions of sway and roll. In the same

way as that for heave, the equations of coupled motions are expressed as

(3.105)

m (iw)2X1 = F1 -+ El,
Ig(iw)?Xs5 = F3 + FE3 + S,

where I'r denotes the moment of inertia in roll, and in terms of various relations already proven, the force

components on the right-hand side can be written as follows:

Fi =T X1+ T X3, F3=T51 X1+ T33 X3, T;; = —(iw)?A;j; — iwBy;,
A1z = As1, Bis = Bs1 = Bi1ly, Bss = B11%, By = pw|H{|?, (3.106)
FEi = pgaHf', Es = pgaHi = pgaHf'Kw, S3 = —C33X3.

Substituting these in (3.105) and rearranging, the result may be written in the form

[52+z‘|H1+|2}X1+[Q2+¢\H1+|2]zwx3:%Hl+, (3.107)
. . a
Q2+ HF 2|0 X + [ B2+ i B |2, X = H L, (3.108)

where S, @, and R are defined as

—w?(m+ A1) = pw?S?,
—OJ2A13 = —w2A31 = prQQKw, (3109)
C33 — w2( Ir + Agg) = pw2R2€12U.

To write the solution in a compact form corresponding to (3.103) and (3.104), let us define the following

symbols:
5 _ SQRQ _ Q4
C OS24+ R?2—2Q%
2

1 o (3.110)
Tan™ " ——— = H . =—.
oEp T T
Then the solution of (3.107) and (3.108) can be expressed in the form
X1 +40,X3 1 Hi. _ |eosag| ;a, 3111
B T S ———— (3.111)
a KF{1+ilHxP}  iKH,
= % e 5 =ag +e1. (3.112)
1

In the antisymmetric motion too, there must be resonance due to the restoring moment in roll, the
frequency of which can be given by putting /' = 0 and thus ag = 0.
We note that a combined form X; 4 ¢, X3 of the complex amplitude is important when considering the

wave generated by sway and roll, because the antisymmetric radiation wave can be computed as follows:

h=C¢+¢ = —iKX H —iKX3Hy
= —iK (X Hf + XsH{l,) = —iK(X1+{,X3)H{ . (3.113)
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4. Theory of Wave Reflection and Absorption

Based on the knowledge acquired in the preceding chapter, the theory of wave absorption and perfect
reflection, which is one of the important subjects in ocean engineering, will be explained. The main
part of explanation here is to give a compact formula for the reflection and transmission waves and to

understand what is the essential condition for realizing the perfect reflection of incident waves.

4.1 Reflection and Transmission Waves for a Fixed Symmetric Body

The definition of the reflection and transmission waves was already given in section 3.4 for the case
of a general-shaped body which freely oscillates in waves. In this section, as the first step to deepen the

understanding, let us consider a symmetric body which is fixed in space.

Transmission wave Reflection wave Incident wave
- I‘ —_—
LN\ 0 \l LN\ AN AN —
= l I ~ = N g o
Re[CTei(thrK;r)} Re[CRei(wt—Kx)] Re [ae i(w‘tJer)}
\j
Yy

Fig.4.1 Reflection and transmission waves for a symmetric body.

As shown in Fig. 4.1, the incident wave is assumed to be incoming from the positive z-axis. For this
case, as given by (3.38) and (3.41), the coefficients of reflection wave R and transmission wave T' are
defined as

Cr

R= o= iH) (K), (4.1)
T = %T =1+iH, (K). (4.2)

Since a floating body is symmetric, (3.80) and (3.81) hold. Thus R and T defined above can be expressed

with the Kochin functions in the radiation problem as follows:

L[HS Hf
el Y

2 1

L[ HS Hf

2 1

It is noteworthy that the first and second terms in brackets represent the symmetric and antisymmetric
components, respectively, of the diffraction wave. Although H1+ for the antisymmetric component can
be replaced with H;' , the result can be written eventually only with H; because of the relation of
Hf = H C,.

It can be seen from (4.3) and (4.4) that the amplitude of the Kochin function has nothing to do with
R and T'. To write this explicitly, we use the following expressions for the Kochin function

Hy = %Al ¢, Hf = %Ag e (4.5)
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From these, it follows that

H _ H _

i2eq 12€2
—y =, = (4.6)
H, H,
Therefore, substituting these in (4.3) and (4.4), we can obtain the following expressions:
1, . ) )
R=- §(€l2€2 +e?) = —cos(eg — e1) /2 F), (4.7)
1, . ) .
T=- 5(6’252 —e?1) = —isin(e; — 1) eilezter) (4.8)

It is obvious from these expressions that the relation of energy conservation | R|? + |T'|? = 1 is satisfied
and also the energy equally-splitting law | R+ T | = 1 is satisfied. These relations were already proven in

the preceding chapter in terms of Green’s theorem.

4.2 Reflection and Transmission Waves for a Freely Oscillating Symmetric Body

For the case where a symmetric body is freely oscillating in waves, the coefficients of reflection and
transmission waves can be computed from (3.37) and (3.40), by superimposing the radiation waves on
the diffraction waves R and T expressed by (4.3) and (4.4):

A v e
CT:CJZ;[[I_—Z_]_ZKZ( ) 1) H . (4.10)

Here the complex motion amplitude X;/a must be given as a solution of the equations of body motion.
To understand step by step, let us consider first the case where a body oscillates only in heave. The
analytical solution for the heave motion is provided by (3.103). Since the wave generated by heave is

symmetric, the symmetric wave component must be modified as follows:

A=V pe(Xaype A BE U
2m; a 2ﬁ; 14 i|Hy |2
. -+
:lHij 1+i|Hjp? = 2iHp Hyp | 1 Hy 1—i|Hyp/? (4.11)
Qﬁ; 1+ i|Hyp|? 2H 1+d|H)p2
Therefore, the complex coefficients of reflection and transmission waves take the following form:
H 1—i|Hj,? Hf
Cp = [ L—ilHypl +] (4.12)
2\ ) 1+ilHER
HY 1—i|H 2 Hf
Cr = [ s 1o il 20l ;] (4.13)
Hy 1+ilHR?  H

It can be seen from these equations that even when the motion (heave) is free, the reflection and trans-
mission waves can be computed only with the phase. More specifically, since the phase of 1+ z’ H ‘
given from (3.102) and (3.104) in the form
- T 0
an”!| Hiy, |° = =5 —an=g5+e -0, (4.14)

Cpr and C7 can be written as follows:

Cp = % {_ei252—iﬂ'—i2(€2—62) _ ei251}
1 . ) )
=5 (61262 — €)= isin(dy — 1) ei0ater) (4.15)
1 . . )
Cr = 3 (€72 4 ¢21) = cos(dy — £1) 'Oz e, (4.16)
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From these, as in the case of motion fixed, we can see that the relation of energy conservation | Cg |? +
| Cr | = 1 and the energy equally-splitting law | Cgr + Cr | = 1 are satisfied.
At resonance of heave, ay = 0 thus d; = 3. In this case, we can see from (4.15), (4.16) and (4.7),
(4.8) that the following relations hold:
CRoreso = isin(ey —e;)ele2ten) = }

i (4.17)
Crreso = cos(eg —ep)eile2te1) = — R

Namely, at resonance, the amplitude of reflection wave becomes equal to that of transmission wave for
the motion-fixed case, and likewise the amplitude of transmission wave becomes equal to that of reflection
wave for the motion-fixed case.

Next, let us fix the heave motion but allow the body motion in sway and roll. In this case, as explained

as (3.113), the antisymmetric wave generated by the body motion can be computed by
(= —iK (X1 +0,X3) Hf . (4.18)

Thus substituting the analytical result (3.111) for the combined motion of sway and roll in (4.18), we

can see that the antisymmetric wave component must be changed in the form

BEEE—K{( )Hf+( )H*}zlﬂ—iK7X1+£wX3Hf

2ﬁ+ 2 ﬁf a

2@ 1+iHLPR O 2 ) L4ilHP

Therefore from (4.9) and (4.10), the reflection and transmission waves can be expressed as

_1[Hy | HY 1—dH}
Cr=5| =%+ 24 — A (4.20)
2lH, H, 1+ilH
Hf  Hf 1—ilHf, ]2
Cp =~ [ _ 172" 1+F|2] (4.21)
2 H2 H, 1+4i|H{z|

As shown before for the case of heave only free, these results can be written only with the phase, because
the phase of 1+ i| Hip,|” is given from (3.110) and (3.112) as

™ ™
71|H |2 7—()4Q:7+61—51.

2 2
Thus in the same way as in obtaining (4.14) and (4.15), the results may be written as
1
Cr=— 5( e'?e2 1251) —isin(es — §p) e'(e2100)
1 (4.22)
Cr=— 2( et2ez 4 61261> —cos(eg — 61) e i(e2+61)
At resonance of sway-roll combined motion, ag = 0 thus §; = ;. In this case, we can see that
CR,reso = —’L Sin(52 — &‘1) ei(E2+61) — T
j (4.23)
CYTA,reso = — COS(EQ — 51) eileater) — R

This result is essentially the same as (4.17) for the case of heave only free except for negative sign.
Last, let us consider the general case when all modes of motion are free. In this case, the reflection
and transmission waves can be obtained easily from (4.12), (4.13), (4.20), and (4.21) and written in the

form
L[ Hf 1—i|HS > HE 1—i|H{|?
CRA+B{Z|E+1+Z.|1+F|}, (4.24)
2 H2 1 +d|Hy 2 H, 1+ilHp?

L[ Hf 1—i|HS 2 HE 1—d|HL|?
Cr=A-B=_| 2% — 2L - 1F | 4.25
! 2[ By " 144 Hp|? (4.25)



These results can be rewritten only in terms of the phase of motions as follows:

1

Cr = i(em2 + €)= cos(dy — 6y) €%
L | | (4.26)
Cr= 5(61262 —e™01) = jsin(dy — &y) ')

It can be confirmed again that even in this case where all modes of motion are free, the relation of energy
conservation |Cg |2 4+ | Cr |? = 1 and the energy equally-splitting law | Cr & Cr | = 1 are satisfied.

More importantly, we can see from (4.26) that the perfect reflection and perfect transmission of an
incident wave can be realized, if the following relations are satisfied:

Perfect reflection : dg—d01=nm (n=0,£1,--+)

- T (4.27)
Perfect transmission : 9 — 01 = 5 +nm

That is to say, the perfect reflection for instance can be realized when the phase difference between the
symmetric (heave) and antisymmetric (sway and/or roll) motions is 0 or 7, and the amplitude has nothing

to do with the conditions for perfect reflection and transmission.

4.3 Wave Drift Force

Up to the preceding section, what we call linear theory has been explained, assuming that both
amplitudes of incident wave and resulting unsteady motions of a body are small enough and considering
only the first-order terms. The wave drift force to be explained in this section is a time-averaged steady
force which is of second order proportional to the square of the incident-wave amplitude. The second-
order steady wave force can be computed only in terms of the linear velocity potential, and we need
not solve higher-order boundary-value problems. As will be shown later, the wave drift force is directly

related to the reflection-wave coefficient already studied.

Drift Force
Transmission Wave Reflection Wave  Incident Wave
_ D —_— - _
y=0 A [ | A DN\ y=0 >
i A A 4 L /< T < o 1 xr
1
- A
! 0 _0 n 0 0 !
—» —= = — 44—
Sc on Oz on~ Oz X Se
! 1
| —
y dt=dy db=-dy A
1
- I
! - > J
=00 =00
Yy Y Yy
)

Fig.4.2 Analysis for wave drift force.

Now let us apply the principle of momentum conservation to the fluid region shown in Fig. 4.2, bounded
by the body surface, free surface, water bottom, and control surfaces (S.) indicated by dashed lines. In

the analysis, the shape of body is not necessarily symmetric with respect to the y-axis, and the incident
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wave is supposed to be incoming from the positive z-axis. The wave drift force is denoted by Fp and

defined as positive when acting in the direction of incident-wave propagation.

[ Note] Momentum Conservation Principle

Derivation of the equations to be obtained from the principle of momentum conservation can be
similar to that shown for the principle of energy conservation in Section 1.4. Since the momentum is a
vector quantity, let us denote its i-th component as M;. Its rate of change with respect to time must
be considered in a Lagrangian way; that is, the transport theorem should be applied. Considering the

general 3D problem, we can write as follows:

= — ’Ld = d i Tld7 42
dt dt///m)p“ v '”///V ot V+p//s“U 5 (4.28)

where u; is the i-th component of the fluid velocity, and U, is the normal velocity of the boundary surface

S, pointing out of the fluid volume under consideration.
Using the continuity equation (1.11) and Euler’s equation (1.14), it follows that
ou; 0 P 1o}
=— - - ——(uju;). 4.2
ot oz, ( gz> oz (i) (429)

P J

Substituting this into (4.28) and applying Gauss’ theorem, we have

dé\fi = fp//s {%m +ui(wn — Uy) | dS. (4.30)

Here we note that the contribution of gz in (4.29) is zero, because only the horizontal components

(i =1,2) are considered.
The boundary surface encompassing the fluid volume consists of the body surface (Sp), free surface

(SF), and a control surface (S¢) which is at rest and located far from the body. On these boundaries,

on SC Un =0
onSg u,=V,=U, (4.31)
on Sp u,=U,, p=0

must be satisfied. (The reference value of the pressure is taken as the atmospheric pressure.) Therefore

it follows that
dM,;
=—// pnids—// [pni—l—puiun]dS. (4.32)
dt Su Sc

Now let us consider the time average of the above over one cycle. Considering the entire fluid, the

time average of the left-hand side (the rate of change in time of the total momentum) must be zero,
because the time harmonic oscillation is assumed. Noting that the positive normal vector is directed
outward from the fluid region which is opposite to that in Chapter 3, we can see that the first term on

the right-hand side of (4.32) is negative of the force acting in the i-th direction on the body. Thus we

e =[]
SH Sc

This relation tells us that the force on a floating body can be obtained from an integral on the control

can write as follows:

surface far from the body. In general, the flow field near the body is complicated, whereas on the
control surface, local disturbances decay and only the progressive wave components remain, and hence
the analysis on the control surface becomes much simpler. This idea is referred to as the far-field method

and will be used for the analysis of the wave drift force.
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The analysis for the wave drift force is based on the momentum-conservation principle which is ex-

plained in Note above. Considering the 2-D case of the analysis, we can obtain the following:

FD:f/ [pnm+pumun]d€ (4.34)
Sc
where p denotes the pressure, and u, and u, denote the x- and normal components of the fluid velocity,
respectively.
op 1
=—p|—+=-VP.-VP — 4.35
p p{atﬂLQV \Y gy] (4.35)
0P\ 2 10P
Uy Uy = (—) Ng, MNtoo = ——— (4.36)
ox g Ot =0, 2==00

Taking account of the above, substituting these into (4.34), and retaining the terms up to O(®?), we have

Fp p[/onoo/onoo} (%ﬁf*gy) derg/Ooody{(gf)? <gqys)2}z:i:

= ool -+ o] (G0)'- (gjf]:f: (4.37

Here we consider time harmonic motions and hence the quantities are written in the form

B(z,y,t) = Re{ ¢(z,y) e } (438)
Ntoo = Re{ atoo ™'} '
with time-dependent part expressed as e®“?.
Performing the calculation of time average in terms of (1.75), (4.37) can be reduced to
1 * *
Fp =1 P9 Re{ Oool5y — O—o0ol o }
P e [T g [ 00007 00007 (et
PRe [ d [— _ % } 4.39
+4 e/o Y or oz Oy 0y la=—oo ( )
where we note that there exist the incident and reflected waves at * = 400 and the transmitted wave at
x = —oo. Thus we write as follows:
at = +4oo oo = a €% 4 (pe K2 = ,ieny Goo (4.40)
w
at = -—00 (oo = Cr e ¢ = i e KV a_ (4.41)

iw
Here we note that both (v and (g should be regarded as complex.

Necessary calculations at ©z = 400 are

0 K K 0 ; K
£:w€_Ky<a€lKL—<R€_lKL), a*j:w}@ Ky(aezK1+C e—zKaL)
(oo G'Zo _ (aeiKm + CR e—iKm)(ae—in +<}k? e—in)

=a® + |Cr|* + 2Re(alre K7)

Therefore the result takes the following form:

== I * - d bl _ve
D 4P9Re(a aoo)+4pRe/0 Yy {89{; dr Oy oy |,
1 1 —i2Kx
= ipg(a2 +[¢rl?) + §pgRe(agRe 2Kz)
1 1 , '
t1r93 [GQ +[¢rI* —2Re(alre 5%) — {a® + |Cr|* + 2Re(alr e‘m“)}}
1
=1 r9(a®+ ) (4.42)
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In the same way, calculations at x = —oco are

0 , 0 ,
j — we—Ky CT esz’ ﬁ —iw e—Ky CT elK.ﬂc7 a oo aioo _ K-T|2
or oy
Thus 1 P e ¢ 0¢* ¢ 0™
F;° =-pgRe(a_q a* =R dy
b e e(a ooa_oo)+ e/o {830 dr Ay dy oo
1
= r9lerl 3 P95 { Grl? = I¢rl? }
1
= 7 Polerl® (4.43)
Substituting these into (4.39) gives the following result:
o 1
Fp = F' = Fp> = 2 pg (a® + [Cal* = [¢r[*)
1
=~ pga®(1+[Cr[* = |Cr|?) (4.44)

4

On the other hand, the relation of energy conservation | Cg|? + | C7|? = 1 is satisfied even when the
body motion is free to respond in waves. Thus substituting this relation into the above, we can obtain
finally the calculation formula for the wave drift force in the form

Fp

Toga? = Fp =|Cr/? (4.45)
2

We can see from this result that the normalized wave-drift force can be computed with square of the
reflection-wave coefficient; which is positive, implying that a floating body may drift to the downwave
side (in the same direction of incident-wave propagation) while reflecting the incident wave.

Suppose that a floating-type breakwater is designed such that a larger part of the incident wave will
be reflected with little transmission of the wave. This floating breakwater is efficient in its performance,
but we should realize that the more the performance is efficient, the larger the wave-drift force acts, and
consequently the tension force acting on a mooring line becomes larger, as implied from (4.45),

By the way, in the analysis above, the principle of energy conservation was applied in the transformation
from (4.44) to (4.45). However, as will be studied in the next section, in the presence of energy dissipation
(for instance when the absorption of wave energy is made by an exterior mechanical system), what form
of the energy relation should be? In order to answer this question, let us consider the energy relation

again by denoting the energy dissipation as AFE. First we start with the equation from (1.38)

a5

a * 8 T=+00
:—fpwlm/ dy[ q; —¢¢] (4.46)
Then, since we have g _ _
d) -2 eny<aesz + CR efzK:c)
w
o6 ' ' as x — 400 (4.47)
o — we—Ky(ae—sz _ C;k% esz)
¢ = _ie—KyCT otk
e et as T — —00 (4.48)
— weny C* 67“{1
ox T
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we can substitute these results into (4.46), providing the following relation:

1 pgw
AE:ZY(GQ*\CRF*HTF)
1 w
ZZPQQQ?(1—|CR|2—|CT\2) (4-49)

We can see naturally from this result that the well-known energy conservation, |Cg|*> + |Cr|? = 1,
can be obtained for the case of AE = 0. On the other hand, if AE # 0, in terms of the energy loss 7
defined by

AE (

1 w
WEmzl—|CR|2—|CT|27 EW:*PQCLZ*) (4.50)

4 K
we can have a generalized expression after substituting the above relation into (4.44), in the form

Fp

3 Pga’

1
=Fp=|Crl*+3n (4.51)
According to this formula, we can see that the wave drift force can not be zero, even if the complete

absorption of wave energy can be realized.

4.4 Theory for Wave Absorption by a Symmetric Floating Body

The coefficients of reflection and transmission waves for the case when a symmetric body is freely
oscillating in waves can be computed from (4.9) and (4.10). In this section, we consider how both
reflection and transmission waves can be completely zero by using an active control for the complex
amplitude of body motion.

For brevity in the analysis, instead of (4.9) and (4.10), we separate the wave into symmetric and

anti-symmetric components, as shown in (3.100). The result takes the form

. 1 1 Hf /Y
Symmetric wave = 3 (Cr+Cr) = 3 F—? —1 (g) HYf (4.52)
1 1 Hf Xe + Uy
Anti-symmetric wave = 3 (Cr—Cr) =5 = — ( ot Q) H (4.53)
a

Here the result of (4.18) has been used in (4.53).
Since making both reflection and transmission waves zero is equivalent to making both symmetric
and anti-symmetric waves zero, we can see from (4.52) and (4.53) that the complex amplitude of body

motions must be of the following values:

1 a 1 a
yo1 _ 10 e 4.54
2,KkH, 2Anm (4.54)
1 1 .
Xg+0,0=-—2 =2 s (4.55)

2k, 2As

We can recognize that (4.54) is just half the complex amplitude of heave at resonance. Similarly, (4.55)
is half the complex amplitude of anti-symmetric motion at its resonance.

Next, let us consider how the conditions (4.54) and (4.55) for perfect wave absorption can be realized
in a practical situation. First we consider (4.54) for the problem of symmetric motion.

As depicted in the left of Fig.4.3, we introduce an exterior mechanical system consisting of mass,

dashpot, and spring. Denoting the coefficients in the inertia force, damping force, and restoring force
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Fig.4.3 Wave absorption problem by a symmetric floating body.

with po, vo, and ko, respectively, the motion equations of a floating body and an exterior mechanical

system may be expressed as follows:

pey+vey+roy=—R
R | (4.56)
(m+ Ag2)§j+ Baa g+ pgBy = E3¢"" + R
Therefore, by eliminating an internal force denoted as R, it follows that
(m+ Ass+p2) i+ (Baa+1v2) Y+ (pgB+ k2 )y = Ey et (4.57)
where we will introduce the following relations
Bsy = pw|HS |, Ey = pgaHy
and notations for making equations compact
Vo = Bg BQQ = 52 p(.d'H;'Q (4 58)
pgB 4 Ko — w? (m + Aoy + MQ) = pw2E2 .

Then in a similar way to deriving (3.104) and (3.112), the complex amplitude of heave motion Y in the
expression of y = Ye'! can be given in the following form:
_ a Hy

B2 +i(1+ f2)|Hy 2

KY (4.59)

In order for the complex amplitude given by the above result to be equal to (4.54), we can see that £ = 0
and By = 1. Namely, as instructed from (4.58), we should tune the values of ko and ps to make the heave
motion be resonant and tune the value of vo (exterior damping coefficient) in a way that vo becomes
equal to the wave-making damping coefficient of the floating body.

This condition for perfect wave absorption may be expressed in a different way. First we introduce

“mechanical impedance” for each of the motion equations as follows:

1
Zas = Bas + E{PQB —w?(m+ Asp)}

, (4.60)
7Z5 = — —w?
2 V2+l.w{f12 w?ps}
Then the conditions of E =0 and 83 =1 (i.e. B2y = 119) are equivalent to the following condition:
Zoyy = Zs (4.61)

50



where the overbar means the complex conjugate. This relation is known as the “conjugate matching”
of the impedance. By the way, the motion equation corresponding to (4.59) may be rewritten with the

mechanical impedance in the following form:
(Zgg + Z5 ) iwY = By (4.62)

Up to this point, we could absorb the wave energy of symmetric component around a symmetric
floating body with the condition of (4.54). This wave energy must be equal to the work done by the
exterior mechanical system. To see the amount of absorbed energy, let us calculate the rate of work done

by the exterior damping force. Using (4.59) and (4.61), we can obtain the following result:

1 (7 1 1rg\? 1 1215
W — .d = — 2Y2:—<—) KY2:7 _— 4.63
2 T/o r2yay 2V2w| | 2 \w vz | 2U2 | Zag + Z5|? ( )
2 H+ 4
= Ew 28:\Hy | —, (4.64)
[E? +i(1+ B2) [ Hy P
where 1 1 g 1 pg2a®
Ew = —pga’ec, = —pga’=- = = . 4.
W= PIv G = oINSl T (4.65)

This quantity Ey is the mean rate of energy flux of incident wave per unit area on the mean free surface,
see (1.76). For the case of E =0 and B2 = 1, the rate of work given by (4.64) reduces to the following

1
Wy = §EW (4.66)

Namely, half of the incident-wave energy per unit time can be absorbed by controlling the symmetric
motion of a symmetric body. The remaining half is expected to be absorbed by controlling the anti-
symmetric motion of a symmetric body, which will be shown in what follows.

Before going further, however, a coupled of notes should be mentioned. First, by considering (4.64)
as a function of By (where B2 > 0), its maximum can be achieved at E = 0 and 82 = 1; that is, when
the perfect wave absorption is realized, the amount of absorbed wave energy is at its maximum. Second,
(4.63) expressed with the mechanical impedance is valid also for 3-D problems, not necessarily limited to
2-D problems.

Now let us consider the case of the right in Fig.4.3, with a horizontal exterior mechanical system
applied. The reaction force from the exterior system is set to act at a point with moment lever ¢ from
the center of gravity G. Then the coupled motion equations of the exterior mechanical system and

anti-symmetric body motions (sway and roll) may be expressed in the form

(i +€9) + 1 (ia + £9) + ki (za + L) = — Ry
(m+ A1) ic + Bu dc + A11lmé + Biilnd = pgaHi et + Ry (4.67)
(I+1g)é+ Bi1l2 ¢+ W GM ¢ + A1l i + Biily i = pgaHi b, €™ + Ryl

Eliminating the reaction force from these, we can obtain the following:

(m+ A1y + ) g + (B + 1) dg + k1 26

—|—(A11€m + [ng) gb + (Bllgn + Vlg) (]5 4+ kilp= pgaHf'em (468)
(I+1Ir+ml)é+ (Buls+vil?) o+ (WGM + r10%) ¢
+(A11€m + [ng) Z.L.'G + (Bllgn + I/lg) i‘G + nlﬂ Trg = pgaHf‘En em (469)
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Here we introduce the following notations for simplifying the results

vi = B1 Bi = B1 pw|H{|?

K1 —w?(m + A + py) = pw?S?

kil — w? (A1l + 1 l) = pw?Q?4, (4.70)
k1l? + WGM — w?(I + Ig + i 0?) = pw?R*(2

F = (S22 - Q1)/(5% + B* - 2Q°)

Then the same transformation as for obtaining (3.111) provides the following compact expression:

aHF
K(Xg+10,0)= L 4.71
(Xa +£:.0) F2 4+ i(1+ B16/0,)|Hi |2 (4.71)

We can see from this result that (4.55) can be realized with ' = 0 and ,¢/¢,, = 1. In this particular

case, the rate of work to be done by the exterior damping force can be found to be

26, |H | 1
Gil Ay | — —Ew (4.72)

W, = E
YT UWARY (1 Bt/ HY 22 2

Therefore, summing up (4.66) and (4.72), we have
(Wl + WQ)max = EW (473)

This means that, as expected, the total wave energy could be absorbed by controlling both symmetric

and anti-symmetric motions of a symmetric body independently.

4.5 Wave Absorption by a One-side Waveless Body

The independent optimal control de-

scribed above is actually cumbersome in

K v practice. Thus in the present section,
we will consider an asymmetric floating

H body, especially the so-called “one-side

-« waveless body” which generates no wave
L\

Ik
N

> T at all in one direction even when a body
is forcedly oscillated.

For simplicity, let us analyze the

heave motion of this waveless body, with

Y an exterior mechanical system applied

Fig.4.4 Wave absorption by a one-side waveless body. as shown in Fig.44. As before, the

coefficients of inertia force, damping

force, and restoring force are denoted as

i, v, and k, respectively. Then the motion equation of this floating body can be written in a form similar

to (4.57) as follows:

(m+Ap+p)ij+ (Ba+v)y+ (pgB+r)y=Eye™! (4.74)

Let us assume and consider a waveless body which generates no wave in the negative z-axis (downwave

side). In this case Hy (K) = 0 and hence the heave damping coefficient of the body and the wave-exciting
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force in heave are expressed from (3.61) and (3.75) respectively, in the form
1 _ 1
By = 5 pw{ |HF [+ |Hy 2} = 3 pw|HS (4.75)
Ey = pgaHy (4.76)

Furthermore, since the relation of (3.79) takes the following form for the present case
b =t - =+
Hy =H, R+H, T=H, R, (4.77)

it is obvious that | R| = 1 and hence |T'| = 0 from the principle of energy conservation (3.70). Namely
even when the motions are fixed, a one-side waveless body does not transmit an incident wave (not
generate the wave in the negative z-axis). Taking account of this fact, when the heave motion of this
waveless body is free in waves, the coefficients of reflection and transmission waves can be written from

(3.37) and (3.40) respectively, in the following form:

Cr=R-— zK(%)H; - Z%t - zK(%) HY (4.78)
2
Cr=T- z’K(%)H; =0 (4.79)

Substituting (4.75) and (4.76) in (4.74) and defining the notations of 5 and E by

1
V55322=ﬂ§PW|H2+|2

(4.80)
pgB + Kk — w?(m + Agg + p) = pw?E?
the complex amplitude Y in the expression of heave motion y = Ye!“? can be given in the form
H+
Y = S R (4.81)
E?2 +i(1+ B)5|Hy |2
Thus substituting this result into (4.78) gives the following result
H+ H+ 2
Cr=—% —i (Hy) (4.82)

p— Z .
oy E2+i(1+p)5|HS
It can be seen from this result that Cp = 0 if £ = 0 and f = 1. In this case, Cr = 0 from (4.79).
Therefore the perfect wave absorption is realized.

In terms of (4.81), let us calculate the work done per unit time (i.e. the absorbed wave power) by

the exterior mechanical system; which can be performed by substituting (4.81) in (4.64) and the result

reduces to ‘i
sl
|E2 +i(1+ B) | HS ]2

This means that, if the body shape is asymmetric and one-side waveless, the perfect absorption of the

1 2
W= (L) vIKYP=E
2 \w

Ew (4.83)

wave energy can be realized only with a single mode of body motion (heave in the present analysis). This
feature is very advantageous from a viewpoint of controlling the body motion. However, the body shape
for one-side waveless must vary depending on the wavelength (frequency) of incident wave. Therefore, in
order to enhance the efficiency in the wave-energy absorption over a wider spectrum of wave frequencies,
we need to devise more.

With that consideration, let us consider next a way for realizing the one-side waveless condition simply

by using a symmetric body.
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Fig.4.5 How to realize the condition of one-side waveless using a symmetric body.

4.6 One-side Waveless Condition with a Symmetric Body

As depicted in the left of Fig.4.5, we consider a radiation (forced oscillation) problem in which a
vertical external force Fy is applied at the point away from the origin with zg = ¢, which induces the
heave and roll motions simultaneously. For a more general case, the position where a vertical external
force applies must be (zg, yo) and yo # 0. In this case, the analysis may be more complicated, because
the origin has the sway velocity. Thus, for simplicity, explanation in the present section will be made
with parameter to be determined taken as ¢ only.

By use of mechanical impedance as in (4.62), the coupled motion equations in this special radiation

problem can be written in the form

ZyiwY = F
21 0 (4.84)
Zg wl = FO 4
Here the mechanical impedances Zs and Z3 are specifically given as follows:
1
Z2 = BQQ + E{pr — OJ2 (m + AQQ)}
= pw{ |HF |> —iE?} = pw|HS |* sec oy e "*H (4.85)
1 -
Zs = Bas + E{WGM—M(I—#IR)}
= pwli { |H{|> —iR*} = pwls, |H{ | secag e "7 (4.86)
and the phases ay and ag of the impedance are defined as
E2
pgB — w? (m + Agg) = pw’E?, tanay = ——
|Hy [?
i (4.87)
WGM — wQ(I—FIR) = pw?l2 R?, tanap = W
1

With these preparations, let us calculate the wave elevation propagating in the negative x-axis (.
Since the outgoing radiation wave generated by the forced oscillation can be computed from (3.16) and

the modes of motion are heave and roll, we can have the following

(" =¢ +( =iK{YH; +O6H; } = —iK{YHS —0(,H{ }
H72+ 7 ZleJr }

4.88
22 Z3 ( )

:_gFO{
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Therefore, for realizing the one-side waveless condition (i.e. for the condition of (= = 0), the value of ¢

should be of the following form

=+
Z3H2Jr _, Hysecap

= + T tw—g
Zalw Hy H, secay

eilan—ar)

_ 4, ASSCOR (o —an)titen—es) (4.89)
Apgsecay

Because ¢ must be real, we can see that the condition of one-side waveless must satisfy the following
ag —agteg—es=nr (n=0,£1,£2,--+) (4.90)

This condition is expressed only with the phases of the Kochin function and mechanical impedance,
which can also be expressed with the phases of symmetric and anti-symmetric body motions. That is,
ag +eg = 02 from (3.104) and ag + €g = 01 from (3.112). Therefore, we can see that (4.90) can be
rewritten as follows:

do—6=nm (n=0,£1,£2,---) (4.91)

This relation is the same as (4.27), the condition for perfect reflection for a symmetric body; which implies
that we can realize the one-side waveless condition by use of a symmetric floating body which is adjusted
to realize the perfect wave reflection!

Once the body shape is given, the Kochin function (i.e. e and eg) will be uniquely computed. Thus
in order to satisfy (4.90), ag and ag should be adjusted; which may be possible in practice by changing
the restoring force with mooring lines or by changing E or R defined in (4.87).

When the one-side waveless condition is realized, the complex amplitude of generated wave propagating

to the opposite (positive z in the present analysis) direction (T can be given as follows:

(t=¢ +¢ = —iK{YHS +60,H] }

9 gion K etlan+en)
— R = —Fy2i— (4.92)
pgH, sec oy pg Agsecay

From this result, we can see that the vertical external force Fy should be given in terns of ¢t as follows:

1 — ; o ;
Fy = —ing+ H; secage "M =4 Pgﬁ{ Ap sec oy e i@nten) (4.93)

Now that the condition of one-side waveless could be realized with a symmetric body, the subsequent
analysis can be the same as that for an asymmetric one-side waveless body. Namely, as depicted in the
right of Fig. 4.5, an external mechanical system should be equipped at the point of z = £ to be given by
(4.89) and (4.90), and then the heave motion should be made resonant by adjusting £ and u, and the
external damping coeflicient v should be made equal to the wave-making damping coefficient of a floating
body under consideration. In order to confirm this, let us analyze more specifically the wave absorption
problem depicted in Fig. 4.5.

The reaction force between a floating body and an external mechanical system is denoted as F;. Then

the coupled motion equations in waves can be expressed as

Zy iwY = pgaHS + Fy (4.94)
Z3 iwO = pgaly,Hi + Fy ( (4.95)

1
[V—&-E(/{—wZM)} wY =75 iwY = —F (4.96)
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where Zy and Z3 are the mechanical impedances given by (4.85) and (4.86), and the wave-exciting force
and moment on the right-hand side are expressed with Haskind-Newman’s relation.

In order for the symmetric wave component to be perfectly absorbed, the complex amplitude Y in
heave must be equal to (4.54). In this case, by calculating the reaction force F; from (4.94), we can

obtain the following result:

ga Zy |H|? + i E?
Fy = o-—F = pgaHy = —pga—"——
W] °H,
1 ) _ )
==3 pgaH;r secag e'*H = —j % Ay secap etlonten) (4.97)

We may calculate Fy from (4.95) in terms of (4.55) for perfect absorption of the anti-symmetric wave
component and (4.89)—(4.90) for the one-side waveless condition. Even in this case, we can confirm that
the result will be the same as (4.97). Therefore we can conclude that the perfect wave absorption can be
achieved by controlling the values of u, v, and & such that F; given by (4.96) becomes equal to (4.97).

Those conditions may be confirmed to be the same as the conjugate matching of the mechanical

impedance, already given as (4.61). Namely
7§ = 7o

(4.98)
that is, v = Bay = pw|HS|?, k—w?u= —pw?E?

When these are satisfied, by use of (4.96) and (4.85) we can easily confirm that the resulting F; becomes
equal to (4.97).

What should be noted here is that the reaction force Fj in the forced oscillation for realizing the
one-side waveless condition (which is given by (4.93)) is complex conjugate of Fy given by (4.97). To
understand the physical meaning of this relation, first we recall that the time-dependent part was assumed
iwt

to be e’ and only the real part of the product of spatial (or complex amplitude) and time-dependent

parts should be taken. Thus considering the complex conjugate of Fj is equivalent to write as follows:
Re[Foe™'] =Re[Fye '] =Re[Fe™"]. (4.99)

This relation means that reversing the time in the radiation problem is equivalent to considering the wave
absorption problem; that is, the reciprocity relation holds in the linear wave theory.

To summarize the above, we need not consider explicitly the diffraction problem and only the infor-
mation of the radiation problem combined with various hydrodynamic relations suffices for the analysis

in the wave-energy absorption problem.

4.7 Revisiting Wave-energy Absorption Theory

In order to make clearer what is noted in the last paragraph of the preceding section, let us revisit the
wave absorption problem and analyze in a different manner. First, as explained in connection with the
wave drift force in Section 4.3, the energy relation in the case of absorbing the wave energy with certain

method is expressed in the form

AFE
Zo=n=1-[Crl*=[Cr|’ (4.100)
w
where 1 w 1
Ew = 3 pga® 5K = 3 pga’c, (4.101)

is the wave power of incident wave per unit area on the free surface, and hence 7 defined in (4.100) may

be regarded as the efficiency of wave-energy absorption.
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By the way, the coefficients of reflection and transmission waves can be computed from (3.37) and

(3.40), respectively; these may be expressed as
Cr=R—iKX;HS, Cr=T-iKX;H; (4.102)

Here X is meant to be normalized as X;/a and the summation sign with respect to index j is deleted
for simplicity, with the summation convention that any term containing the same index twice should be
summed over that index.

In the analysis to follow, we will need the following hydrodynamic relations:
— .
H; R+H; T=H, (4.103)
|IR>+|T*=1 (4.104)
These are already proven as (3.79) and (3.70). Then from (4.102) we have the followings:

|Crl?>=|R]? —iKX;H/R+iKX,;H R+ |KX;H] |

B T (4.105)
|Cr[2=|T 2 —iKX;H; T +iKX,H, T+|KX,;Hj |
Substituting these into (4.100) and taking account of (4.103) and (4.104), we have
. =+ -
n = 2Re{iKX;H; } = K2|X;[* ([H[* + [H} ?)
= 2Re(7) — h* (4.106)
1-46
where KX, H,, 1-6 P (4.107)
=1 i, 1=0=—Fo —H—2 .
To (H?+ [H P

Here we note that ¢ is defined only with the Kochin function and thus can be determined uniquely,
once the body shape is given. On the other hand, « includes the complex amplitude of body motion X;
and the wave absorption efficiency n may vary depending on the value of 4. By viewing (4.106) as a
function of v, we can see that the maximum of 7 is taken if vy = 1 — §. Therefore the maximum of the
wave absorption efficiency is given as
=P

= — I (4.108)
+ —
|H|? + [Hj [?

Thmax = Ymax = 1-—-

Next, let us consider Cr and Cr when the maximum in the wave absorption efficiency is achieved.

Since 7 is of real quantity for the case of (4.108), we can transform | Cr|? in (4.105) in the form
|Cr?=|R|*~R~vH}/H] —RyH, /H} ++° (4.109)
On the other hand, eliminating 7" from (4.103) and (4.104), we have the following:
|REP{H 2+ ]} = RE) 4 RS + | H; |2~ [Hf [ (4.110)

By substituting this relation in (4.109) and using the definition of (4.108), the following result may be
obtained

|ICRI>=1-274+*=(1—-7)*=62 (4.111)

| Cr | expressed in a similar way can be obtained by substituting (4.108) and (4.111) into (4.100), and

the result takes the form

(Cr?=1—|CrPP=n=7(1-7)=(1-4)0 (4.112)
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(4.113)

Namely |CrR|=1—-7y=06 }
|Crl=/A(1=7) = V(1 -9)

Looking at the results obtained so far in this section, we see that all results are described only with
quantities in the radiation problem, irrespective of whether the body is fixed or free to respond in waves.

Considering a one-side waveless body with H ;5 =0,itis obvious from (4.108) that 9max = 1 is achieved
only with a single j-th mode of motion. In this case, 6 = 0 and v = 1 and hence from (4.107), it follows
that

1
X, = (4.114)

" KH

This result for the complex amplitude of the j-th mode of motion is the same as that at resonance and
can be obtained from (4.81) for the case of E =0 and 5 = 1. In this case, it is also obvious from (4.113)
that |Cr| =|Cr| =0, implying that the perfect wave absorption is realized.

Furthermore, for a symmetric body, H;r = (—1)jH; holds and thus from (4.108) we have Nmax = 1/2,
which is the result already explained in Section 4.4. In this case, we can see from (4.113) that |Cgr| =

|Cr | =1/2.
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5. Wave Interaction Theory among Multiple Bodies

Wave interactions will be important in the analysis for a catamaran or an offshore structure composed
with multiple colums. This chapter is concerned with the so-called wave-interaction theory that can
compute interaction effects among multiple bodies only with the diffraction characteristics of elementary
bodies. In order to focus on the essence of the theory, explanation in this chapter is limited to 2D

problems.

5.1 Diffraction Characteristics of Elementary Bodies

In the wave-interaction theory, all waves reflected by other bodies but incoming to the body under
consideration are regarded as incident waves. Thus it is a premise that the diffraction characteristics
of each elementary body to “generalized” incident waves (not only propagating but also evanescent
components) are known. The calculation method for the diffraction problem was already explained in

Chapter 2 but for subsequent convenience, let us summarize it again here.

Li;

1st i-body j-body N-th

S N o I R ..

S
J L Incident
wave
L

—> 7.
j J

v
Y

— X — — TN

Fig.5.1 Coordinate system and notations for multiple-body problem.

The number of bodies and the shape of each body can be arbitrary in the theory. However, for
simplicity, it is assumed that the shape of elementary bodies is identical and symmetric with respect to
the centerline of the body. Thus it is enough to know the diffraction characteristics for one body.

The velocity potential is expressed as

?(v,y,t) = Re %{¢I(x7y) + bs(z,y)} et

¢D($7y) = qS[(x,y) + ¢S(x7y)

(5.1)

Here ¢; denotes the velocity potential of an incident wave incoming from outside, ¢g is the scattering
potential, and ¢p is the sum of those which is referred to as the diffraction potential.
Then the diffraction potential ¢p is governed by the Laplace equation and must satisfy appropriate

boundary conditions; those are written as follows:

20p

[H} o =0 on Sy (5.2)
2
[F] ‘%D Y Kép=0 ony=0, K= % (5.3)
B
[B] GL; =0 ony=nh (5.4)
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where the water depth is denoted as h but it may be treated as h — oo afterward.
When applying Green’s theorem, we should note that the radiation condition of outgoing waves to be
satisfied at infinity (S ) is not satisfied by ¢p, because ¢p includes ¢; representing the incoming wave.

Thus we obtain the following:

0
Con(P)+ | 0n(Q)5-G(P:Q)ds(Q) = /S )

99p(Q) 0 . 0) ds
e O P TP IR

Here C is called the solid angle, equal to 1 when the field point P(z,y) is located in the fluid region and
equal to 1/2 when P(z,y) is on a smooth surface of the body. G(P;Q) denotes the free-surface Green

function and for the case of finite water depth h, it may be expressed as follows:

o0
G(P;Q) =i Co Yo(y) Yo(n) e~ *0l*=¢l 13~ C,, Yo (y) Yo (1) € Fn 174 (5.6)
n=1
k k
where Che " o Pn
T K+h(k2-K?2) " K—h(k2+K?) 5
_ coshkg(y —h) _coskp(y—h) .
Yoly) = coshkoh Yaly) = coskph
2
kotanhkoh = = = K, kytankyh = —K (5.8)
g

(5.8) is the dispersion relation for finite water depth, and kg = K and Cy =1 at h — 0.
Let us consider the right-hand side of (5.5) for ¢s and ¢; separately. Since ¢g satisfies the radiation

condition of outgoing wave and ¢; has nothing to do with the presence of a body, we have the following

relations:
0= /S {8(22(5) - ¢s(Q)anaQ} G(P;Q)ds(Q) (5.9)
¢r(P) = /S {82;(3) - m(Q)aiQ} G(P; Q) ds(Q) (5.10)

Thus, summing up these two, we see that the right-hand side of (5.5) can be expressed simply as ¢; and
hence we can obtain the following:
Con(P)+ [ 6n(Q)5G(P:Q)ds(Q) = b1(P) (.11)
Sy nQ
This equation can be regarded as an integral equation for ¢p on the body surface, when the field point
P(z,y) is located on the body surface (i.e. C' = 1/2). It is important to note that the necessary (satisfying)
conditions for ¢ on the right-hand side of (5.11) are the Laplace equation and the free-surface boundary
condition; that is, the radiation condition needs not to be satisfied and thus evanescent waves can also
be included in ¢;, not necessarily propagating waves only.
For this kind of “generalized” incident waves, the corresponding scattering potential ¢g can be com-

puted and expressed with C'=1 in (5.11), in the form

bs(e.) =~ [ on(Q) 5GP Q)ds(Q)
Su nQ
= A7 Yo(y) eT*om + Y ATV, (y) e (5.12)
n=1
where Ay =—iCy ¢D(€,77)%Y0(77) e ds(¢,m)

S (5.13)

0
AT ==Cn | 0p(Em)5-Yaln) e < ds(€,n)
Su n

60



and the double sign (£) should be taken according as > 0 and x < 0, respectively.

if the incident-wave potential ¢; is known (explicitly given), coefficients AT and AF in (5.13) can be
computed directly. However, as in the wave-interaction problem explained here, the complex amplitude
of the waves reflected by other bodies is unknown until the problem will be solved, but these reflected
waves must be treated as incident waves when viewed from the body concerned. To resolve this situation,
we separate the complex amplitude from the other function part of spatial variables and write (5.12) in

the following matrix form:

Pl y) = {Ai}T{wé(m,y)} (5.14)
Here index ¢ is used to denote the i-th body (see Fig.5.1), and {Ai}T represents a vector consisting of
unknown coefficients {A;B, A, A;, Ai_n} (n=1,2,--) in the scattering potential. On the other hand,
{¢%(xi,y)} is defined as

u(+zi) Yo(y) e‘;k‘m
. —X; Y 1RO
{vs(ziy)} = ZEwLil; yi((?gj))eefknmi n=1,2, (5.15)
u(i‘rl) Yﬂ(y) ehn i n= 1727

which is the vector consisting of the function part of the scattering potential, where { }7 means the
transpose and u(x) is the unit step function equal to 1 for > 0 and zero for x < 0.

By the way, (5.14) and (5.15) are the exact expression, but the effects of evanescent-wave components
are very small in practice due to exponential decay except when the bodies are extremely in close prox-
imity. Therefore it is practical to neglect the evanescent components of n > 1 and to consider only the

progressive components in treating the reflected wave by other bodies as an incident wave.

5.2 Diffraction Problem of Multiple Bodies

Let us consider the diffraction problem first, where all bodies are fixed and, as in Fig. 5.1, the incoming
wave from outside is assumed to be propagating from the positive z-axis. Normalizing the velocity

potential of this incident wave as in (5.1), it can be written as

d1(x,y) = Yo(y) e™* (5.16)
Rewriting this with the j-th local coordinate system, we have
¢1(wj,y) = el Yo (y) eovs
e L Yy (y) e~ FoTi T
ikoL; 0 _ ,
— {0, o) { e DT S Uh S CCTER) (5.17)
Here = xj; + L; (see Fig. 5.1 for the definition of L;) has been substituted.
As mentioned before, incident waves to the j-th body include not only ¢; given above but also reflected

waves from other bodies. For instance, the reflected wave by the i-th body, given by (5.14), can be

rewritten with the j-th local coordinate system as follows:

u(+a;) Yo(y) e= Mo = 65 e~ holia Yy (y) e~ o }

) ) ) 5.18
(i) Yo(y) 457 = g0k Yo(y) o 19

Here we have introduced a special symbol ;; meaning

(1 i< o
5”_{0 i~ o (5.19)
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and L;; is, as shown in Fig. 5.1, the distance between the i-th and j-th bodies. Neglecting evanescent-
wave components (n > 1) in the scattering potential of (5.15) by the i-th body and then substituting
(5.18) into (5.15), we can obtain the following expression:

i 5’” e lkoL” O }/b(y) e—ik?o:vj
{¢s($z7 } = 5]_1_641%%- Yo(y) eikox;

= [Ty ] {W(%‘ay)} (5.20)

Here {w}(xj,y)} in the above is the vector of “generalized” incident waves, which consists of nor-
malized incident-wave components propagating from the left (for the first term) and from the right (for
the second term) of the j-th body, respectively, with unit amplitude. [T”] is called the coordinate
transformation matrix.

Considering (5.20) for all bodies except for the j-th body, we can obtain an expression for the total

incident wave impinging upon the j-th body in the form

I(xj,y ({aj} + Z {47 ){w, (zj,9)} (5.21)
i

The diffraction characteristics of the j-th body in response to {w}(xj, y)} can be obtained in the same
manner as that in the diffraction problem for a single body, simply by substituting the component waves
in the “generalized” incident-wave vector as ¢; on the right-hand side of (5.11). Specifically, by denoting
the scattering potential in response to {w}(wj, y)} as {gog(xj, y)} and the total diffraction potential as

{<p]b (z;, y)}, the following expression may be obtained

{es )} = { 25318233 iZ {W%(x;.9)}
= [B]" {¢i(z;,y)} (5.22)
where H (ko) == Co [ #h(Q) = Yalu) =< ds (5.23)
S on nQ

and [B ] in (5.22) is referred to as the diffraction characteristics matrix.
Summarizing above, the scattering potential of j-th body in response to the total incident wave given

by (5.21) can be expressed in the following form:

T
sy <{aa} +Z{A} )[B] {v4(as.0)} (5.24)
#J
The scattering potential of j-th body is also given by (5.14), with ¢ replaced with j, and that expression

of the potential must be the same as (5.24). Thus the following relation can be obtained:

{4} ={a}" [B]" + Z {4} [1;][B]" (5.25)
l?fj
Rewriting this equation by taking the transpose, we can obtain simultaneous equations for the unknown
coeflicient vector {Aj} of the scattering potential in the form

N

{4} - [B]Y [T;]"{Ai} = [B]{a;} (i=1~N) (5.26)
B
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Now that we could determine the scattering potential, we will consider next the wave-exciting force on
each body. The total incident wave impinging upon the j-th body is given by (5.21) and the amplitude
part in parentheses is determined by solving (5.26). Thus what we should do is to compute the elementary
wave-exciting force to each component in the ‘generalized’ incident-wave vector {w}(mj, y)}

In fact, necessary computations for that purpose have been already finished in the process of comput-
ing the matrix [B], because the diffraction potential {(pjb(asj, y)} is already computed for computing
{(pg(mj,y)}. Therefore, with this diffraction potential to the ‘generalized’ incident-wave vector, the

elementary wave-exciting-force vector acting in the k-th direction can be computed from
{EL} = /S {¢D(zj,y)} nids (5.27)
H

Multiplying this by the amplitude of total incident wave, the wave-exciting force in the k-th direction on

the j-th body can be computed in the form
w2 = oo (o) 4 3 (0 (5] 22) 59)
i=1
i#]

5.3 Diffraction Problem of a Catamaran

The theory in the preceding section can

be applied irrespective of the number of

floating bodies, but for clear understand-

P
r_ L\| 0 r_ R\| ing let us consider the simplest but prac-

tical case of N = 2; that is, the case of

catamaran. For brevity the water depth

L e =1 -9 =R is assumed infinite; that is, kg = K and

\j Co=1.

y The separation distance between the
Fig.5.2 Notations in catamaran problem.

centerlines of demihull is, as shown in
Fig.5.2, denoted as L13 = 2P, and L; used

in (5.17) is given by Ly = —P and Ly = P. When necessary, notations xy, and xg will be used instead
of x1 and z9, respectively.
With these notations, (5.17), (5.20), and (5.22) can be written for a catamaran as follows:

{al}:{ e-?xp } {a2}={ ei?{P } [B] = [ zgj‘; igjf } (5.29)

[Tu]T:{e’zva 8} [Tm]T:{g eiQKP} (5.30)

Therefore, (5.26) can be written specifically in a form of simultaneous equations for four unknowns.

Af —iHf e 28P A =i Hf e EP (5.31)
A7 —iHy e8P AT =i H e EF (5.32)
A —iHy e 5P AT =i qf 5P (5.33)
Ay —iHf e 2KP AF — i g KP (5.34)

From (5.31) and (5.34), we can solve for A] and A5 and the results can be expressed as
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. PHf(1+iHy)e "KP
Al = L+ (Hpo 2KP) (5.35)
AT = _eiKP + (1 +ZH4_) 6iKP (5 36)
? 1+ {Hj e-i2KP)? '

Here Al+ is the complex amplitude of the wave generated by body L and propagating to body R. From
(5.18), this quantity can be expressed with the local coordinate system at body R in the form
PHY (L4 iHp ) e 8P

Af e 2KP = Dp(K) =
L 1+ {HZF@—QKP}Q

(5.37)

On the other hand, A is the complex amplitude of the wave generated by body R and propagating
to body L. Combining this wave with the incident wave (which is assumed to propagate in the same
negative z-axis), we can write from (5.17) and(5.18) the total wave with the local coordinate system at

body L as follows:

) ) 1  H -~ —iKP
e~iKP 4 AT e~2KP — D) (K) = (1+iH, )6 .
14 {Hfe 22KP}

This result is the same as that derived originally by Ohkusu with the concept of infinite number of wave

(5.38)

reflections between two demihulls.
Having obtained A} and A, we may substitute these in (5.32) and (5.33) and then obtain the results
of A7 and AJ in the form

AT =iHy e P i Hy Ay e8P =i H] Di(K) (5.39)

A =i H 5P i H AT e 2KP — i qgf KP4 H Dp(K) (5.40)

Up to this point, the problem has been solved completely. Next, in terms of the results so far, let us

obtain the reflection wave (R) and transmission wave (T') coefficients. By recalling that the reflection

wave coefficient is the wave amplitude at x — 400, it takes the following form with the global coordinate

system O-zy
R:Ai‘r e_iKP—&—A; eiKP

=iH e P + (1+iH]) Dp(K)e™P (5.41)

On the other hand, the transmission wave coefficient is defined at * — —oo including the incident
wave, and thus it takes the following form

T: 1+AI eiKP +A5 e—iKP

= (1+iH;)DL(K)e™F (5.42)

Next let us consider the wave-exciting force. As the first step, we consider {Ei} defined by (5.27). This

is the elementary wave-exciting-force vector in response to each component in {wg(xj,y)}, and as one

can understand from (5.20), each component in {wg(asj, y)} corresponds to the incident wave incoming

from the negative and positive z-axis, respectively. Therefore, according to Haskind-Newman’s relation,

the following result must be readily obtained:
{Bi} = {Hy (K), B{(K)} (k=1~3) (5.43)

Here H ,;t(K ) denotes the Kochin function in the radiation problem of the k-th mode of motion. Since
k =1, 2, 3 correspond to sway, heave, and roll respectively, H, (K) = (—1)kH,j(K) holds for a symmetric
floating body.
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Using this relation together with (5.29) and (5.30), we can write (5.28) explicitly as follows:

Wi = pga{e ™0 + Ay e K0 HE(K)
= pga Dr(K) H} (K) (5.44)

Wi = pga{ ™ HI(K)+ Af e ?*PH_(K)}
= pga{ e’ + (=1)* Dr(K)} H (K) (5.45)

5.4 Radiation Problem of Multiple Bodies

The basic idea for considering multiple-body hydrodynamic interactions in the radiation problem can
be the same as that in the diffraction problem. Only the difference is to view the wave radiated by
oscillation of another body as the incident wave in place of the incoming wave from outside.

Let us consider the radiation wave by forced oscillation in the ¢-th mode of motion of the n-th body,

with its velocity potential expressed as
@(2.9,) = Re| iwX} ¢} (s, y) ']
g n n Tw
= Re L.W(KXe )@ (xn,y) € t} (5.46)

where X' denotes the complex motion amplitude. We note that the summation sign with respect to
mode index £ is omitted for simplicity with summation convention.
The solution of ¢} (z,,y) can be obtained in a form of (5.12), but as we did before, local waves may

be neglected except near the n-th body. Then the solution can be expressed in the form

op (wn,y) = {i H (ko), i Hy (ko) }{¢%(xn,y)}

= { b} {W2(@n, )} (5.47)
where _ Ipe(Q) 9 iko
H; (ko) = Co - { g W(Q)%Q} Yo(n) e=*o¢ ds (5.48)

is the Kochin function for the ¢-th mode of the radiation problem; which must be the same irrespective
of the body number n, if the body geometry of all bodies is the same. With this reason, its vector is
denoted simply as { b, } in (5.47).

By applying (5.20), the velocity potential (5.47) can be written with the local coordinate system at
the j-th body as follows:

wh(@s,y) = {be } [Ty ]{0] (25,0} (5.49)

Here we should note that this ‘incident wave’ is radiated from the n-th body and thus [ nn] = 0 for the
case of j = n.

Since the quantity of (5.49) multiplied by —K X} can be regarded as an incident wave corresponding to

(5.17), the scattered velocity potential at j-th body including multiple-body interactions can be expressed,
as in (5.24), in the form

h(zy,y) = — KX} ({bz Ty +Z{A} )[B]T{wg(xj,y)} (5.50)

wﬁj
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Similarly, the simultaneous equations for unknown coefficient vector {Aj} can be given in a similar
form to (5.26) and its result is expressed as

N

{4} = [B]Y [15]"{a} = [B] [T {be}  G=1~N) (5.51)
7
The hydrodynamic force associated with multiple-body interactions can be given in a similar form to
(5.28), with amplitude a replaced with —K Xj". Thus it takes the form

rip =it (00 5]+ 3 (4" 17,)) (22 552

Z#J
This hydrodynamic force should be interpreted as the interaction force on the j-th body in the k-th
direction when the n-th body oscillates in the /-th mode. In the radiation problem, in addition to the
interaction force derived above, we must add the hydrodynamic radiation force (added mass and damping

coefficient) on the n-th body oscillating as a single body.

5.5 Radiation Problem of a Catamaran

Let us consider specifically the case of catamaran. For simplicity, the water depth is assumed to be
infinite. First, we consider the case of n = 1, i.e. when body L oscillates. Since the left-hand side of
(5.51) is completely the same as that for the diffraction problem, we can obtain the following equations
corresponding to (5.31)~(5.34):

Af —iHf e 5P AT =0 (5.53)
AT —iHf e725P AT =0 (5.54)
AY —iHf e RPAT =i Hy (i Hf e 57P) (5.55)
Ay —iHf e KPP AT =i Hf (i Hf e 2KP) (5.56)

Solving these equations, we can obtain solutions for the unknown coefficients in the scattered wave and

the results are expressed as

e*iQKP

iH + Af) e 25 =i gf =iH,} Er(K) (5.57)
( ¢ 1) ¢ 14 {Hje—i2KP}2 ¢
‘ i e i4KP
Ay e ®KP — gt A0 gt p(K) (5.58)
1+ {HZ‘e—ZQKP}
AT =iH; e MPA; =iHf{iH] EL(K)} (5.59)
A =iHy e KPP (iH} + AT) =i H {iH; Er(K)} (5.60)

With these results, the interaction force can be computed from (5.52). Specifically the hydrodynamic
interaction forces on body j =1 (body L) and body j = 2 (body R) due to forced oscillation of body L
in the ¢-th mode can be obtained as follows:
FEE = —pg KXE (47 e KP) 1}
=—pg KX/ {iEL(K)} Hf H = X[ fre (5.61)
Kb =—pg KX[(iH} + A7) e "V H,
— —pg KXE(—1)*{iEn(K)} B H = XE(—1) gie (5.62)
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Here fre = —pgK{iEL(K)} H H = fu, } (5.63)

gee = —pgK{iER(K)} Hif Hf = guk
and it is worthwhile to note that the symmetry relation holds.

Similarly the progressive wave at infinity can be computed. Writing with the global coordinate system

O-zy, the progressive waves at £ — oo can be obtained and expressed as follows:

C—%oo — _KXZ [(2H++A+) —1KP+A;-61‘KP]
= —KX/{(1+iH)Er(K)}iH} ™" = —KX[ ay (5.64)
¢t =-KX/ [(zH + A7) e + Ay e KR
= KX/ {(-1)'+ (1 +iH)EL(K)}iH} e"F = —KX[ By (5.65)
where ¢ = (14+iH;)Er(K)iH} K (5.66)
Be={(-1)'+ (1 +iHy) EL(K)}i Hf eiKP '

In the same manner, let us consider the case of n = 2, i.e. when body R oscillates in the ¢-th mode.
The calculation procedure for this case is almost the same as the previous case and the solutions can be

obtained in the following form

Af e 2KP =0, Er(K) (5.67)
(iH, + A7) e X =iH; Eg(K) (5.68)
AT =iH, {iH] Er(K)} (5.69)
Ay =iH, {iH; EL(K)} (5.70)

The hydrodynamic interaction forces can be computed by substituting these results in (5.52) and ex-

pressed as
Fi = —pg KXF(-V)"{iEr(K) } HY Hf = X[{(—1) gie (5.71)
F{T = —pg KX{{(—1)"{QBL(K)} Hi Hy = XF(=D)" fie (5.72)
The progressive waves at x — 0o can be computed in the same way and expressed as

Po= KX (-1 + (1+iHy ) EL(K) }(~1) i H} 5P
= —KX['(=1)" B (5.73)

B =-KX{(1+iH])Eg(K) }(-1)'iH 57
= -KXF(-1)a, (5.74)

From the results obtained above, the total interaction force on body L (denoted as Lx¢) must be sum of
(5.61) and (5.71) and the total interaction force on body R (denoted as Ry¢) must be sum of (5.62) and

(5.72). Their results can be written in the form
Lre = Fig" + G = X{ fro + XF (1) g (5.75)

Rie = FEY + FER = [ X[ gre + XFH(=1)" fre ] (-1)* (5.76)
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In the same way, the total progressive wave at  — 400 must be sum of (5.64) and (5.73) at © — 400
and (5.65) and (5.74) at + — —oo. Those results are given as follows:

Croo = oo + (B = K [ XF oo+ XP(-1) B ] (5.77)

(oo = Lo + (T = —K [ X7 B+ X[H(-1) e | (5.78)
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6. Numerical Computations Based on Free-Surface
Green Function Method

In order to compute hydrodynamic forces acting on a body and the amplitude function (Kochin
function) of body-generated waves, the velocity potential on the body surface (which is equivalent to the
pressure) must be obtained. In this chapter, explanation will be made on a numerical calculation method

based on the boundary element (or free-surface Green function) method.

6.1 Boundary Integral Equation

The boundary integral equation to be solved can be derived from Gauss’ theorem and its result is
known as Green’s formula. As already explained in Chapter 2, we introduce first the free-surface
Green function which satisifes the same homogeneous bounday conditions as those to be satisfied by
the velocity potential. In that sense, the calculation method which will be explained in this chapter is
referred to as the boundary integral equation method or free-surface Green function method.

The derivation for the integral equation to be solved has already been described, and the resultant
integral equations to be solved are (2.49) for the radiation problem and (3.21) for the diffraction problem.

Those can be written in a unified form as follows:

n; G(P;Q)ds , j=1~3
1<Pj(P) +/ %‘(Q)i G(P;Q)ds(Q) = /SH O, (6.1)
2 S Inq

SDO(P) , J= D
where P = (z,y), Q = (§,1) and G(P;Q) denotes the free-surface Green function. Since the Green

function satisifies all homogeneous boundary conditions, the integral surface in (6.1) is only the wetted

surface of a body (Sg) on which the bounday condition is inhomogeneous, as given specifically by (3.9).

6.2 Free-Surface Green Function

There are several ways for deriving the free-surface Green function G(P;Q), but probably the simplest
among them may be the use of Fourier transform; its detail was already described in Section 2.1. Here

as the representative from various expressions, let us rewrite (2.33):

1 r 1 [ kcosk(y+n) — Ksink(y+n) _p._
ey Ly o1 o]
G(xayafvn) o 0og r ﬂ_/(; k2 +K2 ¢ dk
i e K(n)—iK|z—¢] (6.2)
where ;1 } =V@-2+ (yFn)? (6.3)

The term i logr in the above is known as the fundamental (or principal) solution of the 2D Laplace
equation; that is, the velocity potential due to a hydrodynamic source with unit strength, and the
remaining terms are supplemented to satisfy the free-surface and radiation conditions. It should be noted
that the first line in (6.2) represents the local wave (or evanescent wave) which decays as |z — £| — oo,
and the second line (last term) in (6.2) represents the progressive wave propagating outwards from the

source point.
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Now we must consider how to evaluate numerically (6.2) particularly the local-wave integral term with
respect to k. In order to explain necessary mathematical transformation, let us consider the following

integral denoted as 7

—k|z
e e Fl*l g (6.4)

This function satisfies the following differential equation:

I:/OO k cos ky — K sin ky
0

az +K7I= —/ e M2l gin ky dk =
dy 0

-y

e (6.5)

Therefore its solution can be readily obtained and written as follows:

—ry| (7 1N Kn ke [T W _Kwv -K ey
I=e eMdn | =e ™Y e dv=-e"""Y Re dv (6.6)

oo T2+ 12 _y 202 _y U —iT
A
m=0
T » Re(m)
M
> 1) [ .
-y o0 -K(y+ix) oco-ikx

Integration path in the complex plane for >0

Fig.6.1 Deformation of integration path in the complex plane.

With variable transformation of K (v — iz) = m, the integration path in the complex m-plane may be
taken as shown in Fig.6.1. Since there is no singularity inside the enclosed integration path, the residue

theorem provides the following result:

—m

_ —K(ytia) [ ¢ _ —z
Z=Re|e ——dm| =Re|e *Ei(—2) (6.7)
—K(y+iz)

m

—t

where Ei(¢) = / h 67 dt, z=K(y+iz) (6.8)
¢

Here Ey(—z) denotes the exponential integral function with complex variable; its computation method
is well studied and summarized in Appendix A2, with which we can perform the fast computation with
desired accuracy.

To summarize, the free-surface Green function can be expressed as follows:

G(m,y;f,n)=2;{log:1—2Fc(z—£,y+77)} (6.9)
where Fe(x —&y+n) :Re[e_ZEl(—Z)} —ime?
(6.10)

Z = K(y+n) +iKle —¢

In solving the integral equation, as will be shown in the next section, it may be expedient to introduce
a function which is conjugate to Feo(z—&,y+n) defined by (6.10). This conjugate function Fg(z—&,y+n)

must satisfy the following relations:

8FC - 8FS 3FC . 3F5 8FC . 78FS (6 11)
on  0s 9  on om0 ’
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Thus it may be easier to confirm that the desired function takes the following form

* ksink(y +n) + K cosk(y +n)
k2+K2

. 6K<y+n>ﬂ<|ms|}

e~ kle=¢l g1

Fs(z =& y+n) =sgn(az—§){ _/O

— sgn(z — g){ Im[e*ZEl(—Z)} e ? } (6.12)

It may be noteworthy that r; appearing in the first term on the right-hand side of (6.9) is given by
reversing the sign of 7 in r, but in fact it can also be given by reversing the sign of y, which will be

convenient when integrating with respect to Q = (£, 7).

6.3 Numerical Solution Method for Integral Equation

In fact there exist several different methods for solving the boundary integral equation (6.1); among
them a fundamental and commonly used method, i.e. the constant panel method using zeroth order

element combined with the collocation method will be explained in this section.

SR
Sk =N+l ) J=1 < N - T
< <€ < -
N 2
N-1 3
4
S_ooY Su 1 8 n A So
Sp Y
Yy

Fig.6.2 Coordinate system and notations for numerical computations.

First, as shown in Fig. 6.2, the body surface in y > 0 is divided into N elements i.e. segments (s,;
n =1~ N), and we assume that the velocity potential on each segment is of constant value. In this
case, the number of unknowns is N. Thus by selecting N different points of P(x,y) at which both sides
of (6.1) are enforced to be equal, the integral equation (6.1) may be converted into a linear system of
simultaneous equations with IV x N matrix and then solved using a conventional method for simultaneous
equations. This solution method is referred to as the collocation method, in which the positions as NV
different points of P(x,y) are normally placed at the center of each segment.

Multiplying both sides of (6.1) by 27 and then adopting the zeroth-order element and collocation

method, we can recast the integral equation in the following discretized form:

N
Z nj(Qn) Smn (] =1~ 3)

N
70;(Pm) + Y 0;(Qn) Dinn = {11 (6.13)
n=1
27 ©o(Prm) (j=D)
Here m =1 ~ N and the matrix coefficients in the above are defined as follows:
0 r
Dmn = / 8{ IOg* _2FC(xm _gvym +77) }ds(gvn)a (614)
sn ONQ 1

71



Smn = / { IOg% - 2FC(xm - §7ym + 77) }ds(gan) (615)

Let us describe how to evaluate analytically these matrix coefficients on each segment. As shown
in Fig. 6.3, we introduce a local polar coordinate system (r,d) with the origin placed at a nodal point
(&nyMn)- Then, since the value of § is constant on the segment, the integrals of D,,, and S,,, on the

segment will be functions of r only. We can write (£,7) as

E=¢&,+rcosé (6.16)
N =10, +rsind '
with cosd and sind given by
cosd = £n+1 - gnj sing = Mn+1 — Tn
D D : (6.17)

D= \/(£n+1 — £n)2 + (nn+1 - 77n)2

Then we can see that the range of integration with respect to r is from » =0 to r = D.

In terms of (6.17), the components of normal vector

0 > &n on a segment can be computed as follows:
(&n,"n) Me =M1 =sino (6.18)
0 Ny =Ny = —COS 0
r n Details of analytical integration are shown in the ap-
(Ent1, M) pendices in the reference book written in a footnote;
V Appendix A 2.1 for the integrals related to the loga-
n rithmic function logr — logr; and Appendix A 2.2 for

the integrals related to the free-surface-effect function
Fig.6.3 Definition of local coordinate

Fo(xm—&,ym—+n). For brevity in expressions, (Z,, Ym )
system.

will be written simply as (z,y) by omitting subscript m.
Then the results after analytical integration over a segment for the matrix coefficients D,,,, and S,,, can
be summarized as follows:

n+1

Dinp = (1= 8mn ) Ta(2,y) — Ta(z, —y) — 2 {FS(Jﬂ —&y+ n)} (6.19)

Smn = Ln(2,y) — Lo(z, —Yy) — 2§n(x,y) (6.20)

o T L R R LILIN | e

e |(z — &) sind — (y — ny,) cos 6| |(z — &) sind — (y — ny) cosd| |, ’
n+1
Lol == | {(& = cosd + (= )sind o Vo= 7+ = |
— &) cos — 1) sin e
—’(m —&n)sind — (y — 1) cosé’ [tan_l |(£x_ ;3 sinc?j_((g— :77:) co§5| } (6.22)

FEE BAEOREAE RiR-SEEEORME R, BELYRZESEETRSR,
AL A = E ) ISBN4-425-71321-4

72



y+n:|n+1
r—¢

1 n+1
—K[sinéFc(x—f,y—i—n)—codeS(x—f,y+n)] (6.23)

n

S (z,9) :—% [siné log /(z — )2 + (y +n)2 + cosd tan ™!

n

In the above, [ e ]nﬂ

means the difference of the quantity in brackets evaluated at Q41 = (§n+1, nt1)
and Q,, = (&, 7, ) must be taken. J,,, in (6.19) denotes Kroenecker’s delta, equal to 1 for m = n and zero
otherwise. Thus the first term on the right-hand side of (6.19) becomes zero for m =n. Fs(z — &,y + 1)
appearing in (6.19) and (6.23) is the conjugate function to Fo(z — &,y + 1); its calculation formula is
already described in (6.12). We can see from above results that the matrix coefficients in (6.13) can be
computed only in terms of logarithmic, arctangent, and exponential integral functions.

By the way, there will be an unfortunate case where the matrix determinant becomes almost zero
at a certain special frequency and the solution is indeterminate. This special frequency is referred to
as irregular frequency, around which resultant hydrodynamic forces computed with obtained velocity
potential become unreasonable. Several methods have been proposed to get rid of irregular frequencies.
In this section, a slightly modified version of Haraguchi-Ohmatsu’s method will be explained briefly and
incorporated in the computer code to be explained afterward.

First we should recognize that the occurrence of irregular frequency is not physical but mathematical
due to the characteristic of a matrix and thus cannot be removed simply by increasing the number of
divided panels. Therefore, to resolve this problem, it is necessary to change the matrix characteristic
by adding an integral equation which is similar but different in nature. For that purpose, we put the
field point P on the interior free surface inside the floating body (which is outside of the fluid region
considered). In this case, the first term on the left-hand side of (6.13) must be zero, which makes the
matrix characteristic change so that a stable solution can be obtained. With this idea, let us add a
few extra equations with the field point P,, taken on the interior free surface and hence the first term
w;(Pm) being zero. Denoting the right-hand side of (6.13) as R;n, and ¢;(Q,) on the left-hand side

simply as ¢, we can obtain the following expression for overconstrained simultaneous equations

N
> Don @} =Rjm (m=1~N,N+1,---, M) (6.24)
n=1
where D, — T0mn + Dmn (m =1~ N) (625)
Dy (m=N+1~ M)
and the field points taken on the interior free surface are numbered as m = N + 1,---, M. (In reality,

taking 3 ~ 5 additional points on the interior free surface would be sufficient.)
Since the number (M) of equations is larger than the number (N) of unknowns in (6.24), we must
use the least-squares method to solve (6.24). To apply that method, we consider a square of the error

(difference) defined by N

M
E= Z {
m=1 n

Then, applying the conditions 0F/ &p;? =0(k=1,2,---,N) for minimizing squared error, we can obtain

2
umﬁ—&ﬁ, N<M (6.26)
1

a modified system of simultaneous equations in the following form:

N (M M
Din Dk ¢ 0 = RjmDmp fork=1~N (6.27)

m=1 m=1
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We can see that this equation provides N simultaneous equations for N unknowns, and thus we can solve
this by using a conventional method like Gauss’ elimination method and determine the velocity potential

on the body surface.

6.4 Hydrodynamic Forces and Kochin Function

Once the velocity potential on the body surface has been obtained, we can compute hydrodynamic
forces and the Kochin function. Since the velocity potential is assumed constant on each segment of
the body surface, the added mass (A4;;) and damping coefficient (B;;) in nondimensional form may be
computed from the following:

Aij ; B,
pb2e;e; pwb?e;e;

:—/SH%(x,y)nids:—iV:(%‘TliD>n (6.28)

n=1

I At YA
sz:AZ]_ZBZ]_

Here the half breadth b(= B/2) on the still water plane is taken as the representative length for nor-
malization, and symbol ¢; means that €¢; = 1 for j = 1, 2 and ¢; = b for j = 3. Moreover n in (6.28)
denotes the sequential number of segments on the body surface, D is the length of each segment defined
in (6.17), and the component of normal vector n; is also constant on each segment.

The wave-exciting force in the diffraction problem can be computed in nondimensional form by the

following:

N

E

E! = ngZbe- :/s op(z,y)n;ds = Z (SOD niD> . (6.29)
aVU€; H "

n=1
The Kochin function is, as defined by (3.13) and (3.22), the complex wave-amplitude function repre-
senting effects of the body geometry and the mode of motion on generated waves. This Kochin function

was defined in the form

O, 0 _ - .
b (B-vgm)e s (G=1~3) (6.30)
Hf = —/ ©D 9 e KnEIKE g (6.31)
4 Su an

Let us consider a numerical calculation method for these equations. Recalling that the body boundary
condition in the radiation problem was given as dy;/0n = n; (which is constant on each segment) and
that the function conjugate to e~ K"+K¢ ig given by Fi e K"+K¢ we can obtain the calculation formula

for the Kochin function as follows:

N
=3 { (), B = (@), 95} G=1~3) (6:32)
n=1
N
it = =3 (0), 65 633
n=1
where F* = / o—KmEiKE g _ :Fi (Fid [e—Kn:tin}nJrl (6.34)
Sn K n
+ _ 0 _gnrike ;. [ —Kkntixe |
g _/Snane m dS—:Fz[e " ]n (6.35)

Details of analytical integration of the exponential function shown in (6.34) on each segment can be seen

in page 52 of the reference book introduced in a footnote.
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Whether computed values of hydrodynamic forces and the Kochin function are correct or not may
be confirmed by checking various relations that are proven theoretically. As examples of those relations,
the energy conservation associated with the damping force and the Haskind-Newman relation for the

wave-exciting force can be expressed in nondimensional form as follows:
B, =H'H , E/ =H (6.36)

Furthermore, the relation between the Kochin functions in the radiation and diffraction problems is
expressed from (3.18) and (3.87) as follows:

Hf =7 e%2 coseq F €% sin €
(6.37)
£; :arg(—in)
6.5 Motion Equations of a Floating Body

The motion equations of a floating body will be considered in terms of the coordinate system with the
origin taken at the center of gravity G. The analyses so far have been made using the coordinate system
with the origin on the calm water surface y = 0, and thus let us consider mutual relations first. With
assumption that the center of gravity G is located just below the origin O at y = 0 with vertical distance

le = OG, the relations between the motion amplitudes are given as
X, =XP +0eX§, Xo=X§, X3=X§ (6.38)

where X ]G denotes the complex amplitude of the j-th mode of motion at the center of gravity. On the
other hand, the outer product of the normal vector and the position vector from the center of gravity for

roll motion is given by

n§ =yny — (2 — La)ny = n3 + lom (6.39)

Thus we can see that the velocity potential in roll around the center of gravity can be given as
G _
03 =3+ Lap (6.40)

By using (6.39) and (6.40), the radiation forces measured at the center of gravity can be computed with
transfer function T;; defined by (3.31), in the form

FE =Ty X + T XS + (Ths + L6 Tha) XS (6.41)

FY = To1 X{ + Too X§ + (Toz + b Ton ) X§ (6.42)

FE = (Tyy + LoTi) XC + (Tso + Lo Tia) X§ + {(T33 + L6 Tys) + Lo (T + eGTH)}Xg’ (6.43)
Likewise the wave-exciting forces measured at the center of gravity can be computed from

ES =E,, EY=F,, EY=F3+(cF (6.44)

In addition to hydrodynamic forces described above, we need to include the restoring force which can
be computed by integrating the variance in the hydrostatic pressure due to displacement of a body. Then
we can establish the coupled motion equations among sway, heave, and roll for an asymmetric general-

shaped body. Since the fluid forces are given in nondimensional form like (6.28) and (6.29), the motion
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equations are also nondimensionalized in terms of the half breadth b, and the results may be expressed

in the form

X¢ X¢ X$v E!
—(m’ + Zh)T: - ZIIQT::) — (213 +5/GZ1/1)<% = ﬁ (6.45)
X6 Clo\ X§ X%y El
2 (' 2y = PR (o ) = (6.46)
XG X¢
7(Zé1 + gé;Zil)Tl - (Z?/)Q + EIGZ{Q)TQ

Cisy X§b 1
%} 87 = __(By+(,E])  (6.47)

R+ 2y ol + s (Z e Zh) — TR = g

where m’ and «!,,, denote the nondimensional mass of a body and the gyrational radius in roll, respectively.

Including these, the prime means nondimensional values defined as follows:

= N N fee Lo
pb2 b2 ) Tx b ) G b )
. 022 B
, _ Cw _ GM
33 pgb?, b

It should be noted that GM can be calculated with £ = OG once the body geometry is given, and
the displacement volume (sectional area in 2D) V and the distance to the center of buoyancy (center of
sectional area) OB can be calculated as well only with the body geometry. Therefore what is needed as

input data are the center of gravity and the gyrational radius in roll.
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Appendix

A1 Numerical Computation Method for Free-surface Green Function

It has been shown that the free-surface Green function (the velocity potential due to periodic source
with unit strength) is expressed as (2.31)—(2.33). However, for actual numerical computations, we must
consider how to treat the integral with respect to variable k. In this section, necessary mathematical
transformation will be shown for accurate and efficient numerical computations.

First, the singular integral part in the Green function, denoted as I, can be expressed from (2.23)
and (2.30) in the form

[e’e] —ky ]C
I, = }LO % dk —ime KY cos Kx (A-1)
ookCOSky—KSinky —k|z| . _Ky—iK
= ol dk — y—iK|z| A-2
/O 2R e iTe (A-2)

Denoting the integral appearing in (A-2) as

* kcosky — Ksinky _,
F = 1zl qk A-
(@) = [ B e . (A-3)

we can see that this function satisfies the following differential equation

ar o . y
@“V‘KF:—/O e k‘xlslnkydkf:—m. (A-4)
Therefore its solution can be obtained as follows:
Yo
F:e_Ky{—/ xz_’_ng@K"dTH-C}’ (A-5)
0

where C' in the unknown coefficient in a homogeneous solution of the differential equation, but it can be
determined by considering the value at y = 0, i.e. C = F(z, 0). Thus from (A-3) it may be explicitly

given as

* k k|| 0 n K
= | e Fllgr = — d A-
¢ /0 EESch /_oox2+n26 ! (40

Substituting this result, (A-5) can be written and transformed further as follows:

Yy
F=ecKv|_— 7277 26K"d17
oo T

[e%e) oo —Kv
= eny/ 5 v 5 e Ky = e KV Re/ c — dv (A-7)
Ly T +v _y UV
A
m=0
@ SN Re(m)
> ) L .
) o0 -K(y+ix) oco-ikx

Integration path in the complex plane for x>0
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With variable transformation of K (v — ix) = m, the integration path in the complex m-plane may be
taken as shown in the figure above. Since there is no singularity inside the closed integration path, we

have the following expression by virtue of the residue theorem:

S e~ m
enyfsz/ dm
—K(y+iz) m

F =Re

= Re [e*KZEl(sz)}
(A8)

B(Q) = [ Sodm s=ytio
¢ m

Here E7(() denotes the exponential integral function with complex variable; its series expansion and
asymptotic expansion are well studied and summarized in Appendix A 2, with which we can perform the
fast computation with desired accuracy.

The transformation for (A-8) has been done with assumption of > 0, but (A-8) is valid also for x < 0,
because the integration path in the v-plane should be taken below the real axis (in the 4th quadrant)
and again no singularity exists inside the closed path.

Substituting (A-8) for F'(z, y) defined by (A-3) into (A-2), we have the final result in the form

I = Re e*KZEl(—Kz)} _ime~Ky—iKlal (A-9)
Here, by writing £ (—Kz) in the form
Bi\(—Kz) = Ec +iEg (A-10)
we can transform I; as follows:

I, =e KYRe [e*K””(EC +iEg )} —me” *¥{sgn(z)sin Kz +icos Kz}
=e Ky [EC cos Kz + { Eg — msgn(x) }sinKx} —ime KV cos Kz (A-11)

= Re [e_KZ{ E(—Kz) —imsgn(z) } ] —ime KV cos K, (A-12)

where z = y + ix.

-K(y+iz)

Integration path for >0 The integral along this path provides
the exponential integral function

0 /5\ » [ o0 > 7
o0 n=0
Integration path for x <0
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It is noteworthy that the final result (A-9) or (A-11) is expedient for numerical computations, but its
derivation might be not smart. Thus we will show that (A-12) can be obtained directly from (A-1).

First we note that (A-1) can be written in the form

o0 eik(y‘kiz)
Il = Re%o ﬁdk 7'1:7T€7Ky cos Kz (A—13)
Therefore, comparing (A-13) with (A-12), we can expect the following result:
00 o—k(y+iz)
% ————dk=e¢ *?{ B (-Kz) —inrsgn(z) } (A-14)
0 kE—K

This result can be proven by the variable transformation (k — K)(y 4 ix) = n and deformation of the
integration path in the complex plane. As shown in the figure above, for x > 0 the integration path in the
k-plane should be taken in the 4th quadrant, and reversely for z < 0 it should be taken in the 1st quadrant
for ensuring the convergence along an arc at infinity. Then, through the variable transformation, we can
see the corresponding integration path in the n-plane is taken as shown in the figure above. We note
that the direction of integration along half a small circle around the singular point at n = 0 is opposite
depending on x > 0 or < 0. Therefore by virtue of the residue theorem and Cauchy’s integral theorem,

we can obtain the following result:

00 efk(eriz) X ) K ) o] e
7§ ————— dk + imsgn(x) e KWF2) _ o~ K(ytio) / —dn=20 (A-15)
0 k—K —K(y+iz) T
Namely 00 —k(y+iz)
7,6 ————dk = e "*{ By (—Kz) —imsgn(z) } (A-16)
0 k—K
where z=y+iz

We can confirm that (A-16) provides us with the same result for the integral I; as (A-12).
Summarizing above, the variable transformation (k — K)(y + iz) = n applied to (A-1) is efficient for
the purpose of proving the final result of (A-9). However, mathematical transformation from (A-2) might

be useful and educational in extending the present treatment to 3D problems.

A 2 Numerical Computation for Exponential Integral Function

Details for mathematical derivation are omitted, but it is known that the exponential integral function
with complex argument can be expressed in several ways as written below. By combining these expressions
appropriately, the exponential integral function can be computed for all values of complex variable z =

x + iy with high acuracy and efficiency.

(1) Series Expansion

_ o (=2)"
El(z)fﬂy—logz—; — (A-17)
where v = 0.57721 - - - denotes Euler’s constant.
(2) Continued Fraction
1
e*E(z) = 1 (A-18)
z+
1
14 5
z+ : 5
L I
14 5
z + ce
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(3) Asymptotic Expansion

e*Ei(z) = % > (_"Z!)n : (A-19)

n=0

A 3 Lewis-Form Approximation

As shown in Fig. A-1, the conformal mapping of a real body (in the physical plane of z = = + iy)
onto a circle with unit radius (in the transformed plane of { = £ +in) is considered. In terms of the
expansion-contraction coefficient (scale factor) M and two more coefficients a; and as, the equation for

this conformal mapping can be written in the form

x+iy:M{C+ag+?§}. (A-20)

Since the body surface is defined as r = 1 (the radius equal to 1), ¢ = sinf+i cosf = i e~ is substituted

in the above. Then the coordinates (,y ) can be expressed with 6 in the form

x:M{(l—i—al)sin@—agsin?)H}
(A-21)
y:M{(l—a1)0080+a3cos39}

The body shape represented by (A-21) is called Lewis form.

The unknowns are M, a1, and a3, which may be determined by specifying the following three quantities:

1) Half breadth B/2=M(14 a1+ a3), (A-22)
2) Draft d= M( 1-— a; +as )7 (A-23)
3) Sectional area S = g M?*(1—af —3a3) (A-24)

The typical procedure for determining M, aq, and ag is as follows. First, nondimensional parameters,

the half-breadth-to-draft ratio Hy and the sectional area ratio o, are defined as follows:

_ B/2 . 1+a1 +asg

H, = A-25
0 d 1 — a1 —|— as ’ ( )
S m 1—a?—3a2
= — = — H — 1 73 . A_26
7 Bd 4 0 (1—|—a1 —|—a3)2 ( )
Physical plane Transformed plane
-B/2 0 B2 -1 0 +1
T > ¢
Area|=5S 0
+1
d \/
\j

Conformal mapping y
n

Fig.A-1 Coordinate system in the Lewis-form approximation.

80



From (A-22) and (A-23), we can obtain

_ Ho-1 _ Ho+1
Tovjd) T 2(M/d)

aq -1 (A—27)
Then substituting these in (A-26), a quadratic equation for M /d will be obtained. Selection of the correct
solution from two possible solutions can be done with physical argument by considering a special case.
Namely a flat plate (which is described by a; = —1 and a3 = 0, resulting from B/2 =0, Hy =0 =0) is
considered. In this case, we can see that M/d must be equal to 1/2. From this consideration, it follows
that

M 3(Ho+1)—\/(Ho+1)>+8Hy(1 — 40/)
= 0 0 y (A-28)

On the other hand, the coordinates for the contour of body shape can be given in nondimensional

form as follows:

2 = BL/Q — HL (]\;> {(1+a1)sin9—a38in39}
0

1 M

To sum up, M/d is computed first from (A-28) in terms of Hy and o, then a; and a3 are computed

(A-29)

from (A-27), and finally the nondimensional coordinates (’,y’) for the body shape are computed from
(A-29).
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Source program for a general-shaped 2D floating body

0001
0002
0003
0004
0005

Qoo

Qoo

(@)

Qoo

MAIN

Xk %k Kk

* kKK

++++
1

9
600

Frrreee

5 3 ok oK oK K o oK oK oK K 3 ok oK oK K 3 ok ok ok K o ok ok oK K ok ok oK K 3 ok ok oK K 3 3k ok oK K K 3k ok oK K K 3k ok ok sk K sk ok ok ok sk sk ok ok Kk ok ok Kk ok

X%
k%
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FILE NAME: ( OEPANEL/IEM2D.F )

B e B B B B B S o O ST NS

2-D RADIATION AND DIFFRACTION PROBLEMS
OF A GENERAL-SHAPED 2-D BODY

BY INTEGRAL-EQUATION METHOD
WITH THERAPY FOR IRREGULAR FREQUENCIES

ADDED-MASS AND DAMPING COEFFICIENTS,
WAVE EXCITING FORCE, WITH ACCURACY CHECK
SWAY, HEAVE, & ROLL MOTIONS AND
TRANSMISSION & REFLECTION COEFFICIENTS

CODED BY M. KASHIWAGI ON 1994 8/18
MODIFIED FOR OE-PANEL ON 2001 9/21
+ AT R.I.A.M. KYUSHU UNIVERSITY

R

R R R,

B L O S o T S

IMPLICIT DOUBLE PRECISION (A-H,K,0-Z)
COMMON /PAI/ PI,PIO5,PI2

PI =3.14159265358979D0
PIO5=PI*0.5D0
PI2 =PI*2.0D0

IPRINT=1
NPRINT=0
soskokkokokkokokkokkkokkok ( TNPUT DATA ) sokskokokskokokkokok ko kokok koo ko ok kook K
NB : NUMBER OF PANELS OVER SUBMERGED BODY (MAX=100)
HO : RATIO OF HALF-BREADTH TO DRAFT (=B/2/D)
SIGMA: SECTIONAL AREA RATIO (=8/B/D)
OGD : CENTER OF GRAVITY / DRAFT =0G/D

KZZB : GYRATIONAL RADIUS / HALF-BREADTH =KZZ/(B/2)

AKB : NONDIMENSIONAL WAVENUMBER =WxW/G*(B/2)
ok ok K K oK oK oK K oK oK oK K ok oK ok K ok ok ok 3 K oK oK oK 3K K 3 oK oK K K oK ok oK K ok ok ok K ok ok ok K ok ok ok K K

READ(5, %) NB,HO,SIGMA
WRITE(6,600) NB,HO,SIGMA
0GD =0.05D0
KZZB=0.35D0

NT=NB+3
CALL OFFSET(NB,NT,HO,SIGMA,OGD,KZZB,NPRINT)
I I I o
READ(5,* ,END=9) AKB
/
CALL SOLVE (NB,NT,AKB)
CALL KOCHIN(NB,AKB,IPRINT)
CALL FORCE (NB,AKB,IPRINT)
CALL MOTION(AKB,IPRINT)
CALL TRCOEF (AKB,IPRINT)
/
GOTO 1
STOP
FORMAT(//14X,48(’ %)

/19X,°2-D RADIATION AND DIFFRACTION PROBLEMS’,
/19%,° OF A GENERAL-SHAPED 2-D BODY’,
/19X,° BY INTEGRAL-EQUATION METHOD’,/14X,48(’*’),

//15X,’NUMBER OF PANELS OVER WHOLE BODY (NB)=’,I4,
/15X, HALF-BEAM TO DRAFT RATIO HO(=B/2/D)=’,F8.4,
/15X, ’SECTIONAL AREA RATIO SIGMA(=S/B/D)=’,F8.4/)

END

OFFSET DATA FOR THE LEWIS FORM SHIP
THIS SUBROUTINE ASSUMES THE BODY GEOMETRY TO BE SYMMETRIC

SUBROUTINE OFFSET(NB,NT,HO,SIGMA,0GD,KZZB,IPRINT)
IMPLICIT DOUBLE PRECISION (A-H,K,0-Z)

PARAMETER (MX=105,NP=100,NQ=101)

COMMON /PAI/ PI,PIO5,PI2

COMMON /MDT/ CMAS,C22,0G,KZZ,GM

COMMON /ELM/ XP(MX),YP(MX),XQ(NQ),YQ(NQ)
COMMON /VN2/ VN(3,NP)
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IAD=NT-NB
/

RSUB=(HO+1.0D0) **2+8.0D0*HO* (1.0D0-4.0D0*SIGMA/PI)
AMD =0.25D0*(3.0D0O* (HO+1.0D0)-DSQRT (RSUB) )

A1 =0.5D0*(HO-1.0D0)/AMD
A3 =0.5D0* (HO+1.0DO)/AMD-1.0D0O
AMB =AMD/HO

/

DTH=PI/DFLOAT (NB)

DO 100 J=1,NB+1
TH=PI05-DTH*DFLOAT (J-1)

XQ(J)=AMB* ((1.0DO+A1)*DSIN(TH)-A3+*DSIN(3.0DO*TH))
YQ(J)=AMB* ((1.0D0-A1)*DCOS (TH) +A3+DCOS (3.0D0*TH))

100 CONTINUE
/

DO 110 I=1,NB
XP(I)=(XQ(I+1)+XQ(I))/2.0DO
YP(I)=(YQ(I+1)+YQ(I))/2.0DO
DX=XQ(I+1)-XQ(I)
DY=YQ(I+1)-YQ(I)
D =DSQRT (DX*DX+DY*DY)
VN(1,I)= DY/D
VN(2,I)=-DX/D
VN(3,I)=XP(I)*VN(2,I)-YP(I)*VN(1,I)
110 CONTINUE
/
IF(IAD.EQ.0) GOTO 130
DS=(XQ(1)-XQ(NB+1)) /DFLOAT (IAD+1)
DO 120 I=1,IAD
II=NB+I
XP(II)=XQ(NB+1)+DS*DFLOAT(I)
YP(II)=0.0DO
120 CONTINUE

/
130 CMAS=2.0DO0*SIGMA/HO
€22 =(XQ(1)-XQ(NB+1))/XQ(1)

0G =0GD/HO
KZZ =KZZB
SUM=0.0D0

DO 200 J=1,NB
S1 =YQ(J+1)-YQ(J)

S2 =XQ(J )*(2.0D0*YQ(J )+YQ(J+1))

S3 =XQ(J+1)*(2.0D0*YQ(J+1)+YQ(J
SUM=SUM+S1* (S2+S3)
200 CONTINUE
0BM=SUM/6.0D0
GM =(2.0D0/3.0D0-0BM) /CMAS+0G
/

WRITE(6,600) CMAS,C22,0GD,KZZ,GM
IF(IPRINT.EQ.O) RETURN
WRITE(6,610)

DO 300 J=1,NB+1

))

300 WRITE(6,620) J,XQ(J),YQ(J),XP(J),YP(J)

600 FORMAT(

R

15X, ’NONDIMENSIONAL MASS-------
/15X, ’HEAVE RESTORING FORCE COEFF--AW/(B/2)=’,F8.5,
/15X, ’CENTER OF GRAVITY----------
/15X, ’GYRATIONAL RADIUS----------
/15X, ’METACENTRIC HEIGHT---------

S/(B/2)*x2=",F8.5,

------ 0G/D=",F8.5,
-KZz/(B/2)=’,F8.5,
--GM/(B/2)=’,F8.5/)

610 FORMAT(/15X, ’***** CHECK OF ORDINATES **x%x’

& /8X%,’J’,6X,°XQ’,8X,’YQ’,10X, XP’
620 FORMAT(7X,I2,1X,2F10.5,2X,2F10.5)

RETURN

END

3k 3K 3K 3k 3k 5k %k >k 3k 3k 3k 3k 5k %k 3k 3k 3k 3k 3k %k %k 3k 5K 3k 3k 5k %k 3k 3k 3k 3k 3k %k >k >k 3k 3k 3k 5k %k 3k 3k 3k 5k 5k %k >k 3k 5k 3k 5k %k %k 3k 3k 3k 5k %k %k >k 3 3k 3k %k %k Xk >k 3k k

*% INFLUENCE COEFFICIENTS DUE TO LOG-TYPE SINGULAR TERMS
stk sk ok ok ok ke e ok sk ok ok sk sk sk sk sk sk sk sk sk sk ok sk ok sk sk sk sk sk ok sk ke ke s s sk ok sk ok sk sk sk sk sk sk sk sk sk sk ok ok sk sk sk sk sk sk ok sk ok ok sk ok sk ok sk ok

SUBROUTINE SDSUB(XPI,YPI,NB,SS,DD)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)

PARAMETER (MX=105,NQ=101)
DIMENSION SS(NB),DD(NB)

,8X,’YP?)

COMMON /ELM/ XP(MX),YP(MX),XQ(NQ),YQ(NQ)

DO 100 J=1,NB
SWA=0.0DO
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C

200

10

100

DWA=0.0DO

IF(DABS(YPI).LT.1.0D-8) GOTO 10
DX=XQ(J+1)-XQ(J)
DY=YQ(J+1)-YQ(J)
D =DSQRT (DX*DX+DY*DY)
CDEL=DX/D
SDEL=DY/D

XA=XPI-XQ(J )

XB=XPI-XQ(J+1)

/

SL=-1.0D0
DO 200 L=1,2
SL=-SL
YA=SL*YPI-YQ(J )
YB=SL*YPI-YQ(J+1)
SUBA=XA*CDEL+YA*SDEL
SUBB=XB*CDEL+YB*SDEL
COEF=XA*xSDEL-YA*CDEL
ABSC=DABS (COEF)
WA1=0.5D0* (SUBB*DLOG (XB*XB+YB*YB) -SUBA*DLOG (XA*XA+YA*YA))
IF(ABSC.LT.1.0D-10) THEN
WA2=0.0DO
WA3=0.0DO
ELSE
WA2=ABSC* (DATAN (SUBB/ABSC) -DATAN (SUBA/ABSC) )
WA3=WA2/COEF
ENDIF
SWA=SWA- (WA1+WA2) *SL
DWA=DWA+ WA3*SL
CONTINUE
/

SS(J)=SWA
DD (J)=DWA
CONTINUE
RETURN
END

3k 3K 3K 3k 3k 3k %k K 3K 5k 3k 3k 5k %k 5k 3k 3k 3k 3k %k %k 3k 5k 3k 3k 5k %k 5k 3k 3k 3k 3k %k K 5k 3k 3k 3k 5k %k >k 5k 3k 5k 5k %k >k >k 5k 3k 3k 5k % 5k 3k 3k 5k %k % >k >k >k 3k %k %k kK 3k k

* %

INFLUENCE COEFFICIENTS DUE TO FREE-SURFACE WAVE TERM

* %
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100

SUBROUTINE SDCAL(XPI,YPI,AK,NB,ZS,ZD)
IMPLICIT DOUBLE PRECISION (A-H,0-Y)
IMPLICIT COMPLEX*16 (Z)

PARAMETER (MX=105,NQ=101)

DIMENSION ZS(NB),ZD(NB)

COMMON /PAI/ PI,PIO5,PI2

COMMON /ELM/ XP(MX),YP(MX),XQ(NQ),YQ(NQ)

Z0=(0.0D0,0.0D0)
ZI=(0.0D0,1.0D0)
DO 100 J=1,NB
78(J)=Z0
ZD(J)=Z0
CONTINUE

C+—+—+-+-+-+-+-+ INITIALIZATION +-+-+-+-+—-+—+—+

XX=XPI-XQ(1)

YY=YPI+YQ(1)

SGNX=DSIGN(1.0DO,XX)

IF(DABS(XX) .LT.1.0D-10) SGNX=0.0DO

XE=-AK*YY

YE=-AK*DABS (XX)

ZETA=DCMPLX (XE, YE)

CALL EZE1Z(XE,YE,EC,ES)
RFL1=0.5D0*DLOG (XX**2+YY**2)
RFT1=DATAN2(YY,XX)

ZFC1= EC-PI*CDEXP(ZETA)*ZI

ZFS1=(-ES+PI*CDEXP (ZETA) ) *SGNX

DO 200 J=1,NB

XX=XPI-XQ(J+1)

YY=YPI+YQ(J+1)

SGNX=DSIGN(1.0D0,XX)

IF (DABS(XX) .LT.1.0D-10) SGNX=0.0DO
XE=-AK*YY
YE=-AK*DABS (XX)
ZETA=DCMPLX (XE, YE)
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200

CALL EZE1Z(XE,YE,EC,ES)
RFL2=0.5D0*DLOG (XX**2+YY**2)
RFT2=DATAN2(YY,XX)

ZFC2= EC-PI*CDEXP(ZETA)*ZI
ZF32=(-ES+PI*CDEXP (ZETA) ) *SGNX
/

DX=XQ(J+1)-XQ(J)

DY=YQ(J+1)-YQ(J)

D =DSQRT (DX*DX+DY*DY)

CDEL=DX/D

SDEL=DY/D

SUB =SDEL* (RFL2-RFL1)+CDEL* (RFT2-RFT1)
ZSUB=SDEL* (ZFC2-ZFC1) +CDEL* (ZFS2-ZFS1)
7S (J)=ZS(J)+2.0D0/AK* (SUB+ZSUB)
ZD(J)=ZD(J)+2.0D0* (ZFS2-ZFS1)
RFL1=RFL2

RFT1=RFT2

ZFC1=ZFC2

ZFS1=ZFS2

CONTINUE

RETURN

END

5 3 oK oK K K 3 oK oK oK K 3 ok oK oK K o ok ok oK K 3 ok ok oK K ok ok oK K ok ok oK K K ok ok oK K K 3k ok oK K K 3 ok ok K K sk ok ok ok K s ok ok Kk ok ok Kk ok

X%
k%

SOLUTION OF INTEGRAL EQUATION FOR THE VELOCITY POTENTIAL *%
INCLUDING ELIMINATION OF IRREGULAR FREQUENCIES **
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20
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40

50

30

120

100

SUBROUTINE SOLVE(NB,NT,AK)
IMPLICIT DOUBLE PRECISION (A-H,0-Y)
IMPLICIT COMPLEX*16 (Z)

PARAMETER (MX=105,NP=100,NQ=101,NEQ=4,SML=1.0D-15)
DIMENSION ZSA(MX,NP),ZSB(MX,NEQ),ZAA(NP,NP),ZBB(NP,NEQ)
DIMENSION ZS(NP),ZD(NP),SS(NP),DD(NP)

COMMON /PAI/ PI,PIO5,PI2

COMMON /ELM/ XP(MX),YP(MX),XQ(NQ),YQ(NQ)
COMMON /VN2/ VN(3,NP)

COMMON /FAI/ ZFI(4,NP)

Z0=(0.0D0,0.0D0)
ZI=(0.0D0,1.0D0)
DO 10 I=1,NB

DO 20 J=1,NB
ZAA(T, J)=2Z0

DO 10 M=1,NEQ
ZBB(I,M)=Z0

CONTINUE

/

DO 30 I=1,NT

DO 40 J=1,NB

ZSA(I,J)=Z0

DO 50 M=1,NEQ

ZSB(I,M)=Z0

IF(I.LE.NB) ZSA(I,I)=DCMPLX(PI,0.0DO)
CONTINUE

DO 100 I=1,NT

CALL SDSUB(XP(I),YP(I),NB,SS,DD)

CALL SDCAL(XP(I),YP(I),AX,NB,ZS,ZD)

+-+—+—-+-+—+—+-( LEFT-HAND SIDE )-+-+—-+-+—+—+—+—+—+—+—+
DO 110 J=1,NB

ZSA(I,J)=ZSA(I,J)+DD(J)+ZD(J)

CONTINUE

+-+—+-+-+-+—+-( RIGHT-HAND SIDE )+-+—-+-+-+—+—+—-+—+—+-+
DO 120 M=1,3

DO 120 J=1,NB

ZSB(I,M)=ZSB(I,M)+(SS(J)+ZS(J))*VN(M,J)

CONTINUE

ZSB(I,4)=PI2*CDEXP (-AK* (YP(I)-ZI*XP(I)))

CONTINUE

++++++++++++ LEAST-SQUARES METHOD ++++++++++++++++

DO 200 I=1,NB
DO 210 J=1,NB
DO 210 K=1,NT
ZAA(T,J)=ZAA(I,J)+ZSA(K,I)*ZSA(K,J)

210 CONTINUE
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220
200
++++

600
&

250

*okokk
*%
*%
*ok kK

10

110

100

200

++++

DO 220 M=1,NEQ

DO 220 K=1,NT
ZBB(I,M)=ZBB(I,M)+ZSA(K,I)*ZSB(K,M)

CONTINUE

CONTINUE
A

CALL ZSWEEP(NP,NB,ZAA,ZBB,NEQ,SML)

IF(CDABS(ZAA(1,1)).LT.SML) WRITE(6,600)

FORMAT(//10X,’>*** ERROR: ZSWEEP IN SUBROUTINE (SOLVE)’,
> WAS ABNORMALLY DONE.’,/23X,’PLEASE CHECK!’///)

DO 250 M=1,NEQ

DO 250 I=1,NB

ZFI(M,I)=ZBB(I,M)

CONTINUE

RETURN

END

3k 3k >k 5k 3k >k >k 3k 5k >k 5k 5k 5k 3k 3k 5k >k >k 5k 5k 3k 5k 3k >k 5k 5k 5k >k 5k 5k >k 5k 5k 5k >k 5k 5k 5k >k >k >k >k 5k 3k >k >k 5k 5k >k 5k >k >k >k 5k >k >k >k >k >k *k >k >k kK k
CALCULATION OF KOCHIN FUNCTION *ok

WHICH WILL BE USED FOR NUMERICAL CHECK OF VARIOUS RELATIONS  **

3k 3k 3k 5k 3k >k 3k 3k 3k >k 5k 3k 5k 3k 3k >k >k 5k 5k 5k 3k 5k >k 5k 5k 5k 5k >k 5k 3k >k 5k 5k 5k 5k 5k 5k >k >k >k >k >k 5k >k >k >k 5k 5k >k 5k >k >k %k 5k >k >k >k >k >k *k >k >k k Kk k

SUBROUTINE KOCHIN(NB,AK,IPRINT)

IMPLICIT DOUBLE PRECISION (A-H,0-Y)

IMPLICIT COMPLEX*16 (Z)

PARAMETER (MX=105,NP=100,NQ=101)
DIMENSION ABAR(3),EPS(3)

COMMON /PAI/ PI,PIO5,PI2

COMMON /ELM/ XP(MX),YP(MX),XQ(NQ),YQ(NQ)
COMMON /VN2/ VN(3,NP)

COMMON /FAI/ ZFI(4,NP)

COMMON /KCH/ ZHA(4),ZHB(4)

Z0=(0.0D0,0.0D0)
ZI1=(0.0D0,1.0D0)
DO 10 M=1,4
ZHA(M)=2Z0
ZHB(M)=Z0
CONTINUE

/

ZETA=-AK*(YQ(1)-ZI*XQ(1))
ZEOLD=CDEXP (ZETA)

DO 100 J=1,NB
DX=XQ(J+1)-XQ(J)
DY=YQ(J+1)-YQ(J)

D =DSQRT (DX*DX+DY*DY)
CDEL=DX/D

SDEL=DY/D

ZSUB=- (SDEL+ZI*CDEL) /AK
ZETA=-AK* (YQ(J+1)-ZI*XQ(J+1))
ZENEW=CDEXP (ZETA)

ZFHA =ZSUB* (ZENEW-ZEOLD)
ZFGA =-ZI*(ZENEW-ZEOLD)
ZFHB =DCONJG (ZFHA)

ZFGB =DCONJG (ZFGA)
ZEOLD=ZENEW

/

DO 110 M=1,3

ZHA (M)=ZHA (M) +VN (M, J) *ZFHA-ZFI (M, J) *ZFGA
ZHB (M)=ZHB (M) +VN (M, J) *ZFHB-ZFI (M, J) *ZFGB
CONTINUE

ZHA (4)=ZHA(4)-ZFI1(4,J)*ZFGA
ZHB(4)=ZHB(4)-ZFI(4,J)*ZFGB

CONTINUE

/

DO 200 I=1,3

ABAR (I)=AK*CDABS (ZHA(I))

EPS (I)=DATAN2(-DREAL(ZHA(I)),DIMAG(ZHA(I)))
CONTINUE

ZSYM=CDEXP (ZI*EPS(2))*DCOS (EPS(2))*ZI
ZANT=CDEXP (ZI*EPS (1)) *DSIN(EPS(1))
ZHRA=ZSYM-ZANT

ZHRB=ZSYM+ZANT

++++++++++++++++( PRINT OUT FOR CHECK )+++++++++++++++t+tttt+t++
IF(IPRINT.EQ.O) RETURN
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C
¢

RTD=180.0D0/PI

WRITE(6,600) AK, (ABAR(I),EPS(I)*RTD,I=1,3)

WRITE(6,610) ZHA(4)
600 FORMAT (/6X, > *kkkkk*
& °’KxB/2=’,F8.4,’ )
& /9X,’SWAY: ’,E12
& /9%,’ROLL: ’,E12
610 FORMAT(/27X,’DIRECT

,ZHRA,ZHB(4) ,ZHRB

KOCHIN FUNCTION & ACCURACY CHECK ( ’,
sokkokkkk?  //5X,2(15X, A-BAR’ ,6X, ’EPS(DEG)’),
.5,2X,F9.3,4X,’HEAVE: ’,E12.5,2X,F9.3,
.5,2X,F9.3)

CALCULATION’ ,7X,’COMPUTED FROM RADIATION’,

& /5X,’DIFFRACTION (+) ’,2E13.4,2X,2E13.4,
& /5X,’DIFFRACTION (-) ’,2E13.4,2X,2E13.4)
RETURN

END

stk kK ok ok ko ok ok ok ok ok ok ok ok ok sk ok sk ok K ok ok kK K Kk ko sk ok ok ok ok ok ok ok sk sk sk sk sk ok sk ok ok kK Kk ko ok ok ok sk ok ok ok
*%  PRESSURE INTEGRAL FOR ADDED-MASS, DAMPING & EXCITING FORCES *%
*% INCLUDING ACCURACY CHECK OF THE ENERGY CONSERVATION *%
*% AND HASKIND-NEWMAN RELATION **
ek ke ok ok ok sk ok ok ok ok ok ok ok ok ok sk sk sk sk sk sk ok ok ok ok ko ko ok ok ok ok ok ok ok ok ok sk sk sk sk sk sk sk sk ok ok ok ok ko ok ok sk ok ok ok ok ok

SUBROUTINE FORCE(NB,AK,IPRINT)

IMPLICIT DOUBLE PRECISION (A-H,0-Y)

IMPLICIT COMPLEX*16 (Z)

PARAMETER (MX=105,NP=100,NQ=101)
DIMENSION A(3,3),B(3,3),BE(3,3),EAMP(3) ,EPHA(3)

COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

/PAI/
/ELM/
/VN2/
/FAI/
/KCH/
/FCE/

PI,PIO5,PI2
XP(MX) ,YP(MX) ,XQ(NQ),YQ(NQ)
VN(3,NP)

ZFI(4,NP)

ZHA(4) ,ZHB(4)

ZAB(3,3) ,ZEXF(3)

Z0=(0.0D0,0.0D0)
ZI=(0.0D0,1.0D0)
DO 10 I=1,3

DO 11 J=1,3
ZAB(I, J)=Z0
ZEXF( I)=Z0
CONTINUE

11
10

DO 100 K=1,NB

DX=XQ(K+1)-XQ(K)

DY=YQ(K+1)-YQ(K)

D =DSQRT (DX*DX+DY*DY)

DO 110 I=1,3

DO 120 J=1,3
ZAB(I,J)=ZAB(I,J)-ZFI(J,K)*VN(I,K)*D
ZEXF(I )=ZEXF(I )+ZFI(4,K)*VN(I,K)*D
CONTINUE

CONTINUE

/

120

110
100

DO 150 I=1,3

DO 160 J=1,3

A (I,J)= DREAL(ZAB(I,J))

B (I,J)=-DIMAG(ZAB(I,J))

BE(I,J)=0.5D0*(ZHA(I)*DCONJG(ZHA (J))+ZHB(I)*DCONJG(ZHB(J)))
CONTINUE

EAMP (I)=CDABS (ZEXF (I))

EPHA (I)=DATAN2(DIMAG(ZEXF (I)) ,DREAL(ZEXF(I)))*180.0D0/PI
CONTINUE

160

150

++++++++++++++++++++++++++( PRINT OUT )+++++++++++++++++++++++++++++
IF(IPRINT.EQ.0) RETURN

WRITE(6,600) NB,AK

DO 300 I=1,3

C1=B (I,I)

C2=BE(I,I)

CHK=DABS (C1-C2) /DABS (C1+C2) *200 . 0DO
WRITE(6,610) I,I,A(I,I),B(I,I),BE(I,I),CHK
WRITE(6,615)

DO 310 I=1,3

DO 310 J=1,3

IF(I.EQ.J) GOTO 310

WRITE(6,610) I,J,A(I,J),B(I,J),BE(I,J)
CONTINUE

WRITE(6,630)

DO 320 I=1,3

WRITE(6,640) I,ZEXF(I),ZHA(I),EAMP(I),EPHA(I)

300

310
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320 CONTINUE
/

600 FORMAT(//5X,’+++++++ ADDED-MASS & DAMPING COEFF. ( ’,

& ’NB=’,I3,’, K¥B/2=’,F8.4,’ ) +++++++’ //10X,
& ’T J’,8X,’ADDED-MASS’,6X, ’DAMPING’,9X,
& ’ENERGY’,8X, ’ERROR (%) ’)

610 FORMAT(8X,’(’,I2,’,7,I2,%)°,3X,E13.4,3(2X,E13.4))
615 FORMAT(’ )
620 FORMAT(8X,’(’,I2,’,’,I2,’)°,3X,E13.4,2(2X,E13.4))
630 FORMAT(//5X,’+++++ WAVE EXCITING FORCE +++++’,
& //17X,’PRESSURE INTEGRAL’,13X,’HASKIND-NEWMAN’,/9X,’J’,
& 2(7X,’REAL’,9X,’IMAG’,4X),7X,’AMP’,5X, ’PHASE(DEG) ’)
640 FORMAT(8X,I2,2E13.4,2X,2E13.4,3X,E11.4,2X,F9.3)
RETURN
END
3k 3k 5k 3k >k >k 5k 5k >k 5k 5k 5k >k 5k 5k 5k >k 5k 5k >k 5k 5k 5k >k 5k 5k >k 5k 5k 5k 5k 5k 5k >k 5k 5k 5k >k 5k 5k 5k 5k 5k >k >k 5k 5k >k 5k 5k %k >k 5k 5k >k >k >k 5k %k >k %k >k *k >k k k Kk k k
ok CALCULATION OF WAVE-INDUCED MOTIONS (SWAY, HEAVE & ROLL) ok
*ok THE OUTPUT IS ABOUT THE CENTER OF GRAVITY ok
3k 3k 5k 3k >k >k 5k 3k >k 5k 5k 5k 5k 5k 5k 5k >k 5k 5k >k 5k 3k 5k >k 5k 5k >k 5k 5k 5k 5k 5k 5k >k >k 5k 5k 5k 5k >k >k >k 5k >k >k >k 5k >k 5k 5k 5k %k 5k 5k >k >k >k >k %k >k >k >k *k >k >k k >k k k
SUBROUTINE MOTION(AK,IPRINT)
IMPLICIT DOUBLE PRECISION (A-H,K,0-Y)
IMPLICIT COMPLEX*16 (Z)

DIMENSION ZAA(3,3),ZBB(3)
DIMENSION AMPG(3),PHAG(3),ZMTNG(3)
COMMON /PAI/ PI,PIO5,PI2

COMMON /MDT/ CMAS,C22,0G,KZZ,GM
COMMON /FCE/ ZAB(3,3),ZEXF(3)
COMMON /MTN/ ZMTNO(3)

SML=1.0D-14

/

ZAA(1,1)=-AK*(CMAS+ZAB(1,1))

ZAA(1,2)=-AK* ZAB(1,2)

ZAA(1,3)=-AK*(ZAB(1,3)+0G*ZAB(1,1))

ZBB(1 )= ZEXF(1)

/

ZAA(2,1)=-AK* ZAB(2,1)

ZAA(2,2)=-AK* (CMAS+ZAB(2,2))+C22

ZAA(2,3)=-AK*(ZAB(2,3)+0G*ZAB(2,1))

ZBB(2 )= ZEXF(2)

/

ZAA(3,1)=-AK*(ZAB(3,1)+0G*ZAB(1,1))

ZAA(3,2)=-AK*(ZAB(3,2)+0G*ZAB(1,2))

ZAA(3,3)=-AK* (CMAS*KZZ**2+ZAB(3,3)+0G*ZAB(1,3)
& +0G* (ZAB(3,1)+0G*ZAB(1,1)))+CMAS*GM

ZBB(3 )= ZEXF(3)+0G*ZEXF(1)

/

B e o e e it e e e e e e e e e S st
CALL ZSWEEP(3,3,ZAA,ZBB,1,SML)
IF(CDABS(ZAA(1,1)).LT.SML) WRITE(6,600)

600 FORMAT(///10X,’+++ ERROR: ZSWEEP IN (MOTION) +++°///)

+—t—t—t—F—F =ttt =ttt —t—t—F—F—F—F—F—F—F—F—F—F ==t —F—+—+—+
DO 100 I=1,3
ZMTNG(I)=ZBB(I)

100 CONTINUE
ZMTNO (1) =ZMTNG (1) +0G*ZMTNG (3)

ZMTNO (2)=ZMTNG(2)
ZMTNO (3)=ZMTNG(3)
/

DO 200 I=1,3
AMPG (I)=CDABS (ZMTNG(I))
IF(I.EQ.3) AMPG(I)=AMPG(I)/AK
PHAG (I)=DATAN2 (DIMAG(ZMTNG(I)) ,DREAL (ZMTNG(I)))*180.0D0/PI
200 CONTINUE
++++++++++++++++++++++++++( PRINT QUT )++++++++++++++++++++++++++++++
IF(IPRINT.EQ.0) RETURN
WRITE( 6,610) AK, (AMPG(I),PHAG(I),I=1,3)
610 FORMAT(//5X,’+++++ MOTIONS ABOUT °’G’’ FOR K*B/2=’,F7.3,
&  +++++’,/20X,°AMP.’°,7X,’PHASE’,/9X,’SWAY °’,El11.4,
& 2X,F9.3,’ (DEG)’,/9X,’HEAVE °’,E11.4,2X,F9.3,’ (DEG)’,
& /9%,’ROLL ’,E11.4,2X,F9.3,’ (DEG)’)
RETURN
END
5k 3k 5k >k 3k 3k >k 3k 5k ok 3k 5k 5k 3k 5k 3k 3k 3k 3k 5k >k 3k 5k >k 3k 5k ok 3k 5k 3k 5k >k 3k 5k >k 3k 5k >k 3k >k ok 3k 5k 5k 3k >k 3k 5k >k 3k 5k >k 3k >k >k 3k >k >k 5k >k 3k >k >k %k 5k >k %k >k k
*ok TRANSMISSION AND REFLECTION WAVE COEFFICIENTS *ok
ok INCLUDING NUMERICAL CHECK OF ENERGY RELATION *ok
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SUBROUTINE TRCOEF (AK,IPRINT)
IMPLICIT DOUBLE PRECISION (A-H,0-Y)
IMPLICIT COMPLEX*16 (Z)

COMMON /KCH/ ZHA(4),ZHB(4)
COMMON /MTN/ ZMTN(3)

Z1=(0.0D0,1.0D0)
/

ZTDIF=1.0DO+ZI*ZHB(4)
ZRDIF=ZI*ZHA(4)

TT  =CDABS(ZTDIF)
RR  =CDABS(ZRDIF)
CDIF =TT**2+RR**2

/

ZTFRE=ZTDIF

ZRFRE=ZRDIF

S=1.0D0

DO 100 I=1,3

S=-S

ZTFRE=ZTFRE-ZI*AK*ZMTN(I)*ZHB(I)

ZRFRE=ZRFRE-ZI*AK*ZMTN (I)*ZHA(I)
100 CONTINUE

CT  =CDABS(ZTFRE)

CR  =CDABS(ZRFRE)

CFRE =CT**2+CR**2

C ++++++++++++++++++++++++++ ( PRINT OUT ) +++++++++++++++++++ -+ +++
IF(IPRINT.EQ.O) RETURN

WRITE(6,600) AK,TT,RR,CDIF,CT,CR,CFRE
600 FORMAT(//5X, > ****xx*x TRANSMISSION & REFLECTION COEFF. ( Kx*’,
& B/2=’,F8.4,° ) *kkxx*x’ /29X,’CT’,12X,’CR’,8X, CT**2+CR**2’,
& /10X, ’DIFFRACTION’ ,2X,E11.4,3X,E11.4,3X,E12.5,
& /10X,’MOTION FREE’,2X,E11.4,3X,E11.4,3X,E12.5)
RETURN
END
G skskook sk ok ok 3k 5k ok 3k 5k ok 3k 5k 3k 5k 5K 3k 3k 5k 3k 5k 5k 3k 5k 5k 3k 5k 3k 3k 5k 3k 5K 5k 3k 5k >k 3k 3k 3k 3k 5k 3k 5K >k 3k 5k >k 3k 3k >k 3k >k >k 3k >k >k 3k >k 3k 5k >k 3k >k %k 3k >k %k k
C *x SUBROUTINE OF THE EXPONENTIAL INTEGRAL *%
G sksk ok 3k ok ok 3k 5k ok 3k 5k ok 3k >k 3k 3k >k 3k 3k ok 3k 5k ok 3K 5k 5k 3k 5k 3k 3k >k 3k 5k >k 3k 5k >k 3K 5k >k 3k >k 3k 5K >k 3k 5k >k 3k 5k >k 3k >k >k 3k >k >k 3k >k 3k 3k >k 3k >k %k 3k >k %k k
SUBROUTINE EZE1Z(XX,YY,EC,ES)
IMPLICIT DOUBLE PRECISION (A-H,0-Y)
IMPLICIT COMPLEXx*16 (Z)
DOUBLE PRECISION NEW
C
DATA PI,GAMMA/3.14159265358979D0,0.5772156649015D0/
C
X =XX
Y =DABS(YY)
R =DSQRT (X*X+Y*Y)
C =DATAN2(Y,X)
C
IF(R.GT.25.0D0) GO TO 30
IF(X.GT.0.0DO.AND.R.GT.8.0D0) GO TO 20
IF(X.LE.0.0DO.AND.Y.GT.10.0D0) GO TO 20
C+++++++++++++ SERIES EXPANSION +++++++++++++++++++++++++++

ER=-GAMMA-DLOG (R)+R*DC0S (C)
EI=-C+R*DSIN(C)
SB=-R
DO 100 N=2,100
FN=DFLOAT (N)
CN=C*FN
SB=-SB*R* (FN-1.0D0) /FN/FN
ER=ER-SB*DCOS (CN)
EI=EI-SB*DSIN(CN)
IF(N.EQ.100) GO TO 1
IF(EI.EQ.0.0D0) GO TO 10
IF(DABS(SB/EI) .LE.1.0D-8) GO TO 10
GO TO 100
10  IF(DABS(SB/ER).LE.1.0D-8) GO TO 1
100  CONTINUE
1 CC=DEXP (X)*DCOS(Y)
SS=DEXP (X) *DSIN(Y)
EC=CC*ER-SS*EI
ES=CC+EI+SS*ER
IF(YY.LT.0.0DO) ES=-ES
RETURN
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C+++++++++++++ CONTINUED FRACTION +++++++++++++++ttttttttt+

20

200

Z =DCMPLX(X,Y)
Z1=(1.0D0,0.0D0)
ZSUB=(10.0D0,0.0D0)
ZS =Z+ZSUB/(Z1+ZSUB/Z)
DO 200 J=1,9
ZSUB=DCMPLX (DFLOAT(10-J) ,0.0D0)
7ZS =Z+ZSUB/(Z1+ZSUB/ZS)
CONTINUE
ZSUB=Z1/ZS
EC=DREAL (ZSUB)
ES=DIMAG (ZSUB)
IF(YY.LT.0.0DO) ES=-ES
RETURN

C++++++++++++ ASYMPTOTIC EXPANSION +++++++++t+ttttttttttttt

QaQaQ

30

31

32

300
33

OLD=-1.0DO/R

EXC=0LD*DC0S (C)

EXS=0LD*DSIN(C)
DO 300 N=2,100
NEW=-0LD/R*DFLOAT (N-1)
IF(EXS.EQ.0.0D0) GO TO 31
IF (DABS(NEW/EXS) .LE.1.0D-8) GO TO 31
GO TO 32
IF(EXC.EQ.0.0D0) GO TO 32
IF (DABS (NEW/EXC) .LE.1.0D-8) GO TO 33
IF(DABS(OLD) .LT.DABS(NEW)) GO TO 33
OLD=NEW
EXC=EXC+0LD*DCOS (C*DFLOAT (N))
EXS=EXS+0LD*DSIN (C*DFLOAT(N))
CONTINUE

EC=-EXC

ES= EXS

IF(DABS(PI-DABS(C)).LT.1.0D-10) ES=-PI*DEXP(X)

IF(YY.LT.0.0DO) ES=-ES

RETURN

END

3k 3K 3K 3k 3k 3k %k K 3K 5k 3k 3k 5k %k 5k 3k 3k 3k 3k %k %k 3k 5k 3k 3k 5k %k 5k 3k 3k 3k 3k %k K 5k 3k 3k 3k 5k %k >k 5k 3k 5k 5k %k >k >k 5k 3k 3k 5k % 5k 3k 3k 5k %k % >k >k >k 3k %k %k kK 3k k

* %

SIMPLE GAUSS SWEEPING METHOD FOR SOLVING COMPLEX MATRIX

k%

35 3 oK oK K K K oK oK K K o ok ok oK K ok ok oK K ok ok oK K 3 ok oK oK K 3 ok oK oK 3 3 oK oK oK 3 K oK ok oK K K o ok ok K K o ok ok K K ok ok K K ok ok Kk ok

SUBROUTINE ZSWEEP(NDIM,N,ZA,ZB,NEQ,EPS)
IMPLICIT DOUBLE PRECISION (A-H,0-Y)
IMPLICIT COMPLEX*16 (Z)

DIMENSION ZA(NDIM,NDIM),ZB(NDIM,NEQ)
DO 5 K=1,N
P=0.0D0
DO 1 I=K,N
IF(P.GE.CDABS(ZA(I,K))) GO TO 1
P=CDABS(ZA(I,K))
IP=I
CONTINUE
IF(P.LE.EPS) GO TO 6
IF(IP.EQ.X) GO TO 7
DO 2 J=K,N
ZW=ZA (X, J)
ZA(XK,J)=ZA(IP,J)
ZA(IP,J)=2ZW
DO 20 J=1,NEQ
ZW=ZB(K,J)
ZB(K,J)=ZB(IP,J)
ZB(IP,J)=2ZW
CONTINUE
IF(X.EQ.N) GO TO 70
DO 3 J=K+1,N
ZA(K,J)=ZA(K,J)/ZA(K,K)
DO 30 J=1,NEQ
ZB(K,J)=ZB(X,J) /ZA(K,K)
DO 5 I=1,N
IF(I.EQ.X) GO TO 5
IF(K.EQ.N) GO TO 40
DO 4 J=K+1,N
ZA(I,J)=ZA(I,J)-ZA(I,K)*ZA(K,J)
CONTINUE
DO 45 J=1,NEQ
ZB(1,J)=ZB(I,J)-ZA(I,K)*ZB(X,J)
CONTINUE
ZA(1,1)=(1.0D0,0.0D0)
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RETURN
6 ZA(1,1)=DCMPLX(DABS(P),0.0D0)
RETURN
END
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$ chk

40 1.0 0.8
3k 3k 3k 3k >k sk >k 3k 3k 3k 3k 3k 3k sk >k >k 3k 3k 3k Sk 3k sk >k sk >k 3k 3k 3k 3k sk >k >k >k >k Sk 3k ok ok ok ok >k >k ok sk k sk ok ok
2-D RADIATION AND DIFFRACTION PROBLEMS
OF A GENERAL-SHAPED 2-D BODY
BY INTEGRAL-EQUATION METHOD
sk sk ok sk ok ok ok ok sk ok ok sk ok sk ok o ok ok sk ok sk sk sk sk ok sk ok s ok o ok sk ok sk ok ok sk ok sk ok ook ook sk ok
NUMBER OF PANELS OVER WHOLE BODY (NB)= 40
HALF-BEAM TO DRAFT RATIO HO(=B/2/D)= 1.0000
SECTIONAL AREA RATIO  SIGMA(=S/B/D)= 0.8000
NONDIMENSIONAL MASS------- S/ (B/2)**2= 1.60000
HEAVE RESTORING FORCE COEFF--AW/(B/2)= 2.00000
CENTER OF GRAVITY------------—-—- 0G/D= 0.05000
GYRATIONAL RADIUS----------- KZZ/(B/2)= 0.35000
METACENTRIC HEIGHT----------- GM/(B/2)= 0.03817
1.0

**xxxkk KOCHIN FUNCTION & ACCURACY CHECK ( K#B/2= 1.0000 ) *¥xkxkxk*

A-BAR EPS (DEG) A-BAR EPS(DEG)
SWAY: 0.10974E+01 -16.048 HEAVE: 0.77236E+00 -25.214
ROLL: 0.18508E-01 163.952
DIRECT CALCULATION COMPUTED FROM RADIATION
DIFFRACTION (+) 0.6511E+00  0.7421E+00 0.6511E+00  0.7421E+00
DIFFRACTION (-) 0.1197E+00  0.8949E+00 0.1197E+00  0.8949E+00

+++++++ ADDED-MASS & DAMPING COEFF. ( NB= 40, K*B/2= 1.0000 ) +++++++

I J ADDED-MASS DAMPING ENERGY ERROR (%)
(1, 1) 0.5831E+00 0.1205E+01 0.1204E+01 0.3517E-01
(2,2 0.9761E+00 0.5969E+00 0.5965E+00 0.5948E-01
(3, 3 0.6037E-03 0.3427E-03 0.3426E-03 0.3604E-01
(1, 2) -0.1839E-15 0.3053E-15 0.2220E-15
(1, 3) -0.6261E-02 -0.2032E-01 -0.2031E-01
(2, 1) -0.5774E-15 0.1730E-15 0.2220E-15
(2, 3 0.1741E-17 -0.3286E-17 -0.9541E-17
(3,1 -0.6258E-02 -0.2032E-01 -0.2031E-01
(3, 2 0.5150E-18 -0.4337E-18 -0.9541E-17

+++++ WAVE EXCITING FORCE +++++

PRESSURE INTEGRAL HASKIND-NEWMAN
J REAL IMAG REAL IMAG AMP
1 0.3035E+00  0.1055E+01 0.3034E+00  0.1055E+01 0.1098E+01
2 0.3292E+00  0.6992E+00 0.3290E+00  0.6988E+00 0.7728E+00
3 -0.5118E-02 -0.1779E-01 -0.5116E-02 -0.1779E-01 0.1852E-01

+++++ MOTIONS ABOUT ’G’ FOR K*B/2= 1.000 +++++

AMP. PHASE

SWAY  0.4378E+00 -76.956 (DEG)
HEAVE 0.9316E+00 -69.197 (DEG)
ROLL  0.1596E+00 -76.956 (DEG)

***xxxk TRANSMISSION & REFLECTION COEFF. ( K+B/2= 1.0000 ) **kx*x*x*
CT CR CT**2+CR**2
DIFFRACTION 0.1593E+00 0.9872E+00 0.10000E+01
MOTION FREE 0.1350E+00 0.9908E+00 0.10000E+01

92

PHASE (DEG)
73.952
64.786

-106.048





