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Preface

On the occasion of my retirement from Osaka University in March 2021, I prepared this
book containing some selected papers from the publications made over the past 35 years of
my research career. These selected papers were reproduced using a template of LATEXand
their original manuscripts kept in my computer, although no digital data exist for the
manuscripts and figures before 1995. These selected papers are expected to be informative
to those researchers who are interested in hydrodynamic interactions of water waves with
floating bodies including ships with forward speed.

My research career started with working on unsteady lifting surfaces related to the
prediction of maneuvering forces on a ship in following waves, when I was a PhD student
of the late Professor Kensaku Nomoto of Osaka University. After moving to RIAM of
Kyushu University, I started working in earnest on seakeeping problems in association
with the late Professor Makoto Ohkusu, particularly by use of the slender ship theory.
Research interests were gradually extended to other topics such as hydroelasticity related
to a very large floating structure (VLFS) and wave interactions among a great number
of floating columns. Further, I have been involved in research on hydrodynamics of a
floating body in a two-layer fluid, strongly nonlinear violent flows using CFD techniques,
the added resistance by means of the unsteady wave-pattern analysis and the unsteady
pressure distribution measured on the whole ship surface, and so on. Looking at the
selected papers, I can see that most of the works include the theory developed, numerical
computations, and experimental results uniquely measured in towing tanks.

These works could be made possible through collaboration with colleagues and co-
workers, particularly Professor Changhong Hu of RIAM, Kyushu University and Professor
Hidetsugu Iwashita of Hiroshima University. I am very grateful for their support and long-
standing relationship. Some papers are co-authored with my former students who finished
master’s or doctoral courses under my supervision at both Kyushu University and Osaka
University. I can recall the pleasant times spent with students whose names appear in
the complete list of all publications at the end of this book. The staff members in my
laboratory have been supporting in many ways my activities in research and education, for
which I am deeply thankful.

Looking back on the past 35 years, the International Workshop on Water Waves and
Floating Bodies (IWWWFB), which was initiated by Professor J.N. Newman of MIT and
Professor D.V. Evans of Bristol University and held annually, was very important for me
to inspire good work of higher quality and to help get acquainted with friends around the
world. I believe there are many friends in the community of IWWWFB, who would find
this book useful because some papers might be difficult to find at present.

March 2021 Masashi Kashiwagi
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Radiation and Diffraction Forces Acting on
an Offshore-Structure Model in a Towing Tank∗

Masashi KASHIWAGI
Research Institute for Applied Mechanics, Kyushu University

Kasuga, Fukuoka 816-8580, Japan

ABSTRACT

The integral-equation method is applied to calculate the effects of tank-wall reflections
upon the hydrodynamic forces acting on a model of offshore structure. The Green function
satisfying the tank-wall boundary condition is provided by first considering an infinite num-
ber of mirror images and then seeking a closed-form analytical expression for the resultant
infinite series. By the analysis of energy and momentum conservation, the formulas are
derived, giving damping coefficient, wave-exciting force, and drift force in terms of only the
Kochin function. Numerical computations are performed for a structure, composed of four
vertical circular cylinders with horizontal base, both in the open sea and in a towing tank.
It is shown that the tank-wall effects on the second-order drift force are greater than those
on the linear forces and resultant motions.

Keywords: Integral-equation method, tank-wall effects, offshore structure, added-mass
and damping, wave-exciting force, drift force.

1. INTRODUCTION

Measurements of the hydrodynamic forces on models of offshore structures such as semisub-
mersibles and tension leg platforms are usually carried out in a towing tank with parallel
side walls. If the tank width is not large enough, we must expect some degree of tank-wall
effects to be included in the results of experiments.

In order to clarify the degree and nature of the effects of tank-wall interference, a number
of theoretical studies have been made. Ohkusu (1975) considered first-order wave forces
and second-order drift force on vertical circular cylinders arranged in multiple rows and
an infinite number of piles. As Ohkusu’s theory was confined only to the case where each
cylinder extends to the sea bottom, there exist no evanescent-wave components. Masumoto
et al. (1982) applied Ohkusu’s idea to a floating structure composed of multiple columns
with footing, neglecting the effects of evanescent waves. These two works were not done
for the problem of tank-wall effects, but mathematical formulation is equivalent to that of
tandem cylinders placed on the centerline of the wave tank.

Srokosz (1980) studied theoretically several hydrodynamic relations for the interaction of
regular waves with a body in a canal. The obtained results can be regarded as an extension
of Newman’s (Newman, 1976) for the open-sea problem. Miles (1983) also analyzed theo-
retically the problem of a submerged circular duct that is centrally placed between parallel
tank walls, with the limitation of tank width being small compared to the wavelength.

∗ Reprinted from International Journal of Offshore and Polar Engineering, Vol. 1, No. 2, pp. 101-
107, 1991 (June)
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Eatock Taylor and Hung (1985) provided an exact analytical representation for the veloc-
ity potential, which has no restrictions regarding the position of the cylinder in a wave tank.
Computational results were also provided for first-order force and mean drift moment on an
articulated column, and those were compared with corresponding experimental values. Mat-
sui et al. (1986) made more detailed comparisons between experiments and numerical results
based on their own theory. Recently, with a matching technique, Yeung and Sphaier (1989)
and Çalişal and Sabuncu (1989) independently studied the effects of channel walls on the
hydrodynamic properties of a vertical cylinder. The former gives reasonable behaviors of
the hydrodynamic forces at transverse channel-resonant frequencies, but the latter shows
physically unreasonable negative damping results at resonant frequencies.

In all of the cited works except for Eatock Taylor’s and Hung’s work, the body is assumed
to be placed on the centerline of a tank and assumed to be of simple configuration such as
a vertical circular cylinder. In principle, these limitations can be removed, if the interaction
theory developed by Kagemoto and Yue (1985) is applied to the case of an infinite number
of bodies. However, numerical results based on such idea have not been reported. It should
be also emphasized that almost all the existing theories treating a vertical cylindrical body
in a towing tank are described in cylindrical coordinates. Thus they include the infinite
series of Bessel functions corresponding to an infinite number of image bodies: Efficient and
accurate evaluation of this infinite series must be performed with caution.

In this paper, a three-dimensional (3-D) integral-equation method is applied to the prob-
lem of tank-wall effects. The integral-equation method offers, in principle, no restrictions
on the geometry of the body. However, complications may exist in the derivation, and then
in an efficient evaluation of the Green function satisfying the zero-flux condition on tank
walls. In the present work, satisfaction of the zero-flux condition is achieved by considering
an infinite number of image singularities, and then a closed-form expression for the resultant
infinite series is analytically obtained; thus, unlike the existing studies, there is no need to
worry about the convergence of the infinite series and its efficient and accurate evaluation.

A floating structure comprising four vertical circular cylinders with horizontal base is con-
sidered as a simple model of offshore structures; it is situated midway between two parallel
tank walls and is responding to the incident wave. Computational results are presented of
the added-mass and damping coefficients, wave-exciting force and moment, motion ampli-
tude, and second-order drift force. Compact formulas for calculating the damping coefficient,
wave-exciting force, and drift force are derived from the principle of energy and momentum
conservations. It is analytically shown that the formulas reduce to the 2-D and 3-D results
in the open sea in the low- and high-frequency limits, respectively.

2. FORMULATION OF PROBLEM

As shown in Fig. 1, we consider a structure in a towing tank of infinite depth and of width
BT between parallel and vertical walls. The x-axis of a coordinate system is horizontal and
coincident with the centerline of a tank, and the z-axis is vertical and positive downward.
The origin is placed at the center of a structure and on the undisturbed free surface. The
structure consists of four equal circular cylinders with radius R and draft T , and spans of
cylinders in the x-and y-directions are denoted by L and B, respectively. A regular incident
wave of amplitude a and circular frequency ω propagates in the negative x-axis, and therefore
the structure is supposed to oscillate sinusoidally in surge, heave and pitch.

Assuming the flow to be inviscid with irrotational motion, the flow field can be described
by the velocity potential that satisfies the Laplace equation. Furthermore, we assume that
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the amplitudes of incident wave and oscillatory motions are small, which justifies to decom-
pose the velocity potential in the form:

Φ = Re

{ga
iω

(
ϕ0 + ϕ7

)
+
∑

j=1,3,5

iω ξj ϕj

}
eiωt

 (1)

where ξj is the amplitude of j-th mode of motion, with j = 1 for surge, j = 3 for heave,
and j = 5 for pitch, and ϕj denotes the radiation potential of j-th mode. ϕ0 and ϕ7 are the
normalized incident-wave and scattered potentials, respectively, and ϕ0 is explicitly given
by:

ϕ0 = e−Kz+iKx (2)

where K is the wavenumber equal to ω2/g. In Eq. (1), Re means only the real part is to be
taken, and in the analysis to follow we will proceed without this symbol and time dependence
eiωt.

The boundary conditions to be satisfied by the radiation and scattered potentials ϕj (j =
1, 3, 5, 7) can be summarized as:

Fig. 1 Coordinate system and notations
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[ F ]
∂ϕj
∂z

+
(
K − iµ

)
ϕj = 0 on z = 0 (3)

[ B ]
∂ϕj
∂z

→ 0 as z → ∞ (4)

[W ]
∂ϕj
∂y

= 0 on y = ±BT /2 (5)

[ H ]
∂ϕj
∂n

=


nj (j = 1, 3, 5)

− ∂ϕ0
∂n

(j = 7)
on SH (6)

Here µ in Eq. (3) is Rayleigh’s artificial viscosity coefficient ensuring the radiation condi-
tion being satisfied; nj in Eq. (6) denotes the components of unit normal vector with extended
definition of n5 = zn1 − xn3, and SH denotes the submerged portion of the structure.

To determine the velocity potentials, we apply the integral-equation method. The idea
of this method has been extensively tested in the open-sea problem, but in the present case
complexity may exist in deriving and evaluating the so-called Green function. Discussion
on an appropriate Green function will be given in the next section, but here let us assume
this is already known.

Applying Green’s theorem to the Green function and the velocity potential to be deter-
mined, one can obtain an integral equation for the velocity potential on the wetted surface
of the structure, in the form:

1

2
ϕj(P ) +

∫∫
SH

ϕj(Q)
∂

∂nQ
G(P ;Q) dS(Q) =

∫∫
SH

∂ϕj(Q)

∂nQ
G(P ;Q) dS(Q) (7)

where P = (x, y, z) and Q = (ξ, η, ζ) are the field and source points, respectively. It should
be noted that the normal differentiation is defined with respect to the source point, and
∂ϕj/∂n on the right-hand side is prescribed by Eq. (6).

For the scattered potential ϕ7, Eq. (7) is of course valid, but a more effective integral
equation can be derived through the following procedures: 1) Apply Green’s theorem to the
Green function and the incident-wave potential ϕ0 in the interior region of SH ; 2) combine
the obtained equation with Eq. (7) and invoke the body boundary condition Eq. (6) for j = 7;
3) add ϕ0 to both sides of the equation. The final result of this procedure is of the form:

1

2
ϕD(P ) +

∫∫
SH

ϕD(Q)
∂

∂nQ
G(P ;Q) dS(Q) = ϕ0(P ) (8)

where ϕD = ϕ0 + ϕ7 is the total diffraction potential on the body surface. Eq. (8) may be
advantageous to give a more accurate solution with less computing time, as the right-hand
side is exactly given by Eq. (2, and there is no need to evaluate the Green function itself.

3. GREEN FUNCTION

The Green function appropriate to the present problem can be constructed by applying
the method of mirror images, with the open-sea Green function used as a basis. Vari-
ous expressions are known for the open-sea Green function, for which we use the notation
GO(P ;Q). For convenience in the derivation below, we adopt here the following, expressed
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in the Fourier-transformed domain:

G∗
O(k; y, z; η, ζ) ≡

∫ ∞

−∞
GO(P ;Q) e−ikKx dx (9)

= − 1

2π
Re

∫ ∞

−∞

e−K|y−η|
√
k2+ℓ2

√
k2 + ℓ2

{
eiℓK(z−ζ) − 1− iℓ

1 + iℓ
eiℓK(z+ζ)

}
dℓ

+


i√

1− k2
e−K(z+ζ)−iK|y−η|

√
1−k2

−1√
k2 − 1

e−K(z+ζ)−K|y−η|
√
k2−1

 (10)

where the upper and lower expressions in brackets are to be taken according as |k| < 1 and
|k| > 1, respectively. We note that variable k in the Fourier transform is nondimensionalized
in terms of K.

In order to satisfy the condition Eq. (5) on the tank walls, we consider an infinite number
of mirror images. Taking into account the effects of all images under the condition |y− η| <
BT /2 and the symmetry of the flow with respect to y = 0, it can be understood that the
exponential function of the form e−|y−η|ℓ in Eq. (10) must be replaced by:

M(ℓ) = e−|y−η|ℓ + cosh(ℓy) cosh(ℓη) 2

∞∑
p=1

e−pℓBT (11)

The first term on the right-hand side is the same one as in the open-sea case and therefore
the second term represents the tank-wall effects. In relation to the infinite series in the second
term, we can analytically obtain a closed-form expression in the form:

2

∞∑
p=1

e−pℓBT = −1 + coth
(
ℓBT /2

)
(12)

For the case of |k| < 1 in Eq. (10), we must consider the case when the real ℓ is replaced by
the pure imaginary iℓ; for this case, the expression corresponding to Eq. (12) can be given,
with Dirac’s delta function, in the form:

2
∞∑
p=1

e−piℓBT = 2πδ
(
ℓBT , 2π

)
− 1− i cot

(
ℓBT /2

)
(13)

where
δ
(
ℓ, 2π

)
=

∞∑
m=−∞

δ
(
ℓ− 2πm

)
(14)

Combining the above results and using the inverse Fourier transform, we can obtain the
final result of the Green function, which can be expressed, as noted after Eq. 11, in addition
form of the open-sea Green function plus the tank-wall-effect part. Namely:

G(P ;Q) = GO(P ;Q) +GT (P ;Q) (15)
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where

GT (P ;Q) =− K

2π2
Re

∫ π/2

0

dθ

∫ ∞

0

cos(kX cos θ) cosh(kKy) cosh(kKη)

×
{
−1 + coth

(
k
KBT

2

)}[
eiZ

′k sin θ − 1− ik sin θ

1 + ik sin θ
eiZk sin θ

]
dk

+i
K

π
e−Z

( 2π

KBT

) M∑
m=0

ϵm
cos
(
X
√
1− u2m

)√
1− u2m

cos(Kyum) cos(Kηum)

−iK
π
e−Z

∫ 1

0

C
cos(kX)√
1− k2

cos
(
Ky
√
1− k2

)
cos
(
Kη
√
1− k2

)
×
{
1 + i cot

(KBT

2

√
1− k2

)}
dk

−K

π
e−Z

∫ ∞

1

C
cos(kX)√
k2 − 1

cosh
(
Ky
√
k2 − 1

)
cosh

(
Kη
√
k2 − 1

)
×
{
−1 + coth

(KBT

2

√
k2 − 1

)}
dk (16)

and

X = K(x− ξ), Z = K(z + ζ), Z ′ = K(z − ζ)

um = 2πm/KBT , ϵ0 = 1/2, ϵm = 1 (m ≥ 1)

M : max. of integer m satisfying m < KBT /2π

 (17)

In this work, numerical computations of the open-sea Green function and its normal deriva-
tive were performed by a combination of Newman’s series expansion (Newman, 1984) and
Noblesse’s asymptotic expansion (Noblesse, 1982).

The double integral appearing as the first term in Eq. (16) is well-behaved, as its integrand
rapidly reduces to zero as the argument k increases. Therefore this integral was numerically
evaluated by means of the Clenshaw and Curtis quadrature, with an absolute error below
10−4 required. When KBT is large enough, we confirmed that the contribution from this
term is almost negligible.

The last two integrals in Eq. (16) must be treated as Cauchy’s principal-value integral
at the points of k satisfying k =

√
1− (2πm/KBT )2 (m = 0, 1, . . . ,M). In the numerical

implementation of this integral, singular behaviors are subtracted from the integrand and
analytically integrated. For this manipulation we have used the following relation:

∫
k dk

√
1− k2 sin

(
KBT

2

√
1− k2

) =
2

KBT
ln

∣∣∣∣tan(KBT

4

√
1− k2

)∣∣∣∣ (18)

Resultant nonsingular integrals are evaluated, using the Clenshaw and Curtis quadrature
with an absolute error below 10−4 required.

The normal derivative of Eq. (16) must be also computed in solving the integral Eqs. (7)
and (8), which was done with almost the same procedure as for the Green function.
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4. HYDRODYNAMIC FORCES

4.1 Pressure Integration

In the radiation problem, the hydrodynamic force acting in the j-th direction due to the
k-th mode of motion can be expressed in terms of the added mass (Ajk) and damping (Bjk)
coefficients; these can be calculated from:

Ajk +
1

iω
Bjk = −ρ

∫∫
SH

njϕk dS (19)

where ρ is the fluid density and ϕk is the radiation potential on the body surface, which will
be directly given after solving the integral Eq. (7).

Of most concern in the diffraction problem is the calculation of the wave-exciting force.
The component in the j-th direction can be evaluated from:

Ej = ρga

∫∫
SH

njϕD dS (20)

where ϕD is the total diffraction potential given as a solution of Eq. (8),

4.2 Damping Coefficient by Energy Conservation

The work done to oscillate the body is associated with the energy of outgoing waves at
infinity. Therefore, by the analysis of energy conservation, we can obtain a formula giving
the damping coefficient.

Ignoring the terms higher than O(ϕ3j ) and taking the time average of the work, we have
the relation of the form:

Bjj = ρ
ω

K
Im

∫ BT /2

0

[(
ϕj
∂ϕ∗j
∂x

)
z=0

]∞
−∞

dy (21)

where ϕ∗j designates the complex conjugate of ϕj . Im means only the imaginary part should

be taken, and
[ ]∞

−∞ indicates the difference between the values at x = +∞ and at x = −∞.

Further transformation of Eq. (21) requires an asymptotic expression of the velocity po-
tential at x = ±∞. To obtain this, we consider first the behavior of the Green function as
x→ ±∞, by the aid of Riemann-Lebesgue’s lemma:

lim
X→∞

∫ b

a

F (k)

f(k)
cos
(
kX
)
dk ∼ −π F (β)

f ′(β)
sin
(
βX
)

(22)

Here β is the value of k satisfying f(k) = 0 in the range of integration. Applying Eq. (22)
to the Green function in Eq. (15), we shall have the following result:

G(P ;Q) ∼ i
K

π

( 2π

KBT

)
e−K(z+ζ)

×
M∑

m=0

ϵm
e∓iK(x−ξ)

√
1−u2

m√
1− u2m

cos
(
Kyum

)
cos
(
Kηum

)
(23)

as (x− ξ) → ±∞
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The velocity potential at arbitrary points in the fluid domain can be given by:

ϕj(P ) =

∫∫
SH

(
∂ϕj
∂nQ

− ϕj
∂

∂nQ

)
G(P ;Q) dS(Q) (24)

Therefore, by substituting Eq. (23) in Eq. (24), the desired expression at x = ±∞ can be
expressed in the form:

ϕj(P ) ∼ i
K

π
e−Kz

( 2π

KBT

) M∑
m=0

ϵmH
±
j (um)

e∓iKx
√

1−u2
m√

1− u2m
cos
(
Kyum

)
(25)

where

H±
j (u) =

∫∫
SH

(
∂ϕj
∂n

− ϕj
∂

∂n

)
e−Kζ±iKξ

√
1−u2

cos
(
Kηu

)
dS (26)

is the Kochin function that is related to the complex amplitude of the radiation wave at
x = ±∞.

Substituting Eq. (25) in Eq. (21) and performing the integral with respect to y, we shall
get the following final result:

Bjj = ρω
K

2π

( 2π

KBT

) M∑
m=0

ϵm√
1− u2m

(∣∣H+
j (um)

∣∣2 + ∣∣H−
j (um)

∣∣2) (27)

Srokosz (1980) derived a similar expression to Eq. (27) by utilizing Green’s theorem.
In the case of a narrow towing tank, only the case m = 0 contributes to Eq. (27), and

the resulting formula is reminiscent of the 2-D result. On the other hand, if we consider the
limiting case of BT → ∞, the open-sea result can be recovered. To show this, we note that
the summation for BT → ∞ can be reduced to the finite integral by means of the following
replacements:

um → u,
2π

KBT
→ du,

M∑
m=0

ϵm →
∫ 1

0

(28)

Applying Eq. (28) to Eq. (27) and using the variable transformation of u = sin θ, we can
show that the final result takes the form:

Bjj = ρω
K

4π

∫ 2π

0

∣∣Hj(θ)
∣∣2 dθ (29)

where
Hj(θ) =

∫∫
SH

(
∂ϕj
∂n

− ϕj
∂

∂n

)
e−Kζ+iK(ξ cos θ+η sin θ) dS (30)

Eq. (29) is a familiar expression in the open-sea case.

4.3 Drift Force by Momentum Conservation

A formula for the second-order drift force can be derived from momentum and energy con-
servation principles. Following the usual procedure, we neglect the terms higher than O(ϕ3)
and take the time average over one period. Then the calculation formula for the drift force
is given as:

D =
ρ

4K
Re

∫ BT /2

0

[(∣∣∣ ∂ϕ
∂x

∣∣∣2 − ∣∣∣ ∂ϕ
∂y

∣∣∣2 +K2
∣∣ϕ∣∣2)

z=0

]∞
−∞

dy (31)
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Here the velocity potential ϕ includes all contributions from diffraction and radiation po-
tentials. Namely:

ϕ =
ga

iω

{
ϕ0 + ϕ7 −K

∑
j=1,3,5

(ξj
a

)
ϕj

}
(32)

The incident-wave potential ϕ0 is given by Eq. (2), and the remaining potentials have
the same asymptotic form as Eq. (25) at x = ±∞. With these taken into account, we can
perform the evaluation of Eq. (31)1. After some lengthy reduction, it follows that:

D

ρga2
=
K

4π

( 2π

KBT

) M∑
m=0

ϵm

(∣∣H+(um)
∣∣2 − ∣∣H−(um)

∣∣2)
+
1

2
Im
[
H−(u0)

]
(33)

where

H±(u) = H±
7 (u)−K

∑
j=1,3,5

(ξj
a

)
H±

j (u) (34)

The last term can be transformed further if we apply the energy-conservation principle.
As the structure is freely responding to the incident wave, the following relation must be
satisfied: ∫ BT /2

0

[(
ϕ
∂ϕ∗

∂x
− ϕ∗

∂ϕ

∂x

)
z=0

]∞
−∞

dy = 0 (35)

Transforming Eq. (35) in almost the same manner as in deriving the damping coefficient, we
shall obtain:

1

2
Im
[
H−(u0)

]
=
K

4π

( 2π

KBT

) M∑
m=0

ϵm√
1− u2m

(∣∣H+(um)
∣∣2 + ∣∣H−(um)

∣∣2) (36)

Combining Eqs. (33) and (36), the final result for the drift force can be expressed as:

D

ρga2
=
K

4π

( 2π

KBT

) M∑
m=0

ϵm√
1− u2m

×
[∣∣H+(um)

∣∣2(1 +√1− u2m

)
+
∣∣H−(um)

∣∣2(1−√1− u2m

)]
(37)

It is noteworthy that for the case of m = 0 only, Eq. (37) reduces to a similar form to the
2-D result, and that for the case of open sea (BT → ∞), Maruo’s formula (Maruo, 1960)
can be recovered by applying the replacement formula of Eq. (28).

4.4 Haskind-Newman’s Relation

As shown by Eq. (20), the wave-exciting force can be calculated by the pressure integration.
If Green’s theorem is applied, Eq. (20) can be transformed further, and the relation between
the exciting force and the Kochin function of the radiation problem may be found.

Applying Green’s theorem and taking into account the body boundary condition for the
scattered potential, it follows that:∫∫

SH

ϕ7
∂ϕj
∂n

dS = −
∫∫

SH

ϕj
∂ϕ0
∂n

dS (38)
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Then Eq. (20) can be transformed as follows:

Ej = ρga

∫∫
SH

(
ϕ0
∂ϕj
∂n

− ϕj
∂ϕ0
∂n

)
dS

= ρgaH+
j (u0) (39)

where H+
j is the Kochin function defined by Eq. (26), and note that u0 = 0. Eq. (39) can be

regarded as Haskind-Newman’s relation in the presence of tank-wall effects, and identical to
the relation derived by Srokosz (1980).

In the analysis above, we found a number of relations that can be used for checking the
validity and accuracy of the calculations. In the present paper, Haskind-Newman’s relation
and the energy-conservation principle associated with the damping coefficient were used for
the check and found to be favorably satisfied.

5. NUMERICAL RESULTS AND DISCUSSION

Fig. 2 Discretization with 84 panels on one
quarter of the structure

Numerical computations were performed
for the structure model shown in Fig. 1,
which has two symmetry planes. Tak-
ing advantage of the symmetry of the
flow, we analyzed only one quarter of
the model. To solve the integral equa-
tion, the submerged surface of one cylin-
der was subdivided into several flat pan-
els, and the velocity potential to be de-
termined is assumed constant on each
panel. Then the collocation method was
used, enforcing the integral equation at
the centroid of each panel; thereby the
integral equation was replaced by a lin-
ear system of algebraic equations, and
solved by the Gauss elimination method.

Discretization used for numerical
computations is shown in Fig. 2, which
contains 84 panels on one cylinder, thus

Table 1 Principal parameters of the structure composed of four vertical circular cylinders

Span in y-direction B/L 1

Draft T/L 1/2

Radius of cylinder R/L 1/6

Center of gravity OG/T 1/2

Waterplane area AW 4πR2

Displacement volume V AW T

Tank width BT /L 4
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336 panels on the whole structure. Table 1 shows the ratios of dimensions for which numer-
ical results are presented. These ratios correspond to the actual situation where a structure
model of 1.0m both in length and in breadth is tested in a towing tank of 4.0m in width.

in Open Sea

with Tank-Wall Effect
(  B    L  =  4.0  )T

KB  =  2πT KB  =  4πT KB  =  6πTin Open Sea

with Tank-Wall Effect
(  B    L  =  4.0  )T

KB  =  2πT

KB  =  4πT

KB  =  6πT

Fig. 3 Surge added-mass coefficient Fig. 4 Surge damping coefficient

Figures 3 and 4 show respectively the added-mass and damping coefficients of surge
against the nondimensional wavenumber KL, which were obtained by the pressure inte-
gration Eq. (19). The results without tank-wall effects (that is, in open sea) are indicated by
a dotted line, and the results with tank-wall effects are by solid line. Vertical dash-dotted
lines in each figure show the wavenumbers at which a transverse tank resonance will occur,
thus the ratio of wavelength to tank width is equal to the inverse of an integer. It can be
seen from Figs. 3 and 4 that the tank-wall effects are not serious in surge mode except in the
frequency range greater than the third tank-resonant frequency, where the wavelength be-
comes nearly equal to the span of columns; hence the free surface is expected to be seriously
disturbed due to the interference effects between cylinders and tank walls.

in Open Sea

with Tank-Wall Effect
(  B    L  =  4.0  )T

KB  =  2πT

KB  =  4πT KB  =  6πT

Fig. 5 Heave added-mass coefficient

The added mass of heave is shown in
Fig. 5, but the damping force in heave is
not shown because of its quite small mag-
nitude. In contrast to the surge mode, the
tank-wall effects are apparent only in the
low frequency range. As the depth of ver-
tical circular cylinder is three times the ra-
dius, there may be little influence of reflec-
tion waves on the heave mode when the
wavelength is small.

The wave-exciting forces in surge and
heave, computed by the pressure integra-
tion, are shown in Figs. 6 and 7, respec-
tively. Only the modulus is presented, and
notations are the same as before. The
surge exciting force shows similar variation

to that of surge damping coefficient, and the effects of tank-wall reflections are not great,
except in the case of the wavelength being close to the span of columns. The tank-wall
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in Open Sea

with Tank-Wall Effect
(  B    L  =  4.0  )T

KB  =  2πT KB  =  4πT KB  =  6πT

in Open Sea

with Tank-Wall Effect
(  B    L  =  4.0  )T

KB  =  2πT

KB  =  4πT KB  =  6πT

Fig. 6 Modulus of wave-exciting force in
surge

Fig. 7 Modulus of wave-exciting force in
heave

in Open Sea

with Tank-Wall Effect
(  B    L  =  4.0  )T

KB  =  2πT

KB  =  4πT KB  =  6πT

in Open Sea

with Tank-Wall Effect
(  B    L  =  4.0  )T

KB  =  2πT
KB  =  4πT KB  =  6πT

Fig. 8 Surge amplitude of four vertical cylin-
ders in a towing tank

Fig. 9 Heave amplitude of four vertical
cylinders in a towing tank

effects on the heave exciting force are also not serious, except near the first tank-resonant
frequency.

The motions of surge, heave and pitch were calculated using theoretically computed first-
order forces; only surge and heave amplitudes are displayed here in Figs. 8 and 9, respectively.
Since surge and pitch are coupled, surge amplitude changes abruptly near the pitch resonance
(Fig. 8). Nevertheless, the tank-wall effects are still negligible. Heave resonance occurs near
KL = 1.7 regardless of whether the tank walls are present. This can be understood from
Fig. 5, in which the intersection point between thin solid line and added-mass curve gives
the resonant frequency. We can see that the tank-wall effects on heave motion are small
even in the low frequency range, in contrast to the heave added mass in this range.

The second-order drift force is presented in Fig. 100, for the case of the structure being
fixed in the incident wave. It can be seen that the drift force is considerably influenced by
the tank-wall reflections, even in the frequency range where the wave-exciting force is not
so affected. Fig. 11 shows the drift force on the structure freely responding to the action of
incident wave. If we compare Fig. 11 with Fig. 10, the effects of motions can be made clear.
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in Open Sea

with Tank-Wall Effect
(  B    L  =  4.0  )T

KB  =  2πT

KB  =  4πT

KB  =  6πT

in Open Sea

with Tank-Wall Effect
(  B    L  =  4.0  )T

KB  =  2πT

KB  =  4πT

KB  =  6πT

Fig. 10 Drift force on four vertical cylinders
fixed in waves

Fig. 11 Drift force on four vertical cylinders
freely responding to waves

We can see that in the low frequency range, the effects of heave and pitch motions are great
owing to their resonances. In the range between KL = 2 and 4, the motion amplitude in
each mode is relatively small, as shown in Figs. 8 and 9, and thus the difference between
Figs. 10 and 11 in this range is not large. On the other hand, as the wavelength approaches
the span of cylinders, the effects of motion on the drift force become conspicuous; this is
due mainly to the surge motion.

As seen above, the first-order forces and resultant responses are not seriously affected by
the presence of tank walls, at least for the floating structure considered here. However, the
effects on the second-order drift force are significant. This finding is consistent with the
experiments shown by Matsui et al. (1986) for an articulated column.

6. CONCLUSIONS

A 3-D integral-equation method has been described for predicting linear hydrodynamic
forces and second-order drift force on an offshore structure model in a parallel-sided towing
tank. In order to derive the Green function satisfying the zero-flux condition on the tank
walls, an infinite number of image singularities were considered, and a closed-form analytical
expression was obtained for the resultant infinite series.

By applying the principle of energy and momentum conservation, compact formulas were
derived for the damping coefficient, wave-exciting force, and drift force, which contain only
the Kochin function associated with the amplitude of outgoing waves far away from the
structure.

Computed results were presented for a floating structure composed of four columns of
vertical circular cylinders, under the condition that the tank width is four times the span of
columns. It was shown that the effects of tank-wall reflections are small on the linear forces
and resultant motions, whereas on the second-order drift force the effects are remarkable
and not to be neglected.
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A New Theory for Side-Wall Interference Effects on
Forward-Speed Radiation and Diffraction Forces∗

Masashi KASHIWAGI and Makoto OHKUSU

Research Institute for Applied Mechanics, Kyushu University

Kasuga, Fukuoka 816-8580, Japan

Abstract

A new rational theory predicts the effects of side-wall interference upon the hydrodynamic
forces on a ship advancing in waves generated in a parallel-sided waterway. The radia-
tion problem is solved by extending the forward-speed version of Newman’s unified theory.
Haskind-Newman’s reciprocity relation gives wave-exciting forces and motions. Energy con-
servation gives a formula for the damping coefficients from the Kochin function associated
with the far-field radiated waves. The theory is validated by experiments and independent
numerical solutions by a 3-D panel method for simple bodies. New diagrams for checking
the side-wall interference are provided.

Keywords: Tank wall interference, forward-speed effect, added mass, damping, wave
excitation, ship motion, seakeeping, model experiments.

1. Introduction

The hydrodynamic forces and ship motions measured in a towing tank with finite width can
exhibit experimental scatter around the expected results in open water. This phenomenon
can be ascribed to the side-wall reflections of the waves generated by a tested ship model,
and becomes prominent in the low frequency range when the ship has low or zero forward
speed.

At zero forward speed, mathematical treatment for the side-wall interference is relatively
simple. It is possible to predict the effects of side-wall interference with engineering accuracy,
Cohen and Troesch (1988), Yeung and Sphaier (1989), Kashiwagi (1989,1990). With forward
speed included, no satisfactory theory exists giving quantitatively good predictions.

Based on thin-ship theory, Hanaoka (1958) provided for the first time an analytical rep-
resentation for the velocity potential describing the flow around a translating and oscillating
ship in a restricted waterway. Hosoda (1976,1978) proposed a practical method of predict-
ing the side-wall effects on ship motions in waves, using the strip-theory approach. Takaki’s
(1979) study was also based on the strip theory, in which the expressions were derived for
the radiation and diffraction forces with the effects of bottom as well as side walls of the
waterway taken into account. Despite several approximations associated with the strip the-
ory, the obtained expressions appear to be complex and computed results are not in good
agreement with experiments.

For unrestricted water, many studies based on the slender-body theory have been made.
As a result, the unified slender-ship theory was developed by Newman (1978). The excel-
lent performance of the unified theory is demonstrated in Newman and Sclavounos (1980)

∗ Reprinted from Ship Technology Research (Schiffstechnik), Vol. 38, No. 1, pp. 17–47, 1991
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through a number of comparisons between computed and experimental results and the esti-
mation of computation time required. We extend Newman’s unified slender-ship theory to
include side-wall effects.

2. Problem Formulation

A ship advances at constant forward speed U along the centerline of the waterway with
vertical and parallel side walls. The depth of the waterway is assumed infinite and the
breadth is denoted by BT as shown in Fig. 1. Ship’s length, breadth, and depth are denoted
by L, B, and d, respectively. The x-axis of the coordinate system used is positive in the
direction of ship’s forward motion, the y-axis is horizontal, and the z-axis is vertical and
positive downward, with the origin placed at midships and on the undisturbed free surface.
A regular plane wave of amplitude a and circular frequency ω0 is incident upon the ship
as a head wave, and thus the ship is supposed to oscillate sinusoidally in symmetric modes
around its mean position with the circular frequency of encounter ω and the amplitude ξj ;
the subscript j is the mode index, and in particular j = 3 for heave, j = 5 for pitch.

Fig. 1 Coordinate system and notations

Assuming that the flow is inviscid with irrotational motion and that the ship motion and
incident-wave amplitudes are small, the velocity potential can be introduced and decomposed
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as

Φ = U
[
−x+ ϕS(x, y, z)

]
+ ℜ

[
ψ(x, y, z) eiωt

]
(1)

ψ =
ga

iω0

{
ϕ0(x, z) + ϕ7(x, y, z)

}
+ iω

∑
j=3,5

ξj ϕj(x, y, z) (2)

ϕ0 = e−k0Kz+ik0Kx (3)

where ϕS denotes the steady-state disturbance velocity potential, ϕ0 the incident-wave ve-
locity potential, k0 the wavenumber of the incident wave nondimensionalized in terms of
K = ω2/g, and g the acceleration of gravity. The symbol ℜ in (1) means only the real
part should be taken, and hereafter the analysis will proceed without this symbol and time
dependence eiωt.

The governing equation and boundary conditions to be satisfied by the radiation potential
ϕj (j = 3, 5) and the scattered potential ϕ7 may be given as follows:

[ L ] ∇2ϕj = 0 in the fluid domain (4)

[ F ]
∂ϕj
∂z

+Kϕj + i2τ
∂ϕj
∂x

− 1

K0

∂2ϕj
∂x2

−iµ
(
Kϕj + iτ

∂ϕj
∂x

)
= 0 on z = 0 (5)

where K =
ω2

g
, τ =

Uω

g
, K0 =

g

U2
(6)

[ B ]
∂ϕj
∂z

→ 0 as z → ∞ (7)

[W ]
∂ϕj
∂y

= 0 on y = ±BT /2 (8)

[ H ]
∂ϕj
∂n

= nj +
U

iω
mj (j = 3, 5) (9)

∂ϕj
∂n

= −∂ϕ0
∂n

(j = 7) (10)

Here µ in (5) is Rayleigh’s artificial viscosity coefficient, ensuring the appropriate radiation
condition being satisfied. The components of unit normal vector along the xj-axis (x1 = x,
x2 = y, and x3 = z) are denoted by nj in (9), with extended definition of n5 = zn1 − xn3.
The forward-speed-effect partmj in (9) is the so-calledm-terms arising from ship’s oscillation
in the steady-state disturbance flow, which was originally derived in Timman and Newman
(1962) and can be expressed as

(m1, m2, m3) = −(n · ∇)W

(m4, m5, m6) = −(n · ∇)
(
r ×W

)
W = ∇

[
−x+ ϕS(x, y, z)

] (11)

In order to solve the above three-dimensional boundary-value problem including side-
wall effects, we adopt the approach of Newman’s (1978) unified theory developed for the
open-sea problem. A theoretical solution method based on this approach has been already
provided by Kashiwagi and Ohkusu (1989) for the radiation problem, but for convenience in
subsequent explanation for the wave-exciting forces, the outline of the theory will be given
in the following subsections.
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2.1 The outer solution

In the outer field far from the ship hull, the ship may be viewed as a segment on the x-
axis. Therefore the outer solution can be approximated by a distribution of the 3-D Green
function on the x-axis:

ϕ
(o)
j (x, y, z) =

∫
L

qj(ξ)G(x− ξ, y, z) dξ (12)

where G(x, y, z) denotes the Green function, equivalent to the velocity potential of a trans-
lating and pulsating source, and qj(x) is its strength which is indeterminate in the outer
problem because of the absence of the hull boundary conditions (9) and (10).

The Green function, satisfying eqs. (5) to (8), can be derived by the method of mirror
images. Considering the Fourier transform with respect to x of the open-sea Green function
located at the origin and of its mirror images reflected in the parallel side walls, the desired
Green function is given in the Fourier space as

G̃(k; y, z) =

∫ ∞

−∞
G(x, y, z) eikKx dx

= − 1

π

∫ ∞

0

n cos(nKz)− ν sin(nKz)

n2 + ν2
n√

n2 + k2

∞∑
p=−∞

e−K|y−pBT |
√
n2+k2

dn

−


−iν sgn(1 + kτ)√

ν2 − k2
e−νKz

∞∑
p=−∞

e−isgn(1+kτ)K|y−pBT |
√
ν2−k2

ν√
k2 − ν2

e−νKz
∞∑

p=−∞
e−K|y−pBT |

√
k2−ν2

 (13)

where
ν =

(
1 + kτ

)2
(14)

and the upper and lower expressions in brackets are to be taken according as |k| < ν and
|k| > ν, respectively.

The infinite series appearing in (13) can be expressed analytically in a closed form, under
the condition |y| < BT /2:

∞∑
p=−∞

e−K|y−pBT |ℓ = e−K|y|ℓ + cosh(ℓKy)

[
−1 + coth

(ℓKBT

2

)]
(15)

∞∑
p=−∞

e±iK|y−pBT |ℓ = e±iK|y|ℓ

+cos(ℓKy)

[
2π

KBT
δ
(
ℓ,

2π

KBT

)
− 1± i cot

(ℓKBT

2

)]
(16)

Here the first term in brackets of (16) denotes the series of Dirac’s delta function, defined
by

δ
(
ℓ,

2π

KBT

)
=

∞∑
m=−∞

δ
(
ℓ− 2π

KBT
m
)

(17)

In the limit of BT → ∞ in (15) and (16), the second term on the right-hand side of each
equation vanishes and only the first term remains, implying that the Fourier transform of
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the Green function G̃(k; y, z) can be expressed as a sum of the open-sea part G̃O(k; y, z)
and the side-wall-effect part G̃T (k; y, z). The final expression for the Green function will be
given by the inverse Fourier transform:

G(x, y, z) = GO(x, y, z) +GT (x, y, z)

=
K

2π

∫ ∞

−∞

{
G̃O(k; y, z) + G̃T (k; y, z) e

−ikKx dk (18)

In the slender-ship theory, the unknown source strength qj(x) in (12) will be determined
by requiring the inner expansion of (12) to be compatible with the outer expansion of an
appropriate inner solution. For this matching procedure, the inner expansion of the above
Green function must be sought; Kashiwagi and Ohkusu (1989) give details of this derivation.
Only the final results will be summarized here.

The inner expansion of the open-sea Green function, which is the same as that in New-
man’s unified theory, can be expressed in the form

GO(x, y, z) ∼ δ(x)G2D(y, z)− 1

π

(
1−Kz

) d
dx
FO(Kx) (19)

where δ(x) is Dirac’s delta function and G2D(y, z) the 2-D Green function commonly used in
the strip-theory solution. Newman and Sclavounos (1980) ingeniously derived an expression
for FO(Kx), which in the nondimensional form is

FO(Kx) =

{
F1(Kx) + F2(Kx) for x < 0

F2(Kx) for x > 0
(20)

where

F1(X) =

[
−
∫ k1

−∞
+

∫ 0

k2

]
e−ikX

{ ν√
ν2 − k2

− 1
} dk
k

+E1

(
i|k1X|

)
+ E1

(
i|k2X|

)
(21)

F2(X) =
1

2

[∫ k3

0

+

∫ ∞

k4

]
e−ikX

{ ν√
ν2 − k2

− 1
} dk
k

+
1

2

∫ k4

k3

e−ikX
{ iν√

k2 − ν2
− 1
} dk
k

(22)

k1,2 = −2/
(
1 + 2τ ∓

√
1 + 4τ

)
k3,4 = 2/

(
1− 2τ ±

√
1− 4τ

) } (23)

E1(z) =

∫ ∞

z

e−t

t
dt (24)

The inner expansion of side-wall-effect part can be derived with relative ease, because no
singularity exists in this near the x-axis. The result is of the form

GT (x, y, z) ∼ − 1

π

(
1−Kz

) d
dx
FT (Kx) (25)
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where

FT (X) =
i

2π

∫ ∞

−∞
e−ikX dk

k

∫ ∞

0

{
−1 + coth

(KBT

2

√
n2 + k2

)} n2 dn

(n2 + ν2)
√
n2 + k2

+
1

2

( 2π

KBT

) 4∑
p=1

∞∑
m=0

ϵm

[
e−ikX sgn(1 + kτ)

k |dν/dk − k/ν|

]
k=kpm

− 1

2

[∫ k1

−∞
C +

∫ k3

k2

C +

∫ ∞

k4

C

]
e−ikX ν√

ν2 − k2

×
{
sgn(1 + kτ) + i cot

(KBT

2

√
ν2 − k2

)} dk
k

+
i

2

[∫ k2

k1

+

∫ k4

k3

]
e−ikX ν√

k2 − ν2

{
−1 + coth

(KBT

2

√
k2 − ν2

)} dk
k

(26)

In the second term of (26), notation ϵ0 = 1/2, ϵm = 1 (m ̸= 0) has been used and
the wavenumber kpm denotes the values satisfying KBT

√
ν2 − k2 = 2πm (m = 0, 1, 2, . . .),

which exist at most four for each integer m and coincide with kj (j = 1 ∼ 4) defined by (23)
when m = 0. (A schematic explanation for kpm is given in Fig. 2 for the case τ < 1/4.) At
these discrete wavenumbers, kpm, the integrals in the third term of (26) must be treated as
Cauchy’s principal-value integral.

Fig. 2 Schematic explanation for discrete wavenumbers kpm in the case of τ < 1/4

Substituting into (12) the inner expansion of the Green function obtained above, we get
the inner expansion of the outer solution:

ϕ
(o)
j (x, y, z) ∼ qj(x)G2D(y, z) +

1

π

(
1−Kz

)
×
∫
L

qj(ξ)
d

dξ

[
FO

{
K(x− ξ)

}
+ FT

{
K(x− ξ)

}]
dξ (27)
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2.2 The inner problem

In the inner field close to the ship hull, changes of the flow in the x-direction may be small
compared to changes in the transverse plane, and the radiation condition and side-wall
boundary condition can not be specified. Therefore the governing equation and boundary
conditions for the present inner problem are identical to those in the open-sea problem
considered by Newman (1978).

Following Newman’s unified slender-ship theory, the inner solution can be constructed by
the superposition of the particular solution commonly used in the strip theories and a homo-
geneous component; the latter is expected to account for the longitudinal flow interactions
and the effects of side-wall interference. We write this inner solution as

ϕ
(i)
j (x; y, z) = φP

j (y, z) + Cj(x)φ
H
j (y, z) (28)

φP
j (y, z) = φj(y, z) +

U

iω
φ̂j(y, z) (29)

φH
j (y, z) = φj(y, z)− φ∗

j (y, z) (30)

The particular solution (29), which consists of two parts, must satisfy the condition

[ H ]
∂φj

∂N
= Nj ,

∂φ̂j

∂N
=Mj (31)

on the ship hull. Here N is the 2-D unit normal in the y-z plane, and Njj and Mj are
slender-body approximations of njj and mj given in (9), respectively; in particular, N5 and
M5 can be approximated as

N5 = −xN3 , M5 = N3 − xM3 (32)

The asterisk used as superscript in (30) denotes the complex conjugate, and hence from (31)
the velocity potential φH

j satisfies the homogenous boundary condition. The coefficient of
this homogeneous solution, Cj(x), which is unknown at this stage, will be settled from the
matching requirement between the inner and outer solutions.

The outer expansion of the inner solution necessary for this matching can be expressed
as

ϕ
(i)
j (x; y, z) ∼

[
σj(x) +

U

iω
σ̂j(x) + Cj(x)

{
σj(x)− σ∗

j (x)
}]

G2D(y, z)

+2iCj(x)σ
∗
j (x) e

−Kz cos(Ky) (33)

Here σj(x) and σ̂j(x) are the 2-D effective source strengths and given numerically after
solving the boundary-value problems for φj(y, z) and φ̂j(y, z), respectively.

2.3 Matching

In the analysis described above, the unknowns are the 3-D source strength qj(x) in the
outer solution and the coefficient Cj(x) of a homogeneous component in the inner solution.
These can be determined by matching the inner expansion of the outer solution (27) with
the outer expansion of the inner solution (33) in an appropriate overlap region. The result
of this matching procedure can be summarized as:

qj(x) +
i

2π

{
σj(x)

σ∗
j (x)

− 1

}∫
L

qj(ξ)

× d

dξ

[
FO

{
K(x− ξ)

}
+ FT

{
K(x− ξ)

}]
dξ = σj(x) +

U

iω
σ̂j(x) (34)
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Cj(x) =

[
qj(x)−

{
σj(x) +

U

iω
σ̂j(x)

}]/{
σj(x)− σ∗

j (x)
}

(35)

Eq. (34) is an integral equation for the outer source strength qj(x), and with a solution
of this equation, the interaction coefficient Cj(x) can be readily determined from (35). As
mentioned earlier, the particular solution in the inner problem is not affected by the presence
of side walls, and thus σj(x) and σ̂j(x) on the right-hand side of (34) are the same as those
in the open-sea case. Nevertheless, a numerical solution of (34) includes the effects of side-
wall interference, because the kernel function FT

{
K(x − ξ)

}
contains the side-wall effects

appropriately within the framework of the slender-ship theory. Therefore, from (35), the
side-wall effects will be taken into account in the inner solution through the coefficient of
a homogeneous component Cj(x). In the limit of BT → ∞, the function FT

{
K(x − ξ)

}
becomes zero and the resulting equations reduce to the same ones as in Newman’s unified
theory for the open-sea problem.

2.4 Added-mass and damping coefficients

Of particular importance in the radiation problem is the prediction of hydrodynamic pressure
force and moment acting on an oscillating ship. Substituting the inner velocity potential into
Bernoulli’s linearized pressure equation and integrating the pressure over the mean wetted
surface of the ship, we obtain an expression for the added mass (Ajk) and damping (Bjk)
coefficients in the j-th direction due to the k-th mode of motion:

Ajk +Bjk

/
iω =

∫
L

[
ajk + bjk

/
iω
]
dx (36)

where

ajk + bjk
/
iω =−ρ

∫
CH

Njφk dℓ

+ iρ
U

ω

∫
CH

(
Nj φ̂k −Mjφk

)
dℓ− ρ

(
U

ω

)2 ∫
CH

Mj φ̂k dℓ

−ρCk(x)

∫
CH

(
Nj −

U

iω
Mj

)(
φk − φ∗

k

)
dℓ (37)

In (37), ρ is the fluid density and CH denotes the sectional contour at station x.
The expression without the last term of (37), which has been used in conventional strip

theories, includes no 3-D effects. Therefore, the last term in (37) plays an important role
in accounting for the 3-D flow interactions among transverse sections and the effects of
side-wall interference.

3. Energy Relation in the Radiation Problem

The work done to oscillate the ship is associated with the energy of far-field radiated waves.
With this energy-conservation principle, Kashiwagi (1990) derived a formula giving the
damping coefficient.

Following the usual procedure, we neglect the terms higher than O(ϕ3j ) and take the time
average of the work over one period. Then we have a calculation formula for the damping
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coefficient, in the form

Bjj =−ρωℑ
∫ ∞

0

dz

∫ KBT /2

−KBT /2

[
ϕ∗j
∂ϕj
∂x

]∞
−∞

dy

−ρωℑ
∫ KBT /2

−KBT /2

[{
ϕ∗j

(
iτ ϕj −

1

K0

∂ϕj
∂x

)}
z=0

]∞
−∞

dy (38)

where ϕ∗j denotes the complex conjugate of ϕj , ℑ the imaginary part, and
[ ]∞

−∞ the
difference between the values at x = +∞ and x = −∞.

Further transformation of (39) requires an asymptotic expression of the velocity potential
at x = ±∞, which is derived in the Appendix. Substituting (58) and (59) shown in the
Appendix into (38) and performing some lengthy reduction for the integrals with respect to
y and z, we get:

Bjj = ρω
K

2π

( 2π

KBT

) 4∑
p=1

∞∑
m=0

ϵm

[ ∣∣Hj(k)
∣∣2 sgn(1 + kτ)

|dν/dk − k/ν |

]
k=kpm

(39)

Here Hj(k) is the Kochin function defined as

Hj(k) =

∫∫
SH

(
∂ϕj
∂n

− ϕj
∂

∂n

)
e−νKz+ikKx cos

(
Ky
√
ν2 − k2

)
dS (40)

It should be noted that no slender-body approximations are involved in (39) and (40) and
thus the velocity potential appearing in (40) must be uniformly valid throughout the fluid
domain.

Since the Kochin function is related to the complex amplitude of the far-field radiating
wave, it can be evaluated from the outer solution, with the result

Hj(k) =

∫
L

qj(x) e
ikKx dx (41)

Although the inner solution is not valid in the field, substituting the inner velocity po-
tential into (40) gives another representation for the Kochin function:

Hj(k) =

∫
L

αj(x) e
ikKx dx

αj(x) =

∫
CH

(
∂ϕ

(i)
j

∂N
− ϕ

(i)
j

∂

∂N

)
e−νKz cos

(
Ky
√
ν2 − k2

)
dℓ

(42)

Both (41) and (42) have been tested, and we refer to the former method as the outer-
solution method and the latter as the inner-solution method.

4. Wave-Exciting Force and Moment

With the scattered velocity potential ϕ7(x, y, z) assumed to be obtained, the wave-exciting
force in the j-th direction can be calculated by integrating the linearized pressure over the
ship hull SH , with the result

Ej = ρga
ω

ω0

∫∫
SH

nj

(
1 +

U

iω
W · ∇

)(
ϕ0 + ϕ7

)
dS (43)

= ρga
ω

ω0

∫∫
SH

(
nj −

U

iω
mj

)(
ϕ0 + ϕ7

)
dS (44)
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where W is previously defined in (11), and in deriving (44), Tuck’s theorem, Ogilvie and
Tuck (1969), has been used.

If we apply further the Haskind-Newman reciprocity relation, Newman (1965), (44) can
be reduced to a form in which there is no need to obtain the scattered velocity potential ϕ7;
this can be expressed as

Ej = ρga
ω

ω0

∫∫
SH

(
∂ϕ−j
∂n

− ϕ−j
∂

∂n

)
e−k0Kz+ik0Kx dS (45)

Here ϕ−j denotes the reverse-flow radiation velocity potential, which describes the flow
around the ship moving in the negative x-axis with the same velocity U as in the real-
flow problem while oscillating in the j-th mode.

When deriving (45), two things should be noted: The first is that the so-called line-
integral term arising from the intersection of the ship hull with the free surface has been
neglected; which is of higher order in the context of slender-ship theory. The second is that
the reverse-flow velocity potential ϕ−j must be found such that it satisfies the boundary
condition

∂ϕ−j
∂n

= nj −
U

iω
mj (46)

on the ship hull. Strictly speaking, unless the ship has fore-and-aft symmetry, themj-term in
the reverse flow is different from that in the real flow, because the m-term will be calculated
from the steady-disturbance velocity potential. The error due to this difference is, however,
also considered small in the context of slender-ship theory.

When the body has indeed fore-and-aft symmetry like a prolate spheroid, the reverse-flow
radiation problem need not be obtained and the evaluation of (45) can be accomplished with
the real-flow velocity potential ϕj . More specifically, we can use in this case the following
relations:

ϕ−3 (−x, y, z) = ϕ3(x, y, z)

ϕ−5 (−x, y, z) = −ϕ5(x, y, z)
(47)

Substituting these relations into (45) and noting that k0 = −k2 = ν, we get

Ej = ±ρga ω
ω0
Hj(−k0) (48)

where Hj(−k0) is the Kochin function defined by (40) with the nondimensional wave number
k replaced by −k0, and the complex sign (+ or −) corresponds to heave (j = 3) or pitch
(j = 5) respectively.

Sclavounos (1985) applied the forward-speed version of Haskind-Newman’s reciprocity
relation to the unified slender-ship theory for the open-sea problem and verified its good
performance.

5. Numerical Solution Method

An important task in the numerical implementation is to solve the integral equation (34)
for the outer source strength qj(x). After dividing ship’s longitudinal axis equidistantly into
N segments, the 2-D boundary-value problem for the inner solution must be solved at each
transverse section; which gives the 2-D effective source strengths σj(x) and σ̂j(x) appearing
on the right-hand side of the integral equation. Haraguchi and Ohmatsu’s (1983) method
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has been used for this purpose, which can easily get rid of irregular frequencies and gives an
accurate solution.

With the assumption that the outer source strength qj(x) varies linearly within each
segment, the integral equation (34) was transformed into a linear system of simultaneous
equations for the discretized values of qj(x) at N − 1 nodal points and solved numerically.
(The source strengths at the ship ends have been postulated to vanish and thus treated as
known.)

The Clenshaw-Curtis quadrature has been utilized for the numerical integration of the
kernel function FO

{
K(x − ξ)

}
and FT

{
K(x − ξ)

}
, with an absolute error less than 10−5

required. As shown in (26), the treatment with Cauchy’s principal-value integral is needed
in the side-wall-effect part FT

{
K(x−ξ)

}
. The numerical implementation of this integral has

been done by subtracting singular contributions from the integrand, integrating numerically
the resultant non-singular part, and integrating analytically the subtracted part; for this
analytical integration, the following formula has been effectively used:∫

dν/dk − k/ν

sin
(
KBT

2

√
ν2 − k2

) ν√
ν2 − k2

dk =
2

KBT
ln

∣∣∣∣tan(KBT

4

√
ν2 − k2

)∣∣∣∣ (49)

Once the solution of the outer source strength qj(x) is obtained, calculating the inter-
ference coefficient Cj(x) in the inner solution is straightforward. Added-mass and damping
coefficients and wave-exciting force and moment have been obtained by integrating their
distribution along the x-axis with Simpson’s rule. Numerical results presented in this paper
were obtained by setting the number of division to N = 40; this number was based on the
validation study in Kashiwagi and Ohkusu (1989).

6. Experiments

In the case of zero forward speed, the experiments using a ship model with fore-and-aft sym-
metry had been carried out in the narrow wave tank (60m in length, 1.495m in breadth,
1.5m in depth) of the Research Institute for Applied Mechanics, Kyushu University. Trans-
verse sections of the ship model used in that experiment can be represented as so-called Lewis
forms. Therefore this model is referred to as the Lewis-form ship; its principal dimensions
and body plan are shown in Table 1 and Fig. 3, respectively.

Experiments in the forward-speed case have been conducted in the towing tank (60m in
length, 4m in breadth, 2.3m in depth) of the Nagasaki Institute of Applied Science.

Tested models are

1. Half-immersed prolate spheroid (L = 2.0m, B/L = 1/5)

2. Lewis-form ship, Fig. 3 (L = 1.5m, B/L = 1/6)

Table 1 Principal particulars of Lewis-form ship

Length L (m) 1.500

Breadth B (m) 0.250

Draft d (m) 0.125

Block coefficient CB 0.659

Midship section coefficient CM 0.942

Waterplane area coefficient CW 0.732
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Fig. 3 Body plan of Lewis-form ship

Items and conditions of the experiment are

1. Forced heave oscillation test (amplitude 1.5 cm, Froude number 0.1)

2. Forced pitch oscillation test (amplitude 2.0 deg., Froude number 0.1)

3. Wave-exciting force measurement test (wave amplitude about 2.0 cm, Froude number
0.1)

7. Numerical Results and Comparison with Experiments

7.1 Radiation forces on prolate spheroid

A few numerical examples were already reported in Kashiwagi and Ohkusu (1989) for beam-
length ratio 1/8 with zero and nonzero forward velocities. The results for zero forward
velocity are in virtually perfect agreement with “exact” numerical solutions of a 3-D panel
method.

Numerical computation at forward velocity requires the evaluation of the Mj-term ap-
pearing in (31) and (37), particularly of M3 by (32); for which we have used an analytical
expression

M3 =
1− ε2

D(ε)

cos θ sin θ

∆3

(
1 +

2ε2

∆2

)
cosβ

D(ε) = 1− 1− e2

2e
ln

1 + e

1− e
, e =

√
1− ε2

∆ =
√
sin2 θ + ε2 cos2 θ , ε = B/L

x =
L

2
cos θ , z =

B

2
sin θ cosβ

(50)
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Fig. 4 Heave added-mass and damping coefficients of a floating spheroid of B/L = 1/5 in
waterway of BT /L = 2 (Fn = 0.1)

Fig. 5 Coupling added-mass and damping coefficients of heave into pitch of a floating
spheroid of B/L = 1/5 in waterway of BT /L = 2 (Fn = 0.1)

Results are shown in Figs. 4 to 7, for a floating spheroid of B/L = 1/5 advancing at
a Froude number 0.1 in the waterway of BT /L = 2.0; these rations are identical to the
experiment conditions described earlier. For reference, the results in open sea, equal to
Newman’s unified-theory predictions, are demonstrated by the short-dashed line and the
strip-theory results are by the dashed-dotted line. The experimental data shown in Figs. 4
and 5 were obtained from the forced heaving test, and the data in Figs. 6 and 7 were from
the forced pitching test. The agreement between the experimental data and our results is
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Fig. 6 Pitch added-mass and damping coefficients of a floating spheroid of B/L = 1/5 in
waterway of BT /L = 2 (Fn = 0.1)

Fig. 7 Coupling added-mass and damping coefficients of pitch into heave of a floating
spheroid of B/L = 1/5 in waterway of BT /L = 2 (Fn = 0.1)

generally very good. The experiments show the tendency that as the wavenumber increases,
the side-wall effects gradually diminish and the hydrodynamic coefficients approach the
corresponding values in open sea. The theory accounts well for this tendency, though there
are slight discrepancies around the wavenumber KL = 11.

Since the spheroid concerned is longitudinally symmetric, the cross-coupling coefficients
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Fig. 8 Asymptotic wave contour calculated by stationary phase method (τ = 0.2625 & 0.3)

Fig. 9 Heave and pitch damping coefficients calculated from the principle of energy conser-
vation for a floating spheroid of B/L = 1/5 in waterway of BT /L = 2 (Fn = 0.1)
Comparison with the results by pressure integration

shown in Figs. 5 and 7 exist only when the forward velocity is not zero. The experimental
data for these cross-coupling coefficients agree well with computed results, and satisfy with
good accuracy the Timman and Newman (1962) relation A35 = −A53, B35 = −B53.
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Incidentally, the computed results show a rapid variation at KL = 7.5 ∼ 8.0, where
the parameter τ takes the value ranging from 0.27 to 0.28 for the Froude number 0.1. To
examine a physical reason for this, we calculated an asymptotic form of the open-sea wave
contour for two values of τ , 0.2625 and 0.3, using the stationary phase method. The results
are shown in Fig. 8, where only the component with longer wavelength, the so-called K2-
wave, is depicted. This wave component may propagate ahead of the ship and thus have
close relations to the side-wall interference. (The definition of the wavenumber K2 is also
included in Fig. 8, and α denotes the propagation direction of an elementary wave, measured
from the positive x-axis, as demonstrated on one of the contours.)

It can be expected from Fig. 8 that in the range between τ = 0.27 and 0.28 the waves
originating from the cusp part of the contour strike the ship model after being reflected
by side walls of the waterway. Furthermore, elementary waves near the cusp are slightly
different in value of α and consequently different in wavenumber. These lead to a conjecture
that the rapid variation in the numerical results shown in Figs. 4 to 7 is due to the reflection
waves emitted from the cusp part of the K2-wave.

The damping coefficient can be also computed from the energy-conservation principle.
Evaluating the Kochin function, which is necessary in the calculation formula (39), can be
done with two different methods: the inner-solution method and the outer-solution method.
The computed results by these two methods are shown for B33 and B55 in Fig. 9, together
with the results by the pressure integration over the body surface. The outer-solution method
(indicated by open circles) provides almost the same predictions as the pressure integration
(solid line), whereas the inner-solution method (closed circles) does not, particularly for
B55, implying that the Kochin function in the slender-ship theory must be evaluated by
the outer solution. This conclusion seems reasonable because the analysis of energy flux
has been performed in the far field where the outer solution is more valid than the inner
solution.

Figures 10 and 11 show heave and pitch exciting forces for a floating spheroid of B/L =
1/5 in a waterway of BT /L = 2, computed by the inner- and outer-solution methods. Forces
are nondimensionalized in terms of the waterplane area Aw, and λ denotes the wavelength
of the incident wave. The outer-solution method provides closer results to the 3-D numerical
solutions (indicated by open circles) than the inner-solution method. This result coincides
with a conclusion derived earlier in relation to the energy-conservation principle. With these
findings, only the results based on the outer-solution method will be presented hereafter.

For the case of Fn = 0.1, computed results are compared in Fig. 12 for the heave exciting
force and in Fig. 13 for the pitch exciting moment to experimental values. The theory tends
to underpredict the pitch exciting moment, but overall agreement is very good.

7.2 Wave-exciting forces on prolate spheroid

To confirm the utility of using Haskind-Newman’s reciprocity relation, computations have
been performed firstly for zero forward velocity and compared with “exact” numerical solu-
tions by a 3-D panel method, Kashiwagi (1989).

The results are shown in Figs. 14 and 15 for zero forward speed, and in Figs. 16 and 17 for
the Froude number 0.1. These are for a prolate spheroid of beam-length ratio 1/5. At zero
speed, “exact” numerical solutions based on the 3-D panel method (in which the surge effect
is correctly taken into consideration) are also shown for comparison. We can see that the
present-theory calculations for zero forward speed are in good agreement with 3-D numerical
solutions and that the effects of side-wall interference on motion amplitudes are very small,
except for heave in the small wavelength region. The radiation and diffraction show quite
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Fig. 12 Same as Fig. 10 with Fn = 0.1

Fig. 13 Same as Fig. 11 with Fn = 0.1

large variation owing to the side-wall effects. So there must be precise cancellations between
the right- and left-hand sides of the ship-motion equation.

At forward speed, on the other hand, the heave and pitch motions are greatly affected
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Fig. 14 Computed heave amplitude of a floating spheroid of B/L = 1/5 in waterway of
BT /L = 2.0 (U = 0)

Fig. 15 Computed pitch amplitude of a floating spheroid of B/L = 1/5 in waterway of BT /L =
2.0 (U = 0)

by the side-wall interference and thus different from corresponding results at zero speed. It
should be emphasized that the presence of forward speed is the only difference in the calcula-
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Fig. 16 Same as Fig. 14 with Fn = 0.1

Fig. 17 Same as Fig. 15 with Fn = 0.1

tion conditions between Fig. 14 and Fig. 16, or Fig. 15 and Fig. 17. When the forward speed
exists, there are no 3-D numerical solutions or experimental data with which to compare,
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and thus it is impossible to make a conclusive judgement on the validity of the computed
results shown here. However the “beating” phenomena observed by Hosoda (1978) in the
records of experiments seem to correspond to the rapid variation at λ/L = 1.2 ∼ 1.3 in
the numerical results. The magnitude of this variation is larger in pitch than in heave; this
can be attributed to the plural number of pitch resonances in this frequency range, which
is shown in the graph of A55 in Fig. 6, where the intersections between broken line and
added-mass curve give the resonant frequencies.

Fig. 18 Heave added-mass and damping coefficients of Lewis-form ship in waterway of BT /L =
0.997 (U = 0)

Fig. 19 Pitch added-mass and damping coefficients of Lewis-form ship in waterway of BT /L =
0.997 (U = 0)
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7.3 Hydrodynamic forces at U=0 on Lewis-form ship

Usefulness of the present theory seems well demonstrated through the comparisons above
for a floating spheroid. In those comparisons, however, only one ratio of tank width to ship
length (BT /L = 2.0) has been tested, and further the difference in shape of a ship model
may cause new difficulties. To check these, we compare in this section numerical results
with the zero-speed experiments for the Lewis-form ship shown in Kashiwagi (1989).

Figure 18 compares heave added-mass and damping coefficients with experiments, in
which the ratio of tank width to model length is BT /L = 0.997. Despite such a narrow
tank-width case, the agreement is very good. This is because the present theory takes into
account in a consistent manner the contributions of nonradiating local waves near the ship.
Comparison of the added-moment of inertia and damping coefficients in pitch is demon-
strated in Fig. 19. The degree of coincidence is slightly inferior to that in the heave mode,
but it can be seen that the overall agreement is fairly good.

The computed results of heave exciting force and pitch exciting moment are compared
with experiments in Fig. 20 and Fig. 21, respectively. Despite some discrepancies around
KL = 10, it can be concluded that the calculation method accounts well for the effects of
side-wall interference on the wave-exciting forces.

7.4 Hydrodynamic forces at U=0.1 on Lewis-form ship

For non-zero forward speed, the term M3 must be evaluated. We have used an approximate
representation for this term, derived by the following procedures: 1) neglect the contribution
of steady-disturbance potential ϕS in the steady velocity vector W ; 2) perform the partial
integration for (43) with respect to x; 3) compare the resulting equation with (44). The
final result of this procedure is the expression

mj = − ∂

∂x
nj (51)

As mentioned earlier, the model length used in experiments is 1.5m and the towing tank
is 4m in width. Thus the ratio of these is BT /L = 2.667, which is larger than that for a
prolate spheroid.

The experimental values obtained from the forced heaving test are shown in Figs. 22 and
23 by the circle with dot. Computed results, shown by the solid line, agree very well.

Figures 24 and 25 compare experimental values obtained from the forced pitching test with
our numerical results. Slight discrepancies can be seen in B55 and A35, but the remaining
coefficients show excellent agreement. The effects of side-wall interference on experimental
results decrease with increasing wavenumber and vanish at the wavenumbers higher than
approximately KL = 12. This experimental characteristic is also well accounted for by the
theory.

Final comparisons are for the wave-exciting heave force and pitch moment, Fig. 26 and
Fig. 27. There is good agreement for the heave exciting force, but the theory tends to
underpredict the pitch exciting moment. This tendency is consistent with the spheroid case
(Fig. 13). However, another possibility exists that the approximation (51) is not appropriate
especially near the ship ends and thus the pitch moment depending on the forward speed is
underpredicted.

In summary, our calculation method provides favorable predictions also for a ship-like
form and irrespective of the breadth of a waterway.
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Fig. 22 Heave added-mass and damping coefficients of Lewis-form ship in waterway of BT /L =
2.667 (Fn = 0.1)

Fig. 23 Coupling added-mass and damping coefficients of heave into pitch of Lewis-form ship
in waterway of BT /L = 2.667 (Fn = 0.1)

8. Side-Wall Interference Diagram

Since the calculation method is based on slender-ship theory, the computation is not so time-
consuming. This may be not true, however, when a minicomputer is used for the forward-
speed case. Therefore it is desirable to prepare a diagram incorporating appropriately the
information given by the theory. There exists already a diagram having been in conventional
use, Vossers and Swaan (1960) and modified by Goodrich (1963). However, this diagram is
not entirely correct because it was derived geometrically from asymptotic contours of the
waves generated by hydrodynamic sink-source singularities, and thus this diagram gives no
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Fig. 24 Pitch added-mass and damping coefficients of Lewis-form ship in waterway of BT /L =
2.667 (Fn = 0.1)

Fig. 25 Coupling added-mass and damping coefficients of pitch into heave of Lewis-form ship
in waterway of BT /L = 2.667 (Fn = 0.1)

information on the magnitude of side-wall effects.
For a new diagram, we performed a number of computations varying Froude number,

frequency, and tank width. A prolate spheroid of beam-length ratio 1/8 was selected for these
computations, because the present theory is considered to be accurate for a more slender
body. Fig. 28 is an example of these computations. The solid line shows the predicted value
with side-wall effects taken into account, and the dashed line the value in open sea. The
difference between these two lines indicates the degree of side-wall interference. However,
since the solid line fluctuates around the open-sea value, we regard the envelope as indicating
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Fig. 26 Heave wave-exciting force of Lewis-form ship of B/L = 1/6 at Fn = 0.1

Fig. 27 Pitch wave-exciting moment of Lewis-form ship of B/L = 1/6 at Fn = 0.1

the actual side-wall interference. The expected envelope lines are shown in Fig. 28 as thin
solid lines.

With this figure, one can estimate a critical wavenumber at which the side-wall interfer-
ence will vanish. For Fig. 28, that wavenumber is KL ≈ 11.5. On the other hand, as shown
by the vertical solid line in Fig. 28, KL = 6.8 is the critical value estimated from asymptotic
wave contours in open sea. The difference of these two values is due to the effect of nonradi-
ating local waves in the vicinity of the ship; this local-wave effect becomes important when
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the tank width is narrow relative to the wavelength as for Fig. 28.
We determined critical lines showing the existence of the side-wall interference as a func-

tion of Froude number, wavenumber, and tank width. Results are shown by solid lines in
Fig. 29. Dotted lines are obtained from asymptotic wave contours; these lines are linear
because the characteristics of an asymptotic wave contour can be determined by only the
parameter τ (= Fn

√
KL). The newly obtained lines approach the dotted lines at high fre-

quencies, where the wavelength may be small relative to the tank width and an asymptotic
approximation of the waves is valid.

From Fig. 28, we can also determine the frequency at which the side-wall effect is less
than the permissible error to be included in the measured values. For instance, let 10% be
the permissible error. Then, as shown in Fig. 28, we can draw two dotted lines above and

Fig. 28 Heave added-mass and damping coefficients of a floating spheroid of B/L = 1/8
(BT /L = 1.0, Fn = 0.2
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Fig. 29 Diagram showing whether tank-wall effects are expected. Comparison between present
result (solid line) and asymptotic theory (dotted line)

Fig. 30 Region where tank-wall effects are less than 10%

below the open-sea line, and the critical frequency concerned can be given at intersections of
these dotted lines with the envelope shown by thin solid lines. These can be for intersections
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(two are from A33, other two are from B33), but fortunately these four seem to give almost
the same critical frequency; we confirmed this is the case for other computed results.

The results obtained in such a manner are shown by thick solid lines in Fig. 30. Thin
solid lines are also included for comparison, which were reproduced from Fig. 29 and thus
indicate the boundary of whether the side-wall interference exists or not. Therefore the
region between the thick and thin solid lines for each tank width shows the area in which
the side-wall interference less than 10% can be expected.

Strictly speaking, the newly obtained diagrams, Fig. 29 and Fig. 30, should be applied
only to the radiation forces on a prolate spheroid of beam-length ratio 1/8, because basic
computations were performed for that case. However, the critical frequency of vanishing the
side-wall interference seems not to be very dependent on the hull form or the measured items
(radiation forces, exciting forces, ship motions). Therefore at least Fig. 29 can be regarded
as generally applicable. On the other hand, the magnitude of the side-wall interference is
sensitive to the measured items and possibly to the hull form. This suggests that Fig. 30
should be used only for the forced heaving test with a slender body.
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Appendix

A1. An asymptotic form of the velocity potential

First, let us consider an asymptotic behavior of the Green function as x → ±∞. In the
analysis in subsection 2.1, the position of the source point Q = (ξ, η, ζ) is fixed at the origin
of the coordinate system. Removing this restriction here and discarding the terms associated
with the nonradiating local waves, we can get from eqs. (13) to (18) the following expression:

G(P ;Q) ∼ i
K

2π

(
2π

KBT

) 4∑
p=1

∞∑
m=0

ϵm

[
sgn(1 + kτ)

|dν/dk − k/ν |

× e−ν(z+ζ)−ik(x−ξ) cos
(
y
√
ν2 − k2

)
cos
(
η
√
ν2 − k2

)]
k=kpm

+
K

2π

[∫ k1

−∞
+

∫ k3

k2

+

∫ ∞

k4

]
ν√

ν2 − k2
e−ν(z+ζ)−ik(x−ξ)

× cos
(
y
√
ν2 − k2

)
cos
(
η
√
ν2 − k2

)
cot
(KBT

2

√
ν2 − k2

)
dk

− K

2π

[∫ k2

k1

+

∫ k4

k3

]
ν√

k2 − ν2
e−ν(z+ζ)−ik(x−ξ)

× cosh
(
y
√
k2 − ν2

)
cosh

(
η
√
k2 − ν2

)
coth

(KBT

2

√
k2 − ν2

)
dk

as |x− ξ | → ∞ (52)

Here, for brevity, the coordinates P = (x, y, z) and Q = (ξ, η, ζ) are nondimensionalized in
terms of the wavenumber K. The meanings of symbols ϵm and kpm are already described
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in subsection 2.1. (Fig. 2 may be useful in understanding kpm.) In order to transform (52)
further, we exploit the Riemann-Lebesgue lemma:

lim
X→∞

∫ b

a

F (k)

f(k)
e−ikX dk ∼ −πi F (β)

f ′(β)
e−iβX (53)

where β is the value of k satisfying f(k) = 0 in the range of integration [a, b].
Now let us consider first the case of (x− ξ) → +∞, with the sum of the second and third

terms of (52) denoted by J23. Applying the above lemma to the integrals in (52), we shall
have the following result:

J23 ∼−i K
2π

(
2π

KBT

) 4∑
p=1

∞∑
m=0

ϵm

[
1

dν/dk − k/ν

× e−ν(z+ζ)−ik(x−ξ) cos
(
y
√
ν2 − k2

)
cos
(
η
√
ν2 − k2

)]
k=kpm

as (x− ξ) → +∞ (54)

Note that, as can be understood from Fig. 2, dν/dk − k/ν is positive for p = 2 and 4, and
negative for p = 1 and 3. Therefore the sum of (54) and the first term in (52) gives the final
result of the form

G(P ;Q) ∼ i
K

π

(
2π

KBT

) M∑
m=0

ϵm

[
1

|dν/dk − k/ν |

× e−ν(z+ζ)−ik(x−ξ) cos
(
y
√
ν2 − k2

)
cos
(
η
√
ν2 − k2

)]
k=k3m

as (x− ξ) → +∞ (55)

where M is the maximum of integer m satisfying KBT

√
ν2 − k2 = 2πm when k2 ≤ k ≤ k3,

that is, for p = 3 (see Fig. 2).
If we consider next the case of (x− ξ) → −∞, the asymptotic form of J23 can be shown

to be equal in form but opposite in sign to (54). Therefore we shall have

G(P ;Q) ∼ i
K

π

(
2π

KBT

) ∑
p=1,2,4

∞∑
m=0

ϵm

[
sgn(1 + kτ)

|dν/dk − k/ν |

× e−ν(z+ζ)−ik(x−ξ) cos
(
y
√
ν2 − k2

)
cos
(
η
√
ν2 − k2

)]
k=kpm

as (x− ξ) → −∞ (56)

The velocity potential at an arbitrary point in the fluid region can be given as

ϕj(P ) =

∫∫
SH

(
∂ϕj
∂n

− ϕj
∂

∂n

)
G(P ;Q) dS (57)

where SH is the ship hull.
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Substituting the asymptotic form of the Green function given by (55) and (56) into (57),
it follows that

ϕj(P ) ∼ i
K

π

(
2π

KBT

) M∑
m=0

ϵm

[
Hj(k)

1

|dν/dk − k/ν |
e−νz−ikx cos

(
y
√
ν2 − k2

)]
k=k3m

as x→ +∞ (58)

ϕj(P ) ∼ i
K

π

(
2π

KBT

) ∑
p=1,2,4

∞∑
m=0

ϵm

[
Hj(k)

sgn(1 + kτ)

|dν/dk − k/ν |
e−νz−ikx cos

(
y
√
ν2 − k2

)]
k=kpm

as x→ −∞ (59)

where
Hj(k) =

∫∫
SH

(
∂ϕj
∂n

− ϕj
∂

∂n

)
e−νζ+ikξ cos

(
η
√
ν2 − k2

)
dS (60)

Eqs. (58) and (59) are the asymptotic forms of the velocity potential at positive and negative
infinities of a parallel-sided waterway. If we recall that the above analysis proceeded with
the coordinates nondimensionalized in terms of K, we can confirm that eq. (60) is the same
as (40) given in Chapter 3.
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Calculation Formulas for the Wave-Induced Steady
Horizontal Force and Yaw Moment
on a Ship with Forward Speed∗

Masashi KASHIWAGI
Research Institute for Applied Mechanics, Kyushu University

Kasuga, Fukuoka 816-8580, Japan

Abstract

A new analysis method based on the theory of Fourier transform is provided for the added
resistance, steady sway force, and yaw moment acting on an advancing ship in oblique
waves. The principle of linear and angular momentum conservation is used to relate the
steady force and moment to far-field disturbance waves generated by the ship. Maruo’s
added-resistance formula is derived easily with the present method in which Parseval’s
theorem is effectively used in place of the stationary-phase method. The new method is
extended to the analysis of the steady sway force and yaw moment. Calculation formulas for
these force and moment are obtained in a form analogous to that for the added resistance,
involving only the Kochin function as unknown. In the limit of vanishing forward speed,
the obtained formulas reduce to Maruo’s for the drift force and Newman’s for the drift
moment.

Keywords: Added resistance, Steady sway force, Steady yaw moment, Principle of mo-
mentum conservation, Kochin function, Forward-speed effects, Fourier transform, Parse-
val’s theorem.

1. Introduction

When a ship is floating on the surface of waves, the mean drifting force and yawing moment
will be exerted on the ship as a result of wave actions. These drift force and moment are of
second order in the wave amplitude, but of engineering importance in designing the control
system to maintain the position or heading of ships in waves. A rational theoretical analysis
of this subject, based on the principle of momentum conservation, was provided first by
Maruo1) for the drift force in the horizontal plane and later by Newman2) for the steady
yawing moment. It has been common since these two papers to perform “exact” numerical
computations of the drift force and moment when the ship’s forward speed is zero.

When a ship is advancing at constant forward speed, the same kind of second-order steady
force and moment will be also exerted on the ship. Maruo3),4) applied the momentum-
principle analysis to the case of forward speed present, and provided a formula for the
ship’s longitudinal component of the steady horizontal force. This component is known
as the added resistance in waves and has interested many researchers in the field of naval
architecture, because the prediction of wave resistance is crucial in considering economical
operations of ships in actual seaways. With this engineering reason, many studies on the

∗ Reprinted from Reports of Research Institute for Applied Mechanics, Vol. 37, No. 107, pp. 1–18,
1991
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added resistance have been made so far; references of these are included in the proceeding
of symposium5) held by the Society of Naval Architects of Japan.

In oblique waves, due to the wave-induced steady sway force and yaw moment, the ship
will advance with drift angle and check helm to maintain a designated course and thus
experience the increase of resistance arising from these secondary causes. Therefore in
discussing the overall propulsive performance of a ship in waves, we need to focus more
attention on the wave-induced sway force and yaw moment besides the added resistance.
However no calculation formulas exist for these steady force and moment, involving only the
Kochin function as does the added-resistance formula. It may be true that Maruo’s added-
resistance analysis can be directly applied to the lateral force component, but it seems
difficult to derive a compact formula for the yaw moment, as long as we follow Maruo’s
procedure of analyzing the momentum relation. His procedure is complicated, because the
stationary-phase method is skillfully used to lead to the final expression. Therefore, to
succeed in obtaining a compact formula for the steady yaw moment, we must first develop
a new analysis method with which Maruo’s added-resistance formula can be easily derived,
and next apply it to the principle of angular momentum conservation which relates the
moment on a ship to the far-field ship-generated waves.

The present paper reports the work performed along the above lines. In the new anal-
ysis method, Parseval’s theorem in the Fourier-transform theory is effectively utilized, and
thereby complicated calculi seen in Maruo’s analysis are avoided. The obtained formulas
permit the prediction of the wave-induced steady sway force and yaw moment in terms only
with the Kochin function equivalent to the complex amplitude of far-field disturbance waves.
Of course Newman’s zero-speed results are recovered from the present formulas in the limit
of vanishing forward speed.

Fig. 1 Coordinate system and notations
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2. Far-Field Asymptotic Form of the Velocity Potential

For the sake of subsequent analyses on the principle of momentum and energy conservation,
we need to obtain the asymptotic form of the disturbance velocity potential at large distances
from a ship. Let us consider a ship advancing at constant forward velocity U into a plane
progressive wave of amplitude a, circular frequency ω0, and wavenumber k0. The water
depth is assumed infinite and thus k0 = ω2

0/g, with g the acceleration of gravity. The angle
of wave incidence is denoted by χ and measured as in Fig. 1, with χ = 0 corresponding to
the following wave. Due to the effect of this incident wave, the ship performs sinusoidal
oscillations about its mean position with the circular frequency of encounter ω, which is
related to ω0 by ω = ω0 − k0U cosχ.

As shown in Fig. 1, we take a right-hand Cartesian coordinate system O-xyz, translating
with the same velocity as that of the ship. The x-axis is positive in the direction of ship’s
forward motion, the y-axis positive starboard, and the z-axis positive downward, with the
origin placed on the undisturbed free surface.

To justify the linearity, we assume the amplitudes of incident wave and ship’s oscillations
to be small. Further we assume the flow inviscid with irrotational motion. Then the velocity
potential can be introduced and written by linear assumption as

Φ(x, y, z, t) = −Ux+ ϕ(x, y, z, t) (1)

ϕ(x, y, z, t) = Re
[
ψ(x, y, z) eiωt

]
(2)

ψ(x, y, z) =
ga

iω0

{
φ0(x, y, z) + φ(x, y, z)

}
(3)

φ0(x, y, z) = e−k0z−ik0(x cosχ+y sinχ) (4)

φ(x, y, z) = φ7(x, y, z)−
ωω0

g

6∑
j=1

ξj
a
φj(x, y, z) (5)

In the above, φ0 is the potential of the incident wave and φ the disturbance potential due to
the presence of a ship. The latter is divided into the scattered potential φ7 and the radiation
potential φj (j = 1, 2, · · · , 6) due to forced motion of the ship in each mode of six degrees
of freedom; ξj is the amplitude in the jth mode of motion. The symbol ‘Re’ in (2) means
the real part to be taken.

The velocity potentials, φ0 and φ, are governed by Laplace’s equation and subject to the
linearized free-surface boundary condition(

iω − U
∂

∂x

)2

ψ − g
∂ψ

∂z
= 0 (6)

on z = 0 and the condition of vanishing velocity as z → ∞. In addition, the disturbance
potential φ satisfies a suitable radiation condition.

From Green’s theorem, the disturbance potential φ at any point P = (x, y, z) in the fluid
is given by

φ(P ) =

∫∫
SH

(
∂φ(Q)

∂n
− φ(Q)

∂

∂n

)
G(P ;Q) dS(Q) (7)

where Q = (ξ, η, ζ) denotes the integration point on the wetted portion of ship hull SH ; ∂/∂n
is the normal differentiation with respect to the integration point, with the normal defined
positive into the ship hull; and G(P ;Q) denotes the Green function or source potential which
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satisfies the same free-surface and radiation conditions as those to be satisfied by φ. With
the Fourier-transform technique, this Green function can be written in the form6)

G(P ;Q) =− 1

4π

(
1

r
− 1

r ′

)
− 1

2π

∫ ∞

−∞
e−ik(x−ξ) dk · Re

∫ ∞

0

e−in(z+ζ)−|y−η|
√
n2+k2

(n+ iν)
√
n2 + k2

ndn

− 1

2π

[∫ k2

k1

+

∫ k4

k3

]
ν√

k2 − ν2
e−ν(z+ζ)−|y−η|

√
k2−ν2−ik(x−ξ) dk

+
i

2π

[
−
∫ k1

−∞
+

∫ k3

k2

+

∫ ∞

k4

]
ν√

ν2 − k2

× e−ν(z+ζ)−iϵk|y−η|
√
ν2−k2−ik(x−ξ) dk (8)

where
r
r ′

}
=
√

(x− ξ)2 + (y − η)2 + (z ∓ ζ)2 (9)

ν =
1

g
(ω + kU)2 = K + 2kτ +

k2

K0
(10)

K =
ω2

g
, τ =

Uω

g
, K0 =

g

U2
(11)

k1
k2

}
= −K0

2

[
1 + 2τ ±

√
1 + 4τ

]
(12)

k3
k4

}
=

K0

2

[
1− 2τ ∓

√
1− 4τ

]
(13)

ϵk = sgn(ω + kU) =

{
−1 for −∞ < k < k1
1 for k2 < k <∞ (14)

In the case of τ > 1/4, wavenumbers k3 and k4 given by (13) is not real, and thus the limits
of integration in (8) should be interpreted such that k3 = k4 for τ > 1/4. (Hereafter this
convention will be understood.)

To obtain a far-field approximation to the disturbance potential φ when the transverse
distance |y | is large, let us first consider the asymptotic approximation of the Green function
itself. It is obvious that all the terms except the last one in (8) vanish for large values of
|y |. (These terms represent the local disturbance in the vicinity of the x-axis.) Therefore,
substituting only the last term of (8) into (7), we obtain the desired approximation of the
velocity potential valid at large distances from the x-axis:

φ(x, y, z) ∼ i

2π

[
−
∫ k1

−∞
+

∫ k3

k2

+

∫ ∞

k4

]
H±(k)

× ν√
ν2 − k2

e−νz∓iϵky
√
ν2−k2−ikx dk (15)

where
H±(k) =

∫∫
SH

(
∂φ

∂n
− φ

∂

∂n

)
e−νζ±iϵkη

√
ν2−k2+ikξ dS (16)
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is the Kochin function equivalent to the complex amplitude of the far-field disturbance wave.
The upper of lower of the complex signs in (15) and (16) is to be taken according as the sign
of yy is positive or negative, respectively. With the convention that the Kochin function is
zero outside of the integration range explicitly shown in (15), we shall write (15) in the form

φ(x, y, z) ∼ 1

2π

∫ ∞

−∞
iϵkH

±(k)
ν√

ν2 − k2
e−νz∓iϵky

√
ν2−k2

e−ikx dk (17)

Here the notation (14) has been used.
From this equation, we can readily obtain the Fourier transform of the disturbance po-

tential in the far field:

F
{
φ(x, y, z)

}
≡
∫ ∞

−∞
φ(x, y, z) eikx dx (18)

= iϵkH
±(k)

ν√
ν2 − k2

e−νz∓iϵky
√
ν2−k2

(19)

Note that neglected in (17) or (19) are only the local disturbances near the x-axis and that
the momentum or the energy associated with these terms become infinitely small as the
coordinate x tends to plus or minus infinity.

The Fourier transform of the incident-wave potential φ0 will be derived by substituting
(4) into the definition (18), with the result

F
{
φ0(x, y, z)

}
= 2πδ(k − k0 cosχ) e

−k0z−ik0y sinχ (20)

where δ(k − k0 cosχ) is Dirac’s delta function, thus contributing only for k = k0 cosχ.
For convenience in subsequent derivations, we decompose the Kochin function in the form

H±(k) = C(k)± iϵkS(k) (21)

where
C(k) =

∫∫
SH

(
∂φ

∂n
− φ

∂

∂n

)
e−νζ+ikξ cos

(
η
√
ν2 − k2

)
dS

S(k) =

∫∫
SH

(
∂φ

∂n
− φ

∂

∂n

)
e−νζ+ikξ sin

(
η
√
ν2 − k2

)
dS

 (22)

We note that C(k) and S(k) represent the symmetric and antisymmetric components, re-
spectively, with respect to the center plane of a ship symmetrical about y = 0.

3. Added Resistance

3.1 Principle of linear momentum conservation

In this section, we shall consider by use of the Fourier-transform technique the same problem
as that analyzed by Maruo4) and show that Maruo’s added-resistance formula can be derived
with considerable ease. Following Maruo, we begin by considering the rate of change of linear
momentum within the fluid domain bounded by ship’s wetted surface SH , free surface SF ,
and control surface SC at a large distance from the ship. Using Gauss’ theorem and taking
account of no flux across SH and SF and zero pressure on SF , we get:

dM

dt
= −

∫∫
SH

pn dS −
∫∫

SC

[
pn+ ρ∇Φ

(
n · ∇Φ

)]
dS (23)
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where p is the fluid pressure, ρ the fluid density, and n the normal vector.
As usual, we take time average of the above. Because of the periodicity of fluid motion,

there can be no net increase of momentum in the control volume from one cycle no another.
Therefore the steady force in the horizontal plane can be related to the far-field velocity
potential, in the form

F =

∫∫
SH

pn dS = −
∫∫

SC

[
pn+ ρ∇ϕ

(∂ϕ
∂n

− Unx

)]
dS (24)

where, from Bernoulli’s equation,

p = −ρ
{
∂ϕ

∂t
− U

∂ϕ

∂x
+

1

2
∇ϕ · ∇ϕ− gz

}
(25)

and nx is the x-component of the normal vector. In (24) and (25), eq.(1) has been substituted
and the overbar in (24) means taking time average.

Since the resistance is defined as the force in the negative x-direction, we obtain from
(24) an expression for the added resistance:

R =

∫∫
SC

[
p nx + ρ

∂ϕ

∂x

(∂ϕ
∂n

− Unx

)]
dS (26)

In the present analysis, instead of the usual control surface of a circular cylinder of
large radius about the z-axis, we take two flat plates as the control surface, which are, as
shown in Fig. 1, located at y = ±Y and extend from x = −∞ to x = +∞ and from the
instantaneous free surface down to z = +∞. (The value of Y is assumed large such that
the local waves near the x-axis can be neglected.) Careful readers might be anxious about
the momentum flux from the vertical planes parallel to the y-axis at x = ±∞. However the
control surface considered here is of infinite length in the x-direction and all the disturbance
waves radiating away from the x-axis are precisely taken into account. Thus, neglected
are only the contributions from the local waves which exist only near the x-axis; these will
become zero at x = ±∞ in the three-dimensional case.

Note that the x-component of the normal vector is zero on the present control surface.
Then, neglecting terms higher than O(ϕ3) as in the usual procedure, we readily obtain from
(26)

R = ρ

∫ ∞

0

dz

∫ ∞

−∞

[
∂ϕ

∂x

∂ϕ

∂y

]Y
−Y

dx (27)

Here
[ ]Y

−Y
means the difference between the values of the quantity in brackets at y = Y

and at y = −Y . Substituting (2) into (27) and performing the time-average calculation, it
follows that

R =
1

2
ρRe

∫ ∞

0

dz

∫ ∞

−∞

[
∂ψ

∂x

∂ψ∗

∂y

]Y
−Y

dx (28)

where the asterisk denotes the complex conjugate.
Next we substitute the velocity potential (3) for ψ into the above. The result will involve

terms which are quadratic in the disturbance potential φ and the incident-wave potential
φ0 separately, plus the cross terms of φ and φ0. The contribution from φ0 alone is zero,
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because there can be no force associated with the undisturbed incident wave system. Taking
these into consideration, (28) can be written in the form

R =
ρga2

k0

(
R1 +R2

)
(29)

R1 =
1

2
Re

∫ ∞

0

dz

∫ ∞

−∞

[
∂φ

∂x

∂φ∗

∂y

]Y
−Y

dx (30)

R2 =
1

2
Re

∫ ∞

0

dz

∫ ∞

−∞

[
∂φ

∂x

∂φ∗
0

∂y
+
∂φ∗

0

∂x

∂φ

∂y

]Y
−Y

dx (31)

We notice that the integrations with respect to x are of the form to which the following
Fourier-transform theorem (Parseval’s theorem) can be applied:∫ ∞

−∞
f(x)g∗(x) dx =

1

2π

∫ ∞

−∞
F (k)G∗(k) dk (32)

where F (k) and G(k) are Fourier transforms of f(x) and g(x), respectively, which may be
calculated from the definition (18).

Let us consider first eq. (30). Since the potential φ has exponential dependence on the
coordinate z as seen in (17), the z-integration in (30) can be carried out with the formula:∫ ∞

0

e−2νz dz =
1

2ν
(33)

The x-integration in (30), on the other hand, can be performed by applying the Parseval’s
theorem (32) in terms of the Fourier transform of φ given by (19). After performing the x-
and z-integrations in this manner, we get the following result with relative ease.

R1 =
1

8π

∫ ∞

−∞
ϵk

{
|H+(k)|2 + |H−(k)|2

} ν√
ν2 − k2

k dk

=
1

8π

[
−
∫ k1

−∞
+

∫ k3

k2

+

∫ ∞

k4

]{
|H+(k)|2 + |H−(k)|2

} ν√
ν2 − k2

k dk (34)

Here we have used the convention concerning the integration range noted in deriving (17).
In (34), it is understood that k3 = k4 in the case of τ > 1/4.

We proceed to the second term R2 defined by (31). In the calculation of (31), it is sufficient
to retain only the terms which are independent of the coordinate y, because according to
the theory of hyperfunction7), sinusoidal terms will vanish when taking the limit of Y → ∞
after performing the x- and z-integrations. Therefore only two cases should be considered
here: k0 sinχ = ϵk

√
ν2 − k2 and k0 sinχ = −ϵk

√
ν2 − k2.

We begin with the first case, k0 sinχ = ϵk
√
ν2 − k2. Since we are going to apply the Par-

seval’s theorem (32) to the x-integration in (31), we must consider the product of the Fourier
transforms of φ and φ0, given by (19) and (20), respectively. Thus due to Dirac’s delta func-
tion appearing in (20), we can put k = k0 cosχ; from this and k0 sinχ = ϵk

√
ν2 − k2, we

have ν = k0. Therefore the z-integration in (31) takes the form∫ ∞

0

e−(ν+k0)z dz =
1

(ν + k0)
=

1

2ν
(35)
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Applying this result and Parseval’s theorem, eq. (31) can be reduced to

R2 = − 1

2
k0 cosχ Im

[
H(k0, χ)

]
(36)

where ‘Im’ denotes the imaginary part, and H(k0, χ) is the function obtained after substi-
tuting k = k0 cosχ and ϵk

√
ν2 − k2 = k0 sinχ into the Kochin function H+(k) and thus can

be written as

H(k0, χ) =

∫∫
SH

(
∂φ

∂n
− φ

∂

∂n

)
e−k0ζ+ik0(ξ cosχ+η sinχ) dS (37)

In the second case of k0 sinχ = −ϵk
√
ν2 − k2, we can easily confirm that the reductions

analogous to the first case lead to the same final result as (36) and (37). Therefore we have
completed all of the necessary integrations.

Substituting (34) and (36) into (29) gives the formula for the added resistance in waves:

R

ρga2
=

1

8πk0

[
−
∫ k1

−∞
+

∫ k3

k2

+

∫ ∞

k4

]{
|H+(k)|2 + |H−(k)|2

}
× ν√

ν2 − k2
k dk − 1

2
cosχ Im

[
H(k0, χ)

]
(38)

3.2 Principle of energy conservation

In Maruo’s analysis, the last term of (38) is transformed further using the energy-
conservation principle. Since no external force exists except the constant towing force and
the gravitational force keeping the equilibrium position of the ship in space, there is no work
done or no dissipation of energy. Thus, owing to the periodic nature of the fluid motion, we
have the relation4) ∫∫

SC

∂ϕ

∂t

(∂ϕ
∂n

− Unx

)
dS = 0 (39)

Noting that nx = 0 on the control surface shown in Fig. 1 and neglecting higher-order terms
resulting from the free-surface elevation, the above equation can be transformed as∫ ∞

0

dz

∫ ∞

−∞

[
∂ϕ

∂t

∂ϕ

∂y

]Y
−Y

dx =
1

2
Re

∫ ∞

0

dz

∫ ∞

−∞

[
iωψ

∂ψ∗

∂y

]Y
−Y

dx = 0 (40)

Substituting (3) and decomposing the result into two parts like (29), we can write (40) in
the form

1

2
Im

∫ ∞

0

dz

∫ ∞

−∞

[
φ
∂φ∗

∂y

]Y
−Y

dx

= − 1

2
Im

∫ ∞

0

dz

∫ ∞

−∞

[
φ
∂φ∗

0

∂y
− φ∗

0

∂φ

∂y

]Y
−Y

dx (41)

The procedure of performing these integrations with respect to x and z is the same as
that for (30) and (31); that is, we apply Parseval’s theorem (32) with the Fourier transforms
of φ and φ0. After straightforward reductions, we get the following result:

1

8π

[
−
∫ k1

−∞
+

∫ k3

k2

+

∫ ∞

k4

]{
|H+(k)|2 + |H−(k)|2

} ν√
ν2 − k2

dk

=
1

2
Im
[
H(k0, χ)

]
(42)
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Here H(k0, χ) is the Kochin function defined by (37).
With this energy relation, the added-resistance formula (38) can be recast in the form

R

ρga2
=

1

8πk0

[
−
∫ k1

−∞
+

∫ k3

k2

+

∫ ∞

k4

]{
|H+(k)|2 + |H−(k)|2

}
× ν√

ν2 − k2
(k − k0 cosχ) dk (43)

If the relation (21) is substituted for H±(k), the above equation can be expressed as

R

ρga2
=

1

4πk0

[
−
∫ k1

−∞
+

∫ k3

k2

+

∫ ∞

k4

]{
|C(k)|2 + |S(k)|2

}
× ν√

ν2 − k2
(k − k0 cosχ) dk (44)

Introducing Hanaoka’s variable transformation8)

k =
K0

2 cos θ

{
1− 2τ cos θ ±

√
1− 4τ cos θ

}
, (45)

we can confirm that (43) or (44) is identical to that derived by Maruo4). However, a point
to be emphasized here is that the derivation in this paper is quite simple in comparison to
Maruo’s, because the Fourier-transform technique is used in place of the stationary-phase
method which was essential in Maruo’s analysis. We can see form (44) that symmetric waves
C(k) and antisymmetric waves S(k) contribute independently to the added resistance and
no contribution exists from the interaction between them.

4. Steady Sway Force

The y-component of (24) gives the formula for the steady sway force:

Fy =

∫∫
SH

[
pny + ρ

∂ϕ

∂y

(∂ϕ
∂n

− Unx

)]
dS (46)

Evaluating this on the control surface shown in Fig. 1, (46) can be reduced to

Fy = −
∫ ∞

ζw

dz

∫ ∞

−∞

[
p+ ρ

(∂ϕ
∂y

)2]Y
−Y

dx

=
1

2
ρ

∫ ∞

0

dz

∫ ∞

−∞

[(∂ϕ
∂x

)2
+
(∂ϕ
∂z

)2
−
(∂ϕ
∂y

)2]Y
−Y

dx

+
1

2
ρg

∫ ∞

−∞

[
ζ2w

]Y
−Y

dx +O(ϕ3) (47)

Here eq. (255) for the pressure p has been substituted and ζw is the unsteady elevation of
the free surface, which is given by

ζw =
1

g

(
∂ϕ

∂t
− U

∂ϕ

∂x

)
z=0

+O(ϕ2) (48)
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Calculating the time average in (47) and substituting (3) for the velocity potential, we
can write (47) in the following decomposed form

Fy = − ρga2

k0

(
Y1 + Y2

)
(49)

where

Y1 = − 1

4

∫ ∞

0

dz

∫ ∞

−∞

[ ∣∣∣∣∂φ∂x
∣∣∣∣2 + ∣∣∣∣∂φ∂z

∣∣∣∣2 − ∣∣∣∣∂φ∂y
∣∣∣∣2 ]Y

−Y

dx

+
1

4
Re

∫ ∞

−∞

[{
K
∣∣φ∣∣2 + 1

K0

∣∣∣∣∂φ∂x
∣∣∣∣2 + i2τ φ∗ ∂φ

∂x

}
z=0

]Y
−Y

dx (50)

Y2 = − 1

2
Re

∫ ∞

0

dz

∫ ∞

−∞

[
∂φ

∂x

∂φ∗
0

∂x
+
∂φ

∂z

∂φ∗
0

∂z
− ∂φ

∂y

∂φ∗
0

∂y

]Y
−Y

dx

+
1

2
Re

∫ ∞

−∞

[{
Kφφ∗

0 +
1

K0

∂φ

∂x

∂φ∗
0

∂x
+ iτ

(
φ∗
0

∂φ

∂x
− φ

∂φ∗
0

∂x

)}
z=0

]Y
−Y

dx (51)

Note that Y1 represents the contributions from ship-generated disturbance waves and Y2 the
contributions from the interactions of incident wave and ship-generated waves.

Let us first consider Y1. In order to apply the Parseval’s theorem (32) to the x-integrations
in (50), we need to obtain the Fourier transform of the derivatives with respect to x, y, z of
the disturbance potential φ; which can be done easily using (19). The z-integration, which
is necessary in the first term in (50), can be performed by use of (33). Summarizing these,
we obtain the result

Y1 = − 1

8π

∫ ∞

−∞

{
|H+(k)|2 − |H−(k)|2

}
×
{

k2ν

2(ν2 − k2)
+

ν3

2(ν2 − k2)
− ν

2
− ν2

ν2 − k2

(
K +

k2

K0
+ 2τ k

)}
dk

=
1

8π

∫ ∞

−∞

{
|H+(k)|2 − |H−(k)|2

}
ν dk (52)

From (21), the following relation holds:

|H+(k)|2 − |H−(k)|2 = 2ϵk Im
{
2C(k)S∗(k)

}
(53)

Thus, recalling the convention about the range of integration with respect to k, eq.(52) can
be written in the form

Y1 =
1

4π

[
−
∫ k1

−∞
+

∫ k3

k2

+

∫ ∞

k4

]
Im
{
2C(k)S∗(k)

}
ν dk (54)

Next we consider the second term, Y2, defined by (51). Also here, we apply the Parse-
val’s theorem with the Fourier transforms of φ and φ0; these are given by (19) and (20),
respectively. With the reasons stated in transforming the interaction terms between φ
and φ0 in the added-resistance formula, we can concentrate on the case of k = k0 cosχ,
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±ϵk
√
ν2 − k2 = k0 sinχ, and thus ν = k0. Using these relations, eq. (51) can be transformed

as

Y2 = − 1

2
Re

[
i

2
H(k0, χ)

{
k0 cos

2 χ

sinχ
+

k0
sinχ

− k0 sinχ

− 2

sinχ

(
K +

(k0 cosχ)
2

K0
+ 2τ k0 cosχ

)}]
= − 1

2
k0 sinχ Im

[
H(k0, χ)

]
(55)

where H(k0, χ) is given by (37).
As in the added-resistance formula, the above result can be put in a different form by

applying the principle of energy conservation. Substituting the relation (42) in (55) and
expressing the resulting equation in terms of C(k) and S(k) defined by (21), we get:

Y2 = − 1

4π
k0 sinχ

[
−
∫ k1

−∞
+

∫ k3

k2

+

∫ ∞

k4

]{
|C(k)|2 + |S(k)|2

} ν√
ν2 − k2

dk (56)

Therefore, substitution of (54) and (56) into (49) gives the formula for the second-order
steady sway force:

Fy

ρga2
= − 1

4πk0

[
−
∫ k1

−∞
+

∫ k3

k2

+

∫ ∞

k4

]
Im
{
2C(k)S∗(k)

}
ν dk

+
sinχ

4π

[
−
∫ k1

−∞
+

∫ k3

k2

+

∫ ∞

k4

]{
|C(k)|2 + |S(k)|2

} ν√
ν2 − k2

dk (57)

From this result, we can see that the first term comes from the interaction between
symmetric and antisymmetric waves, whereas the second term comes from the independent
contributions of symmetric and antisymmetric waves. Since the second term is multiplied by
sinχ, both terms in (57) become zero in head and following waves for a ship with transverse
symmetry.

5. Steady Yaw Moment

In order to relate the wave-induced steady yaw moment to the far-field velocity potential, we
consider the principle of angular momentum about the z-axis. Newman2) gave an expression
for the rate of change of the vertical component of angular momentum, which is general and
thus applicable to the present problem. This can be expressed as

dKz

dt
= −

∫∫
SH

p
(
r × n

)
z
dS

−
∫∫

SC

[
p
(
r × n

)
z
+ ρ

(
r ×∇Φ

)
z

(
n · ∇Φ

)]
dS (58)

Here r is the position vector and the subscript z denotes the z-component of vector quan-
tities. Note that the first term on the right-hand side of (58) is the minus yaw moment,
because the unit normal is defined positive when pointing out of the fluid domain.
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We take time average of (58). Since the fluid motion is periodic, there exists no net
increase of angular momentum in the control volume. Therefore we get:

Mz =

∫∫
SH

p
(
r × n

)
z
dS

= −
∫∫

SC

[
p
(
r × n

)
z
+ ρ

(
r ×∇Φ

)
z

(
n · ∇Φ

)]
dS (59)

Here the pressure of fluid p is given by (25), and it follows from (1) that(
r × n

)
z
= xny − ynx(

r ×∇Φ
)
z
= x

∂ϕ

∂y
− y
(∂ϕ
∂x

− U
)

n · ∇Φ = nx

(∂ϕ
∂x

− U
)
+ ny

∂ϕ

∂y


(60)

Evaluating the above equations on the control surface shown in Fig. 1 and discarding
terms higher than O(ϕ3), eq.(59) can be reduced to

Mz =
1

2
ρ

∫ ∞

0

dz

∫ ∞

−∞

[
x
{(∂ϕ

∂x

)2
+
(∂ϕ
∂z

)2
−
(∂ϕ
∂y

)2}]Y
−Y

dx

− 1

2
ρg

∫ ∞

−∞

[
x ζ2w

]Y
−Y

dx

+ρ

∫ ∞

0

dz

∫ ∞

−∞

[
y
∂ϕ

∂x

∂ϕ

∂y

]Y
−Y

dx+ ρU

∫ ∞

−∞

[
yζw

∂ϕ

∂y

]Y
−Y

dx (61)

where ζw is given by (48).
As before, calculating the time average and substituting (3) gives the following expression:

Mz =
ρga2

k0

(
N1 +N2

)
(62)

where

N1 =
1

4
Re

∫ ∞

0

dz

∫ ∞

−∞

[
x

(∣∣∣∣∂φ∂x
∣∣∣∣2 + ∣∣∣∣∂φ∂z

∣∣∣∣2 − ∣∣∣∣∂φ∂y
∣∣∣∣2)+ 2y

∂φ

∂x

∂φ∗

∂y

]Y
−Y

dx

− 1

4
Re

∫ ∞

−∞

[
x

{
K
∣∣φ∣∣2 + 1

K0

∣∣∣∣∂φ∂x
∣∣∣∣2 + i2τ φ∗ ∂φ

∂x

}
z=0

+2y

{(
iτ φ∗ +

1

K0

∂φ∗

∂x

)∂φ
∂y

}
z=0

]Y
−Y

dx (63)

N2 =
1

2
Re

∫ ∞

0

dz

∫ ∞

−∞

[
x

(
∂φ

∂x

∂φ∗
0

∂x
+
∂φ

∂z

∂φ∗
0

∂z
− ∂φ

∂y

∂φ∗
0

∂y

)
+y

(
∂φ

∂x

∂φ∗
0

∂y
+
∂φ∗

0

∂x

∂φ

∂y

)]Y
−Y

dx

− 1

2
Re

∫ ∞

−∞

[
x

{
Kφφ∗

0 +
1

K0

∂φ

∂x

∂φ∗
0

∂x
+ iτ

(
φ∗
0

∂φ

∂x
− φ

∂φ∗
0

∂x

)}
z=0

+y

{
iτ
(
φ∗
0

∂φ

∂y
− φ

∂φ∗
0

∂y

)
+

1

K0

(∂φ
∂x

∂φ∗
0

∂y
+
∂φ∗

0

∂x

∂φ

∂y

)}
z=0

]Y
−Y

dx (64)
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In order to apply Parseval’s theorem (32) to the x-integration in (63) and (64), the Fourier
transform of the derivatives of φ times the coordinate x must be obtained. Considering
x(∂φ/∂x) as an example, it follows from (17) that

x
∂φ

∂x
=

1

2π

∫ ∞

−∞
ϵkH

±(k)
νk√
ν2 − k2

e−νz∓iϵky
√
ν2−k2

x e−ikx dk

= − i

2π

∫ ∞

−∞

d

dk

[
ϵkH

±(k)
νk√
ν2 − k2

e−νz∓iϵky
√
ν2−k2

]
e−ikx dk (65)

Therefore the Fourier transform of the above can be readily found:

F
{
x
∂φ

∂x

}
= −i d

dk

[
ϵkH

±(k)
νk√
ν2 − k2

e−νz∓iϵky
√
ν2−k2

]
= −i d

dk

{
H±(k)

} ϵkνk√
ν2 − k2

e−νz∓iϵky
√
ν2−k2

−iH±(k)
d

dk

{
ϵkνk√
ν2 − k2

e−νz

}
e∓iϵky

√
ν2−k2

∓H±(k)
νk(νν ′ − k)

ν2 − k2
e−νz y e∓iϵky

√
ν2−k2

(66)

where
ν ′ =

dν

dk
= 2
(
τ +

k

K0

)
(67)

Regarding the Fourier transform of ∂φ∗/∂x, we have from (17)

F
{ ∂φ∗

∂x

}
=
[
H±(k)

]∗ ϵkνk√
ν2 − k2

e−νz±iϵky
√
ν2−k2

(68)

Similarly, we can obtain Fourier transforms which are necessary in carrying out the x-
integration in (63). According to Parseval’s theorem, we must consider the integration of
the product of (66) and (68) with respect to k and similar integrations appearing in (63). In
carrying out these integrations, we note that the integrand originating from the second term
on the right-hand side of (66) is pure imaginary and thus does not contribute to the final
result. Furthermore we can confirm that the summation of all the terms linearly proportional
to y, including the contribution from the last term in (66), is precisely zero. Concerning the
integration with respect to z in (63), eq.(33) can be used.

Summarizing these reductions, we shall get:

N1 = − 1

8π
Im

∫ ∞

−∞

[
d

dk

{
H+(k)

}(
H+(k)

)∗
− d

dk

{
H−(k)

}(
H−(k)

)∗]
ν dk (69)

Using (21), this equation can be rewritten in the form

N1 =
1

4π

∫ ∞

−∞
ϵk Re

{
C ′(k)S∗(k)− C∗(k)S ′(k)

}
ν dk

=
1

4π

[
−
∫ k1

−∞
+

∫ k3

k2

+

∫ ∞

k4

]
Re
{
C ′(k)S∗(k)− C∗(k)S ′(k)

}
ν dk (70)
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Here from (22), C ′(k) and S ′(k) are explicitly given as

C ′(k)
S ′(k)

}
=

∫∫
SH

(
∂φ

∂n
− φ

∂

∂n

)
e−νζ+ikξ

×
[(
−ν ′ζ + iξ

){ cos
(
η
√
ν2 − k2

)
sin
(
η
√
ν2 − k2

) }
∓ νν ′ − k√

ν2 − k2
η

{
sin
(
η
√
ν2 − k2

)
cos
(
η
√
ν2 − k2

)}] dS (71)

It is clear from (70) that only the interactions between symmetric and antisymmetric waves
contribute to the N1 term, which is the same as the steady sway force.

Next, we consider the second term, N2, defined by (64), which originates from the inter-
action of the incident wave and ship-generated waves. Following the foregoing procedure,
the Parseval’s theorem (32) will be used in conjunction with the Fourier transforms (20)
and (66). Then we can put k = k0 cosχ due to the property of Dirac’s delta function in
(20) and k0 sinχ = ϵk

√
ν2 − k2 or k0 sinχ = −ϵk

√
ν2 − k2 depending on the value of χ due

to the reasons stated in transforming (31); thus the relation ν = k0 holds.
After the x-integration using Parseval’s theorem and the z-integration using∫ ∞

0

z e−2νz dz =
( 1

2ν

)2
(72)

and (33), the interim result will consist of three parts, just like (66): The first (denoted by
N21) includes the derivative of the Kochin function, the second (N22) includes the terms
linearly proportional to y, and the third (N23) is the remainder. After somewhat lengthy
calculations, these three parts can be found to be:

N21 = − 1

2
sinχRe

{
k0

d

dk

[
H±(k)

]}
(73)

N22 = 0 (74)

N23 = − 1

2
sinχRe

{(
τ +

k0 cosχ

K0

)
H(k0, χ)

}
(75)

Here the quantity in braces in (73) should be evaluated at k = k0 cosχ and ±ϵk
√
ν2 − k2 =

k0 sinχ, with the complex sign taken according to H+(k) or H−(k), respectively. Therefore,
using the relation k0 = ν = (ω + kU)2/g and notation (21), the final result can be written
as

N2 =N21 +N22 +N23

=− 1

2g
sinχRe

[(
ω + kU

) d
dk

{(
ω + kU

)
H±(k)

}]
k=k0 cosχ
±ϵk

√
ν2−k2=k0 sinχ

(76)

=− 1

2
sinχRe

[
k0

{
C ′(k0, χ) + iS ′(k0, χ)

}
+
(
τ +

k0 cosχ

K0

)
H(k0, χ)

]
(77)

where C ′(k0, χ) + iS ′(k0, χ) is to be interpreted as

C ′(k0, χ) + iS ′(k0, χ) =

[
d

dk

{
C(k) + iS(k)

}]
k=k0 cosχ√
ν2−k2=k0 sinχ
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Substituting (70) and (77) into (62), we obtain the formula for the steady yawing moment
in waves:

Mz

ρga2
=

1

4πk0

[
−
∫ k1

−∞
+

∫ k3

k2

+

∫ ∞

k4

]
Re
{
C ′(k)S∗(k)− C∗(k)S ′(k)

}
ν dk

− 1

2
sinχRe

[
C ′(k0, χ) + iS ′(k0, χ) +

1

k0

(
τ +

k0 cosχ

K0

)
H(k0, χ)

]
(78)

This is the result obtained for the first time by the present analysis. In the limit of vanishing
forward speed, τ and 1/K0 are zero from (11), and k1 = −∞, k2 = −K, k3 = K, k4 = ∞
from (12) and (13). Thus we can confirm that Newman’s result2) at zero forward speed is
recovered from the present result.

6. Concluding Remarks

The formulas obtained in this paper permit us to calculate the second-order sway force and
yaw moment, provided that the Kochin function is determined from the velocity potential
on the ship hull. Although there are still a number of problems to be resolved for a reliable
solution by the three-dimensional panel method, some progress have been made recently
in developing a fast algorithm of the Green function with forward speed and sinusoidal
oscillation; for instance, Iwashita & Ohkusu9). Therefore it will be possible in the near
future to obtain the Kochin function from the “exact” solution of the entire boundary-value
problem. However, from the viewpoint of economical computations with relatively good
accuracy, the unified slender-ship theory developed by Newman10) and Sclavounos11) may
be the first to be tested for the determination of the Kochin function. The computational
work along this line is now in progress, and the results will be presented in the foreseeable
future together with experiments to verify a part of them.
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Prediction of Surge and Its Effect on Added Resistance
by Means of the Enhanced Unified Theory∗

Masashi KASHIWAGI
Research Institute for Applied Mechanics, Kyushu University

Kasuga, Fukuoka 816-8580, Japan

Summary

The unified theory is enhanced to account for the wave diffraction in the direction of ship’s
longitudinal axis near the ship ends and to solve the surge-mode radiation problem. Three-
dimensional and forward-speed effects are taken into account as in the original unified
theory, by solving the integral equation for the outer source strength along the ship length.
Numerical examples are shown for the surge added-mass and damping coefficients, pressure
distributions, wave-exciting forces, and added resistance in head waves; these are compared
with experimental data and corresponding results of other calculation methods.
It is confirmed that the effects of wave diffraction near the ship ends are properly accounted
for in the present method, which is pronounced in the prediction of the added resistance.
The importance of the cross-coupling effects between surge and pitch is also noted in the
surge motion calculations.

1. Introduction

Because of numerical simplicity and relatively nice agreement with measurements, the strip
theory has been used for predicting the wave-induced motions and the seakeeping perfor-
mance of ships. However it is also recognized that the strip theory is unable to account
for 3-D effects; such as the wave attenuation along the ship, the wave diffraction near the
bow, and the change of wave patterns with increasing forward speed. In the 1970s, the
slender-ship theories had been developed with the aim of overcoming these defects of the
strip theory. As one of the excellent developments, we can name the unified theory which was
proposed by Newman [1] and extended by Sclavounos [2] to the diffraction problem and by
Kashiwagi & Ohkusu [3] to the tank-wall interference problem. The unified theory bring in a
certain amount of 3-D corrections to the 2-D strip-theory solution. In fact, very impressive
agreement with experimental values was found in the heave and pitch related problems [4, 5].

However, it is said that the surge motion and the wave diffraction in the ship’s longitudinal
axis cannot be analyzed by means of the slender-ship theory. From this reasoning, a number
of correction methods in the short-wavelength region have been proposed in the prediction of
the added resistance, by Takahashi [6], Faltinsen [7], Sakamoto & Baba [8], and Ohkusu [9].
In the context of strip theories, the analysis of surge motion has been made as an independent
single mode, with only the Froude-Krylov force and ship’s mass taken into account.

Of course if we use a fully 3-D calculation method, hydrodynamic forces associated with
the surge mode can be computed in the same manner as other modes of motion. With

∗ Reprinted from Transactions of West-Japan Society of Naval Architects, No. 89, pp. 77-89,
1995 (March)
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advance of the computer performance, 3-D calculation methods have been recently stud-
ied [10, 11, 12] as an alternative of the slender-ship theory. At present, however, these are
still several difficulties to be resolved to enhance the reliability of the method, particularly
when the forward speed is present.

Computations of the surge-mode radiation problem and of the wave diffraction near the
bow and stern are related to the x-component of normal vector in the body boundary
condition; which is regarded as higher order in the slender-ship theory and not easy to
compute in comparison with the y- and z-components. In practice, once the x-component
of the normal is given, the strip-theory concept can be applied to the surge radiation problem,
and 3-D corrections must be computed by means of Newman’s unified theory in the same
fashion as for the heave and pitch modes. The same is true of the diffraction problem
including the wave scattering in the direction of ship’s longitudinal axis.

This paper demonstrates the applicability of the unified theory to the surge related prob-
lems, and numerical results are presented for the surge added-mass and damping coefficients,
the pressure distribution, the wave-exciting force and moment, and the added resistance in
head waves. Comparison with other calculation methods and experimental data confirms
the validity and excellent performance of the present method.

2. Calculation Method

Consider a ship advancing with constant speed U and undergoing small-amplitude motions
of angular frequency ω in deep water. A steady reference frame is chosen with the x-axis
pointing in the direction of the forward motion and the z-axis pointing downward. As shown
in Fig. 1, the plane progressive wave is incident upon the ship with angle of incidence χ.

Assuming inviscid flow with irrotational motion, the velocity potential is expressed as

Φ = −Ux+Re
[
ϕ(x, y, z) eiωt

]
(1)

ϕ =
ga

iω0

{
ϕ0(x, y, z) + ϕ7(x, y, z)

}
+ iω

6∑
j=1

Xjϕj(x, y, z) (2)

φ0 = exp
{
−k0z − ik0(x cosχ+ y sinχ)

}
(3)

ω = ω0 − k0U cosχ, k0 = ω2
0/g (4)

Fig. 1 Coordinate system

Here ϕ0 denotes the incident-wave poten-
tial, ϕ7 the scattered potential, and ϕj the
radiation potential of the j-th mode with
complex amplitude Xj , where in particular
j = 1 for surge, j = 3 for heave, and j = 5
for pitch; a, ω0, k0 denote the amplitude,
circular frequency, wavenumber of the inci-
dent wave; g the acceleration of gravity. For
simplicity, the disturbance due to the steady
forward motion is neglected in (1).

Hereafter we will consider only the sym-
metric modes, j = 1, 3, 5, in the radiation
problem and the symmetric component of
the diffraction problem. The theory used
here is an extension of the unified theory;
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for the detailed description of the unified theory, the readers should refer to published ref-
erences, e.g. [1]∼ [5].

2.1 The radiation problem

As in Newman’s unified theory [1], the velocity potentials in the inner region satisfy

∂2ϕj
∂y2

+
∂2ϕj
∂z2

= 0 (5)

∂ϕj
∂z

+Kϕj = 0 on z = 0 (6)

where K = ω2/g.
On the other hand, the body boundary condition takes the form

∂ϕj
∂n

= nj +
U

iω
mj (j = 1, 3, 5) on SH (7)

where SH denotes the ship-hull surface, nj denotes the j-th component of unit normal
outward to the hull, and m1 = m3 = 0, m5 = n3, and n5 = −xn3.

With the slenderness assumption, (7) implies that the surge potential is of higher order.
However, this should not be a reason to deduce that computations of the surge mode are
impossible. In fact, the surge mode is of the same order as the roll mode whose computations
are commonly in the strip method.

The general inner solution satisfying (5)−(7) can be given in the form

ϕj(x; y, z) = φj(y, z) +
U

iω
φ̂j(y, z) + Cj(x)

{
φ3(y, z)− φ∗

3(y, z)
}

(8)

where the asterisk denotes the complex conjugate. Thus the function in braces is a homo-
geneous solution, and Cj(x) is its unknown coefficient. In accordance with approximations
for the mj-term, we have φ̂1 = φ̂3 = 0, φ̂5 = φ3, and φ5 = −xφ3.

The unknown Cj(x) can be determined by requiring (8) to be matched with the outer
solution which includes another unknown Qj(x): the 3-D source strength along the x-axis.
The matching procedure gives the following results:

Qj(x) +
i

2π

(σ3
σ∗
3

− 1
)∫

L

Qj(ξ)
d

dξ
F (x− ξ) dξ = σj +

U

iω
σ̂j (9)

Cj(x)
{
σ3 − σ∗

3

}
= Qj(x)−

{
σj +

U

iω
σ̂j

}
(10)

where σj and σ̂j are 2-D Kochin function associated with the velocity potentials φj and
φ̂j , respectively. The kernel function F (x − ξ) is identical to that used in Newman &
Sclavounos [4], which includes the 3-D corrections and forward-speed effects.

After solving the integral equation (9) for Qj(x), the coefficient of inner homogeneous
solution Cj(x) can be readily obtained from (10), thereby completing the inner solution
which will be used for computing the added-mass and damping coefficients.

2.2 The diffraction problem

The symmetric part of the body boundary condition on SH , corresponding to (7) in the
radiation problem, is written as

∂ϕS7
∂n

= k0 e
−k0z

{
n2 sinχ sin(k0y sinχ) + (n3 + in1 cosχ) cos(k0y sinχ)

}
eiℓx (11)
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where ℓ = −k0 cosχ.
In conventional slender-body theories, the x-component of the normal, n1, may be dis-

carded as higher order by comparison to n2 and n3. However once the values of n1 along
the sectional contour are given, no difficulty exists in solving the boundary-value problem
with n1 kept in (11). In fact, this n1 term is expected to be more crucial than the n2- and
n3-terms near the ship ends, contributing significantly to the surge exciting force and the
added resistance in head waves.

Following the unified theory, we seek the inner solution in the form:

ϕS7 = ψ7(x; y, z) e
iℓx (12)

The governing equation and the free-surface and body boundary conditions for the slowly-
varying part ψ7 are given as

∂2ψ7

∂y2
+
∂2ψ7

∂z2
− ℓ2ψ7 = 0 (13)

∂ψ7

∂z
+ k0ψ7 = 0 on z = 0 (14)

∂ψ7

∂n
= k0 e

−k0z
{
n2 sinχ sin(k0y sinχ) + (n3 + in1 cosχ) cos(k0y sinχ)

}
(15)

The numerical procedure of solving the above problem can be identical to that described
in Kashiwagi [13], with n3 replaced by n3 + in1 cosχ. Then the inner solution can be
constructed in the form

ϕS7 (x; y, z) =− e−k0z+iℓx cos(k0y sinχ)

+C7(x)
{
ψS
7 (y, z) + e−k0z cos(k0y sinχ)

}
eiℓx (16)

Here the second line on the right-hand side is a homogeneous solution, in which ψS
7 (y, z)

denotes a numerical solution satisfying (13)−(15); this solution may be obtained using 2-D
boundary element method.

The coefficient C7(x) in (16) is unknown, which can be determined after solving the
integral equation for the outer source strength Q7(x). The equations corresponding to (9)
and (10) in the radiation problem are of the form

Q7(x) +
1

π
σ7

{
Q7(x)h1(χ)−

∫
L

Q7(ξ)
d

dξ
F (x− ξ) dξ

}
= σ7 e

iℓx (17)

C7(x)σ7 e
iℓx = Q7(x) (18)

where h1(χ) = cscχ cosh−1(| secχ|)− ln(2| secχ|) (19)

The kernel function F (x− ξ) in (17) is identical to that appearing in (9), and σ7 is the 2-D
Kochin function to be explicitly obtained from ψS

7 (y, z).

2.3 Hydrodynamic forces

Added-mass and damping coefficients

Substituting the completed inner solution (8) into the linearized Bernoulli’s equation, inte-
grating over the mean wetted surface of the ship, and using Tuck’s theorem, the hydrody-
namic force acting in the i-th direction can be expressed as
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Fi = −(iω)2
∑

j=1,3,5

[
Aij +

1

iω
Bij

]
Xj (20)

Aij +
1

iω
Bij =− ρ

∫
L

dx

∫
CH

(
ni −

U

iω
mi

){
φj +

U

iω
φ̂j

}
ds

− ρ

∫
L

dxCj(x)

∫
CH

(
ni −

U

iω
mi

){
φ3 − φ∗

3

}
ds (21)

where Aij and Bij are the added-mass and damping coefficients in the i-th direction due
to the j-th mode of motion, and CH denotes the sectional contour below the free surface
at station x. As noted before, neglecting the steady disturbances generated by the steady
forward motion gives the following approximations:

m1 = m3 = 0, m5 = n3 , n5 = −xn3

φ̂1 = φ̂3 = 0, φ̂5 = φ3 , φ5 = −xφ3

}
(22)

It is noteworthy that the first line in (21) gives identical results to the strip theory except
for the surge related coefficients, and that the cross-coupling coefficients between surge and
pitch are nontrivial even for a longitudinally symmetric ship with zero forward speed. The
second line in (21) contains the 3-D corrections and forward-speed effects, which is of great
importance in the unified theory.

Diffraction pressure and wave-exciting forces

In the diffraction problem, the hydrodynamic pressure is given from the sum of the incident-
wave and scattered potentials. Therefore, the symmetric part of the diffraction pressure can
be expressed as

Pd = −ρga ω
ω0

(
1− U

iω

∂

∂x

){
ϕS0 + ϕS7

}
= −ρgaC7(x)

{
ψS
7 (y, z) + e−k0z cos(k0y sinχ)

}
eiℓx (23)

Here the approximation has been used that the x-derivative of the slowly varying part of
the diffraction potential is small relative to the x-derivative of exp(iℓx).

Integrating (23) over the ship hull gives the expression of the wave-exciting force acting
in the jj-th direction:

Ej = ρga

∫
L

dxC7(x) e
iℓx

∫
CH

nj

{
ψS
7 (y, z) + e−k0z cos(k0y sinχ)

}
ds (24)

At this point, let us consider the corresponding expression of the pressure in strip theories.
There are a number of slight differences among researchers [14] in the free-surface condition
and in the treatment of the body boundary condition and the x-derivative of the velocity
potential, which makes it difficult to write in a decisive form. In the so-called NSM (New
Strip Method), the body boundary condition is approximated using the relative-motion
hypothesis, with the result

∂ϕS7
∂n

≃ n3k0 e
−k0Zs+iℓx (25)
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where Zs is called the sub-surface given by A(x)/B(x), with A(x) and B(x) the sectional
area and breadth, respectively.

Since the free-surface condition for the diffraction problem is not (14) but (6), the above
body boundary condition (25) implies that ϕS7 can be expressed in terms of the heave
radiation potential, φ3(y, z). Therefore the total diffraction pressure by NSM is given as

Pd = −ρga
{
φ3(y, z) k0e

−k0Zs + e−k0z cos(k0y sinχ)
}
eiℓx (26)

It should be noted that the x-derivative of the slowly-varying part is neglected as in
the unified-theory expression (23), but in deriving the expression of the pitch exciting mo-
ment, NSM employs the partial differentiation to cope with the x-derivative of the velocity
potential.

2.4 Ship motion equations

Having completed the hydrodynamic forces, the surge, heave, and pitch motions can be
easily obtained as the solution of the following complex linear system:∑

j=1,3,5

[
−ω2

(
Mij +Aij

)
+ iωBij + Cij

]
Xj = Ei for i = 1, 3, 5 (27)

where Mij denotes the generalized mass matrix and Cij the restoring coefficients; these are
evaluated independent of the hydrodynamic analysis, and nonzero terms among these are

M11 =M22 = ρ∇, M55 = Iyy

C33 = ρgAW , C35 = C53 = −ρgAW xW , C55 = ρg∇GML

}
(28)

Here ∇ is the displaced volume, Iyy the moment of inertia about the y-axis, AW the water-
plane area, xW the center of the waterplane area, and GML the longitudinal metacentric
height.

In the conventional strip theories, the surge mode is treated as independent single mode.
However, as will be shown later, the cross-coupling terms between surge and pitch play an
important role in the precise prediction of the surge motion, and likewise the pitch motion
may be slightly influenced by these coupling terms.

2.5 Added resistance and Kochin function

The added resistance is calculated from Maruo’s formula [15]:

RAW

ρga2
=

1

4πk0

[
−
∫ k1

−∞
+

∫ k3

k2

+

∫ ∞

k4

]{∣∣C(k)∣∣2 + ∣∣S(k)∣∣2}ν(k){k − k0 cosχ}√
ν2(k)− k2

dk (29)

where

ν(k) =
(ω + kU)2

g
= K + 2τ k +

k2

K0
(30)

k1
k2

}
= −K0

2

(
1 + 2τ ±

√
1 + 4τ

)
,
k3
k4

}
=
K0

2

(
1− 2τ ∓

√
1− 4τ

)
(31)

K =
ω2

g
, τ =

Uω

g
, K0 =

g

U2
(32)
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Here C(k) and S(k) denote the symmetric and antisymmetric parts of the Kochin function
respectively, which are given in a form of the linear superposition:

C(k) = C7(k)−
ωω0

g

∑
j=1,3,5

Xj

a
Cj(k)

S(k) = S7(k)−
ωω0

g

∑
j=1,3,5

Xj

a
Sj(k)

 (33)

The solution method for the antisymmetric velocity potentials are not described in this
paper, but in principle similar techniques to the symmetric problem can be applied. Needless
to say, the added resistance in head or following waves can be computed using the symmetric
Kochin function only, which is given by means of the outer source strength in the theory, in
the form

Cj(k) =

∫
L

Qj(x) e
ikx dx (34)

There are a couple of things to be noted here. First, unlike the conventional prediction
methods based on the strip theory, the line distribution of outer sources is placed on z = 0.
However no difficulty arises in evaluating the infinite integrals in (29), by use of the semi-
analytical method described in Kashiwagi [13]. Second, an important difference between
the present and original unified theories exists in the diffraction Kochin function C7(k).
Namely, the present method contains the effects of wave diffraction in the x-direction near
the bow; the absence of which has been pointed out as an essential defect of the slender-ship
theory. Lastly, the present method also stands out in that it contains the surge motion and
its indirect effects on the heave and pitch motions through the cross-coupling terms in the
motion equations.

Fig. 2 Surge added-mass coefficient of a half-
immersed spheroid of B/L = 1/5 at
U = 0

Fig. 3 Surge damping coefficient of a half-
immersed spheroid of B/L = 1/5 at
U = 0



70 Masashi KASHIWAGI

3. Numerical Results and Discussion

3.1 Zero speed case

To confirm the performance of the present method, computations were firstly carried out
for a half-immersed prolate spheroid of beam-length ratio 1/5 at zero forward speed.

Fig. 4 Wave-exciting surge force on a half-
immersed spheroid of B/L = 1/5 in
head waves at U = 0

Fig. 5 Surge motion of a half-immersed
spheroid of B/L = 1/5 in head waves
at U = 0

Computed added-mass and damping coefficients in surge mode are shown in Figs. 2 and
3. The strip theory and more rigorous 3-D panel method were also applied for comparison.
In general, surge related computations are not included in the strip method, but here ‘the
strip method’ in the legend means the results computed with 2-D inner particular solution in
the unified theory. Although the unified-theory results are slightly smaller than the results
of the 3-D panel method, it appears that the 3-D effects in lower frequencies are properly
accounted for.

Figure 4 shows the wave-exciting surge force in head wave (χ = 180◦). In this case,
as shown in (13), the governing equation of the inner scattered potential is different from
Laplace’s equation in strip theories. Thus instead of the strip-theory results, the component
of Froude-Krylov force is shown by the dotted line. The present method agrees excellently
with the 3-D panel method, which must be attributed to the inclusion of n1 in the body
boundary condition.
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Fig. 6 Drift force on a fixed half-immersed
spheroid of B/L = 1/5 in head waves
at U = 0 (diffraction only)

Fig. 7 Drift force on a freely oscillating half-
immersed spheroid of B/L = 1/5 in
head waves at U = 0

Computed results of the surge motion in head wave are shown in Fig. 5. The center
of gravity is assumed at the origin of the coordinate system. The solid line indicates the
present-theory results, obtained from the coupled motion equations expressed by (27); these
are in good agreement with the results of 3-D panel method. On the other hand, the dashed
line indicates the solution as the single mode of surge motion, using the numerical results
shown in Fig. 4. The discrepancy between the dashed and solid lines implies that the cross
coupling between surge and pitch must be taken into account. (In the present case the heave
mode is not coupled, because of longitudinal symmetry of the body and zero forward speed.)

Fig. 8 Surge added-mass coefficient of a half-
immersed ellipsoid (B/L = 1/4,
B/2d = 5/4) at Fn = 0 and 0.3

Fig. 9 Surge damping coefficient of a half-
immersed ellipsoid (B/L = 1/4,
B/2d = 5/4) at Fn = 0 and 0.3
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We can expect that including n1 in the body boundary condition will be pronounced in
the drift force acting in the x-direction due to head waves. (At zero speed, the term ‘drift
force’ is preferable to the added resistance.) Fig. 6 shows the results exerted by the wave
diffraction only, and Fig. 7 is the results including all the ship motion effects. In Fig. 6, the
solid line demonstrates the results in which the contribution of n1 is taken into account
when solving the diffraction problem. Compared with the 3-D panel method, the solid line
is superior to the dotted line, confirming the usefulness of the present calculation method.

3.2 Forward speed case

Fig. 10 Wave-exciting surge force of a half-
immersed ellipsoid (B/L = 1/4,
B/2d = 5/4) in head waves at
Fn = 0.3

Fig. 11 Wave-exciting heave force of a half-
immersed ellipsoid (B/L = 1/4,
B/2d = 5/4) in head waves at
Fn = 0.3

In this case, predictions were compared
with experimental data shown in published
papers [12, 16]. Main comparisons are
made for a half-immersed ellipsoid which
was used in the extensive experiments by
Kobayashi [16] and expressed mathemati-
cally as(

x

L/2

)2

+

(
y

B/2

)2

+
(z
d

)2
= 1 (35)

where L = 2.5m, B = 0.625m, and d =
0.25m. Note that the beam-length ratio
of this model is B/L = 1/4; this is blunt
considering the slenderness assumption of
the present theory.

Figures 8 and 9 show the surge added-
mass and damping coefficients, where both
results of Froude number Fn = 0.0 and
0.3 are included. Experimental values at
Fn = 0.0 are scattered owing to the tank-
wall interference. Furthermore according
to Koyabashi’s remarks [16], measured val-
ues of the damping coefficient at Fn = 0.3
might be devoid of the quantitative pre-
cision. With these experimental prob-
lems taken into consideration, the present
method is able to account for the forward-
speed effects, providing much better re-
sults than the 3-D Rankine source method
shown in Takagi [11]. The thin solid line,
depicted as the strip theory, is the results
of the inner particular solution, which is
independent of the forward speed. There-
fore it should be noted that all the forward-
speed effects are introduced through the
coefficient of homogeneous inner solution.

Figures 10, 11, and 12 compare the wave-exciting surge force, heave force, and pitch
moment, respectively. Experimental data measured at Fn = 0.3 are used for comparison.
Lin et al. [12] performed full 3-D computations for Kobayashi’s ellipsoid model and compared
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Fig. 12 Wave-exciting pitch moment of a
half-immersed ellipsoid (B/L =
1/4, B/2d = 5/4) in head waves
at Fn = 0.3

with the same experimental data; hence
their results shown as the 3-D panel
method are reproduced in Figs. 10 to 12
with dotted lines. The present method
underpredicts the surge exciting force, but
accounts well for the qualitative tendency
as compared to the 3-D panel method.

On the other hand, the heave exciting
force and pitch exciting moment predicted
by the present method are in excellent
agreement with experiments. Since the
scattered potential in the inner solution is
determined with the n1-term retained in
the body boundary condition, the heave
force and pitch moment are, to some ex-
tent, different from the results of the orig-
inal unified theory.

The effect of retaining the n1-term will
be made clear by Fig. 13, which shows hydrodynamic pressure distributions in the head-sea
diffraction problem of λ/L = 1.0, measured at two Froude numbers (Fn = 0.1 and 0.3) and

Fig. 13 Hydrodynamic pressure distributions on a half-immersed ellipsoid in head waves of
λ/L = 1.0, measured at three sections (x/(L/2) = 0.793, 0.131, −0.793) and at
Fn = 0.1 and 0.3 (diffraction problem)
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Fig. 14 Added resistance on a half-immersed
spheroid ofB/L = 1/5 in head waves
at Fn = 0.2 (diffraction problem)

Fig. 15 Added resistance on a half-immersed
spheroid ofB/L = 1/5 in head waves
at Fn = 0.3 (diffraction problem)

at three different transverse sections (x/(L/2) ≡ ξ = 0.793, 0.131, −0.793). The section at
ξ = 0.793 is near the bow, and θ = 90◦ in the abscissa means the center of the section. The
thick solid line shows the present results with n1-term taken into account, and the dotted
line the results of ordinary unified theory.

The strip theory does not contain the 3-D effects of wave attenuation along the ship,
resulting in the same pressure distribution at ξ = 0.793 and ξ = −0.793. In contrast, the
unified theory accounts for 3-D effects and the agreement with measured values is favorable.
At Fn = 0.1 in particular, the results of taking the n1-term into account show a sizable
improvement over the results of not taking the n1-term into account.

Comparison of the added resistance in the head-sea diffraction problem is shown in Figs. 14
and 15. The ship model is a prolate spheroid of beam-length ratio B/L = 1/5, and experi-
mental data for this model were obtained at Hiroshima University using Ohkusu’s theory of
the unsteady wave-pattern analysis [17]. Lin et al. [12] computed the added resistance using
the combined boundary integral equation method (CBIEM) and the 3-D panel method with
forward speed; the results of which are reproduced in Figs. 14 and 15.

The present-method results are shown by the thick solid line, which include contributions
of the n1-term. The dotted line is the results of the ordinary unified theory neglecting the
n1 shorter wavelength region.

The difference between the dotted and thick solid lines implies that the wave diffraction
in the x-axis near the bow is of great importance. The deficiency of slender-ship theories,
unable to take account of the bow wave diffraction, has been pointed out so far and this is
why we are using Takahashi’s pragmatic correction method [6] or other theories to be applied
in the range of short wavelengths. However we can say that by adopting the calculation
method proposed in this paper, there is no need to employ a correction method in the
prediction of the added resistance.

4. Concluding Remarks

It has been said so far that the slender-ship theory cannot cope with the wave diffraction in
the x-axis from the bow and stern, and thus a reliable 3-D method should be awaited.

An important outcome in this paper is that the unified theory can be easily modified to
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include contributions of the x-component of normal vector, which explains physically the
wave diffraction near the ship ends, and provides a remarkable improvement in the pressure
distribution and the added resistance in head waves. One additional burden in the practical
stage of numerical computations might be evaluating the x-component of normal vector.
But with the level of recent computers, we believe that it is not that fatal.

Another outcome worth nothing is that the level of the surge-motion calculation was
enhanced in the framework of the unified theory. It will be common that the symmetric
motions are computed from the coupled motion equations of surge, heave, and pitch. In
particular, the surge-pitch coupling effects are important and should be taken into account.

Finally, all the numerical computations in this paper have been carried out with the
workstation of HP9000-735 in the Section of Ocean Systems Engineering, Research Institute
for Applied Mechanics.
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Heave and Pitch Motions of a Catamaran
Advancing in Waves∗
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Kasuga, Fukuoka 816-8580, Japan

ABSTRACT

A new linear theory is presented for computing the radiation and diffraction forces and the
motions of a catamaran advancing with forward speed in waves. The radiation problem is
solved with the concept of Newman’s unified slender-ship theory. The wave-exciting forces
and ship motions are calculated by use of Haskind-Newman’s reciprocity relation without
having to solve the diffraction problem. The validity of the theory is confirmed for the
zero-speed case by comparison with more accurate results by a 3-D panel method. For
the case of nonzero speed, comparisons are made with experimental values measured at
Froude numbers 0.15 and 0.3 using a rather blunt catamaran model. The present-theory
predictions agree well with experiments except for the pitch mode at higher Froude number
and in the lower frequency range.

1. INTRODUCTION

Twin-hull motion problems have been studied so far by the strip theory (Ohkusu and Takaki,
1971) incorporating 2-D exact interaction solutions. This strip-theory approach allows the
wave energy to flow only in the transverse direction, and therefore it can not account for
the important 3-D effects such as the dissipation of the wave energy reflecting between twin
hulls and the drastic change of 3-D wave characteristics with increasing forward speed.

Recently a 3-D Green function method was applied by Kobayashi et al. (1990) to the
catamaran problem in order to account for the forward-speed effects. However the compu-
tation time is enormous at present and the numerical accuracy seems not reliable because
of the limited number of discretized panels over the twin hulls.

On the other hand, some new approaches have also been applied with the limitation to the
high speed problems, such as Chapman’s type pseudo 3-D theory by Ohkusu et al. (1990),
Rankine panel method by Kring and Sclavounos (1991), and Hanaoka’s thin-ship theory by
Watanabe (1992). However there exists no theory which can bridge a gap between zero and
high speeds and can be computed with relative ease. A new theory in this paper is meant
to serve that purpose.

The theory in this paper was inspired by Newman’s unified theory for a monohull ship
(Newman, 1978), and can be regarded as an extension of the tank-wall interference problem
by Kashiwagi and Ohkusu (1991). Breit and Sclavounos (1986) developed a similar slender-
ship theory for a catamaran, but their theory is limited to the zero-speed case and seems
difficult to extend to the forward-speed case, because the radiation problem is viewed as a
set of radiation-diffraction problems.

∗ Reprinted from Proceedings of the 2nd International Conference on Fast Sea Transportation
(Yokohama), pp. 643-655, 1993 (December)
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The present theory is different from Breit and Sclavounos’ and featured in that not only
symmetric but also antisymmetric homogeneous solutions are included in the inner solution,
which plays an important role in accounting for the hydrodynamic interactions between twin
hulls. The unknown coefficients of the inner homogeneous solutions are determined from
the matching with the outer solution, giving the coupled integral equations for strengths of
the source and doublet distributions comprising the outer solution.

With the completed inner solution, it is straightforward to compute the heave and pitch
added-mass and damping coefficients. The wave-exciting force and moment are evaluated
using the forward-speed version of Haskind-Newman’s reciprocity relation (Newman, 1965);
this makes it possible to compute the wave-induced heave and pitch motions without solving
the diffraction problem.

The validity of the theory for the zero speed case is confirmed by comparison with inde-
pendent numerical results by a more rigorous 3-D panel method. In the presence of forward
speed, experiments are carried out using a rather blunt catamaran model, and compar-
isons of experimental values with corresponding numerical results lead to discussions on the
validity of the present theory.

2. FORMULATION ON THE PROBLEM

As in Fig. 1, we consider a catamaran advancing at constant speed U in waves, and denote
the separation distance between twin hulls by D, the length by L, the breadth of each
demihull by B, and the wetted surfaces of the left and right hulls by SL and SR, respectively.
For convenience in the analysis, two coordinate systems are taken; the first one is o-x y z, with

Fig. 1 Coordinate system and notations

the origin at the center of a catama-
ran and on the undisturbed free sur-
face, and another one, o-xyz, is sim-
ply shifted parallel to the y-axis to
the midship of the left hull. Thus no
distinctions are needed between two
coordinate systems except the only
difference y = y −D/2.

For simplicity, only heave and
pitch motions are considered here
and each demihull is assumed trans-
versely symmetric, although there ex-
ist no essential obstacles to extending
the present theory to other modes of
motion and to the case of antisym-
metric demihulls. Assuming the flow
inviscid with irrotational motion and
the linearity of the phenomena, the
velocity potential can be introduced
and expressed as

Φ = U
[
−x+ ϕS(x, y, z)

]
+ ℜ

[
ψ(x, y, z) eiωt

]
(1)

ψ =
ga

iω0

{
ϕ0(x, y, z) + ϕ7(x, y, z)

}
+ iω

∑
j=3,5

Xjϕj(x, y, z) (2)
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φ0 = exp
{
−k0z − ik0(x cosχ+ y sinχ)

}
(3)

ω = ω0 − k0U cosχ, k0 = ω2
0/g (4)

Here ϕS denotes the steady perturbation potential and ψ the oscillatory velocity potential
consisting of the incident-wave potential ϕ0, the scattered potential ϕ7, and the radiation
potential ϕj of the j-th mode with complex amplitude Xj , where j = 3 for heave and j = 5
for pitch; a, ω0, k0, χ denote the amplitude, circular frequency, wavenumber, incident angle
defined in Fig. 1, respectively, of the incident wave; g the acceleration of gravity and ω the
circular encounter frequency.

The velocity potentials to be obtained, ϕj (j = 3, 5, 7), are governed by the three-
dimensional Laplace equation and subject to the linear free-surface condition given by

∂ϕj
∂z

+Kϕj + i2τ
∂ϕj
∂x

− 1

K0

∂2ϕj
∂x2

= 0 on z = 0 (5)

with K = ω2/g, τ = Uω/g, K0 = g/U2 (6)

and the condition of outgoing waves at infinity and vanishing velocity at z = ∞. Furthermore
the following boundary condition on the twin hulls must be satisfied:

∂ϕj
∂n

= nj +
U

iω
mj (j = 3, 5) (7)

= − ∂ϕ0
∂n

(j = 7) (8)

where nj is the j-th component of normal vector n pointing out of the ship hull, with
extended definition of n5 = zn1 − xn3, and mj represents the forward-speed effect which
was originally derived in Timman and Newman (1962) and expressed in the form

(m1,m2,m3) = −
(
n · ∇

)
V

(m4,m5,m6) = −
(
n · ∇

)(
r × V

)
V = ∇

[
−x+ ϕS(x, y, z)

]
 (9)

The computation of ship motions, which is a main object of this paper, may be carried out af-
ter solving the above boundary-value problem and computing the hydrodynamic coefficients
in the radiation problem and the wave-exciting forces in the diffraction problem.

For that purpose, the following section summarizes a proposed solution method, utilizing
the basic concept of the unified slender-ship theory developed by Newman (1978). The
details of the derivation may be found in Kashiwagi (1993a).

3. SOLUTION METHOD

3.1 Radiation Problem

The fact that each demihull of a catamaran is geometrically slender justifies applying the
unified slender-ship theory to the analysis of the flow around each demihull. Therefore in
the present theory the vicinity of the left hull is defined as the inner region and the influence
of the right hull disturbance is taken into account in the outer solution, which implicitly
assumes that the separation distance D is of order O(1) relative to the ship length.
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3.1.1 Outer solution

Far from the ship, the velocity potential due to disturbances of each demihull can be ex-
pressed by a line distribution of the 3-D source and doublet along the center line of each
demihull:

ϕ
(o)
j (x, y, z) =

∫
SL

[
Qj(ξ)G

(
x− ξ, y +

D

2
, z
)
+Dj(ξ)H

(
x− ξ, y +

D

2
, z
)]

dξ

+

∫
SR

[
Qj(ξ)G

(
x− ξ, y − D

2
, z
)
−Dj(ξ)H

(
x− ξ, y − D

2
, z
)]

dξ (10)

where G(x, y, z) is the velocity potential due to a 3-D translating and oscillating source of
unit strength; likewise H(x, y, z) is the doublet of unit moment with transverse axis; Qj(ξ)
and Dj(ξ) are unknown strengths of source and doublet, respectively.

The reason of equal source strength and opposite sign in the doublet between the left and
right hulls is that we consider a catamaran which is symmetric about y = 0 and oscillating
in heave and pitch.

The unknowns in (10), Qj(x) and Dj(x), will be determined by the matched asymptotic
expansion method. For that purpose, the inner expansion of (10) must be sought; this can be
achieved by first substituting y = y−D/2 in (10) and then expanding the Green function for
y = O(ϵ), z = Oϵ), and D = O(1), where ϵ is a small quantity representing the slenderness
of a demihull. The final result of this procedure can be written in the form

ϕ
(o)
j (x, y, z) ∼ Qj(x)G2D(y, z)−

(
1−Kz

)
LS(Qj , Dj ;x)

+ Dj(x)H2D(y, z)−Ky · LA(Qj , Dj ;x) (11)

with

LS =

∫
L

Qj(ξ)
{
gL(x− ξ) + gR(x− ξ)

}
dξ +

∫
L

Dj(ξ) fR(x− ξ) dξ (12)

LA =

∫
L

Qj(ξ) fR(x− ξ) dξ +

∫
L

Dj(ξ)
{
hL(x− ξ) + hR(x− ξ)

}
dξ (13)

where G2D(y, z) and H2D(y, z) are the Green functions of 2-D source and doublet respec-
tively, and other functions of x represent 3-D effects of forward speed and hydrodynamic
interactions. The subscript L to the kernel functions in (12) and (13) stands for the con-
tribution from the left hull and likewise the subscript R is from the right hull; the detailed
expressions of these are given in the appendix of Kashiwagi (1993a). The lowest order ne-
glected in (11) may be O(K2r2, (κ−K)r), where r =

√
y2 + z2 and κ is the 3-D wavenumber

defined from (5), including the forward-speed effects.
It is noteworthy that the source distribution along the centerline of right hull gives not

only the symmetric component, gR(x−ξ), but also the antisymmetric component, fR(x−ξ),
and the latter is exactly the same as the symmetric component given from the doublet
distribution. These terms, which are the influence of the right hull, play an important role
in accounting for the interactions between twin hulls.

3.1.2 Inner solution

In the inner region, gradients of the flow in the x-direction may be neglected. Therefore the
governing equation and boundary conditions to be satisfied are formally identical to those
in the single-hull problem by Newman (1978). In line with the basic concept of Newman’s
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unified theory, we write the solution as the superposition of the particular and homogeneous
solutions:

ϕ
(i)
j (x; y, z) = φj(x; y, z) +

U

iω
φ̂j(x; y, z) + CS

j (x)
{
φ3(y, z)− φ∗

3(y, z)
}

+CA
j (x)

{
φ2(y, z)− φ∗

2(y, z)
}

(14)

Here the first two terms on the right-hand side are the particular solution satisfying the
following body boundary condition:

∂φj

∂N
= Nj (j = 2, 3, 5),

∂φ̂j

∂N
=Mj (j = 3, 5) (15)

where N is the 2-D unit normal, Nj and Mj are slender-body approximations of nj and
mj given in (7) and (9); in particular N5 and M5 can be approximated by N5 = −xN3,
M5 = N3 − xM3. The mode index j = 2 designates the sway mode and the asterisk means
the complex conjugate. Therefore the third and fourth terms in (14) are the symmetric and
antisymmetric homogeneous solutions respectively with respect to the center plane of the
left hull.

The inclusion of the antisymmetric homogeneous component is of great importance in the
present analysis, because even when each demihull is transversely symmetric and oscillating
in heave and pitch, the antisymmetric flow may be induced around the left hull due to the
hydrodynamic influence from the right hull.

The coefficients of homogeneous solutions, CS
j (x) and C

A
j (x), are unknown at this stage

and expected to account for forward-speed effects and flow interactions between twin hulls.
These will be determined by matching the outer expansion of (14) with (11).

The outer expansion of (14) takes the form

ϕ
(i)
j (x; y, z) ∼

[
σj(x) +

U

iω
σ̂j(x) + CS

j (x)
{
σ3(x)− σ∗

3(x)
}]

G2D(y, z)

+ 2iCS
j (x)σ

∗
3(x) e

−Kz cosKy

+CA
j (x)

{
σ2(x)− σ∗

2(x)
}
H2D(y, z) + 2iCA

j (x)σ∗
2(x) e

−Kz sinKy (16)

where σj(x) and σ̂j(x) are explicitly obtainable 2-D Kochin functions equivalent to the
complex amplitude of outgoing waves.

3.1.3 Matching

Comparing (11) with (16) gives the following relations:

Qj(x) = σj(x) +
U

iω
σ̂j(x) + CS

j (x)
{
σ3(x)− σ∗

3(x)
}

(17a)

LS(Qj , Dj ;x) = −2iCS
j (x)σ

∗
3(x) (17b)

Dj(x) = CA
j (x)

{
σ2(x)− σ∗

2(x)
}

(17c)

LA(Qj , Dj ;x) = −2iCA
j (x)σ∗

2(x) (17d)

Eliminating CS
j (x) from (17a)–(17b) and CA

j (x) from (17c)–(17d), we have a coupled
integral equations for the outer source strength Qj(x) and the doublet strength Dj(x), in
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the form

Qj(x)−
i

2

(
σ3
/
σ∗
3 − 1

)
LS(Qj , Dj ;x) = σj(x) +

U

iω
σ̂j(x) (18a)

Dj(x)−
i

2

(
σ2
/
σ∗
2 − 1

)
LA(Qj , Dj ;x) = 0 (18b)

With numerical solutions of Qj and Dj , the coefficients of inner homogeneous component
can be readily obtained from (17a) and (17c), thereby completing the inner solution which
may be used for computing the added-mass and damping coefficients. It should be noted
that with increasing forward speed or with increasing separation distance at a constant
speed, LA becomes independent of Qj and LS becomes independent of Dj ; in this limiting
case Dj = 0 from (18b) and CA

j = 0 from (17c), therefore no hydrodynamic interactions
exist between twin hulls and (18a) is identical to that of Newman’s unified theory for a
single-hull ship.

3.1.4 Added-mass and damping coefficients

Since the completed inner solution is the velocity potential near the left hull, we can compute
the hydrodynamic force on the left hull, which can be summarized as follows:

FL
j = −

(
iω
)2 ∑

k=3,5

[
AL

jk +BL
jk

/
iω
]
Xk (19)

where for j = 3 (heave), 5 (pitch)

AL
jk +BL

jk

/
iω = −ρ

∫
L

dx

∫
CL

(
Nj −

U

iω
Mj

){
φk +

U

iω
φ̂k

}
dℓ

−ρ
∫
L

CS
k (x) dx

∫
CL

(
Nj −

U

iω
Mj

){
φ3 − φ∗

3

}
dℓ (20)

and for j = 2 (sway), 4 (roll), 6 (yaw)

AL
jk +BL

jk

/
iω = −ρ

∫
L

CA
k (x) dx

∫
CL

(
Nj −

U

iω
Mj

){
φ2 − φ∗

2

}
dℓ (21)

We have taken into account that each demihull in the present analysis is transversely sym-
metric about its own center plane.

One thing to be emphasized here is that, as shown in (21), the horizontal side force or
connecting moment will be exerted as inner forces and can be evaluated from the antisym-
metric part of the homogeneous solution. It is needless to say that the hydrodynamic force
on the right hull is the same as (20) in the symmetric mode (j = 3, 5) and opposite to (21)
in the antisymmetric mode (j = 2, 4, 6).

3.2 Diffraction Problem

The analysis in the preceding section may be extended to the diffraction problem by referring
to the unified theory established by Sclavounos (1984). However, as Sclavounos discussed
in his paper (Sclavounos,1985a), if the integrated wave-exciting forces are main concern, it
is advisable to use Haskind-Newman’s reciprocity relation (Newman, 1965). With Haskind-
Newman’s relation, there is no need to obtain the scattered velocity potential, and then the
wave-exciting force in the j-th direction can be computed from

Ej = ρga
ω

ω0
H−

j (k0, χ+ π) (22)
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where

H−
j (k0, β) =

∫∫
SL+SR

(
∂ϕ−j
∂n

− ϕ−j
∂

∂n

)
e−k0z+ik0(x cos β+y sin β) dS (23)

Here ϕ−j designates the reverse-flow radiation potential, which describes the flow around the
ship moving in the negative x-axis at the same speed U as in the real-flow problem while
oscillating in the j-th mode. We should note that applying Haskind-Newman’s relation is
exact in the zero-speed case, whereas in the presence of forward speed we have adopted a
number of approximations:

1) When applying Tuck’s theorem (Ogilvie and Tuck, 1969), the ship hull is assumed
wall-sided near the free surface.

2) In deriving (22), Green’s second identity has been used between the scattered potential
ϕ7 and the reverse-flow velocity potential ϕ−j . The resulting expression includes the so-
called line-integral term along the intersection between the body and free surfaces, which is
neglected.

3) In the reverse-flow problem, the m-term appearing in the body boundary condition is
assumed the same as that in the real-flow problem except the opposite sign; this is not true,
unless the ship has fore-and-aft symmetry.

In the context of slender-ship theory, however, the errors due to the above approximations
may be small, which justifies the use of (22) even in the case of nonzero forward speed.

The function given by (23) is called the Kochin function, which can be calculated from
the outer solution in the slender-ship theory. The details of the derivation may be found in
Kashiwagi (1993b), and the final result is of the form

H−
j (k0, β) = 2

∫
L

eik0x cos β

{
cos
(
k0
D

2
sinβ

)
Q−

j (x)+sinβ ·sin
(
k0
D

2
sinβ

)
D−

j (x)

}
dx (24)

When the ship is longitudinally symmetric, (24) can be evaluated only in terms of the
real-flow radiation solutions. More specifically,

H−
3 (k0, χ+ π) = H3(k0, χ)

H−
5 (k0, χ+ π) = −H5(k0, χ)

}
(25)

4. SHIP MOTIONS

The surge motion is regarded as higher order in the slender-ship theory and thus can be
treated separately. Therefore, the heave and pitch motions of a catamaran can be obtained
as a solution of the following complex linear system:∑

j=3,5

[
−ω2

(
Mij +Aij

)
+ iωBij + Cij

]
Xj = Ei for i = 3, 5 (26)

where Aij and Bij are the added-mass and damping coefficients in the i-th direction due
to the j-th mode of motion, which are twice the values given by (20). Likewise Mij is the
generalized mass matrix and Cij is the restoring coefficients; these are evaluated indepen-
dent of the hydrodynamic analysis and we can refer to Newman (1977) for their detailed
expressions. Ei on the right-hand side of (26) is the wave-exciting force to be evaluated from
(22).
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5. NUMERICAL CALCULATION METHOD

The first task in the numerical implementation is to obtain the particular solution in the
inner problem and the 2-D Kochin functions, σj(x) and σ̂j(x)，necessary in solving (18);
for which the 2-D integral-equation method was used with a remedy for getting rid of the
irregular frequencies, but contributions of the steady perturbation potential ϕS were ignored
in the evaluation of the M -terms, with the result

M2 =M3 = 0, M5 = N3 (27)

The numerical integration of the kernel functions in (18) was carried out by use of the
Clenshaw-Curtis quadrature, with an absolute error less than 10−5 required. The solution
method for the integral equation (18) is the same as that devised in Sclavounos (1985b),
representing unknowns with Chebyshev polynomials and employing a Galerkin technique.
Numerical tests confirmed that a sufficiently accurate solution was obtained by selecting
25–30 terms in the Chebyshev polynomials.

6. RESULTS AND COMPARISON WITH EXPERIMENTS

6.1 Zero Speed Case

To confirm the validity of the theory, computations were performed for the twin half-
immersed spheroids with B/L = 1/8 and D/B = 2, and the results were compared with
independent results by a 3-D panel method and a conventional strip theory incorporating
2-D interaction solutions.

As an example of the results in the radiation problem, the heave added-mass and damp-
ing coefficients are shown in Fig. 2. For reference, the results for a single hull are also

Fig. 2 Heave added-mass and damping coefficients of twin half-immersed spheroids with
B/L = 1/8 and D/B = 2 at U = 0
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included. The present-theory predictions are in excellent agreement with the 3-D panel
method, although the separation distance D/L = 1/4 is small considering the assumption
of the present theory i.e. D/L = O(1). In the pitch mode, we found that the agreement
between the present theory and the 3-D panel method was in almost the same degree as
Fig. 2.

Fig. 3 Heave exciting force on twin half-
immersed spheroids with B/L = 1/8
and D/B = 2 at U = 0, in head wave

Fig. 4 Modulus of heave and pitch motions
of twin half-immersed spheroids with
B/L = 1/8 and D/B = 2 at U = 0, in
head wave

Fig. 3 shows the wave-exciting heave force in head wave, and the present theory agrees well
with the 3-D panel method which solves the diffraction problem directly. Good agreement
was also confirmed in the pitch exciting moment and for other angles of wave incidence.

With the results of the radiation and wave-exciting forces shown above, the heave and
pitch motions were calculated, with the center of gravity taken at the origin of the coordinate
system. Examples are shown in Fig. 4 for the modulus of heave and pitch motions in head
wave. Numerical results of the 3-D panel method and the strip theory are also shown for
comparison. (It should be noted that the coupling effect of surge mode is correctly taken
into account in the 3-D panel method.) By comparison, we can see that the interaction
effects between twin hulls are unexpectedly small except in the short wavelength region,
despite large effects in the radiation and diffraction forces as seen in Figs. 2 and 3. There
must be cancellation between the right- and left-hand sides of the ship-motion equations.

6.2 Forward Speed Case
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Table 1 Principal particulars of Lewis-form ship

Length L (m) 1.500

Breadth B (m) 0.250

Draft d (m) 0.125

Displacement ∆ (kgf) 30.91

Block coeff. CB 0.659

Midship section coeff. CM 0.942

Waterplane area coeff. CW 0.732

In the presence of forward speed, we
carried out experiments at Froude
number (Fn) 0.15 and 0.3, using twin
Lewis-form ships with B/L = 1/6
and D/B = 2. The principal partic-
ulars and the body plan of the ship
used as a demihull are shown in Ta-
ble 1 and Fig. 5 respectively, which
is symmetric not only longitudinally
but also transversely. We should note
that this Lewis-form ship is rather
blunt as a demi hull and the separa-
tion distance is small contrary to the
assumption of the theory.

Fig. 5 Body plan of Lewis-form ship used as
demihull of a catamaran

For the comparison of radiation
forces, forced oscillation tests in
heave and pitch were carried out, an
example of which is shown in Fig. 6
for the heave added-mass and damp-
ing coefficients at Fn = 0.15. Good
agreement exists between the mea-
sured values and the present-theory
predictions, except for slight discrep-
ancies near the frequency at which
the twin-hull interactions are reso-

Fig. 6 Heave added-mass and damping coefficients of twin Lewis-form ships at Fn = 0.15
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Fig. 7 Pitch added moment of inertia and damping coefficients of twin Lewis-form ships
at Fn = 0.3

nant.
Likewise Fig. 7 is the comparison of the pitch added moment of inertia and damping

coefficients at Fn = 0.3. The present theory overpredicts the damping coefficient (B55，but
in comparison with the strip theory and the unified theory for a monohull ship, the present
theory accounts well for the qualitative tendency of experiments.

Next comparisons are for the wave-exciting heave force and pitch moment. The experi-
ments were conducted at Fn = 0.15 and 0.3 in head wave. As a few examples, let us show
Figs. 8 and 9, which are the wave-exciting heave force and pitch moment respectively at
Fn = 0.15. The agreement between the measured and present-theory results is favorable in
heave force, but in the pitch moment the quantitative differences can be seen in the region
of longer wavelengths.

We confirmed that these differences were pronounced at Fn = 0.3 especially in the pitch
moment. It should be understood from these facts that the forward-speed effects are not
fully taken into account in the present theory and this deficiency is also the case in Newman’s
unified theory for a single-hull ship as discussed by Yeung (1985).

Final comparisons are for the heave and pitch motions in head wave, which are shown in
Fig. 10 to Fig. 13. The setup of experiments were such that the radius of pitch gyration was
equal to 0.225L, the vertical position of gravity was 1mm above the free surface, and the
pitch angle was measured at the position of 195mm above the free surface.

Figs. 10 and 11 show the results at Fn = 0.15. Although the agreement is not perfect,
the present theory performs well in comparison with the strip theory and the unified theory
without twinhull interactions. A reason of the underprediction in the pitch amplitude for
λ/L > 1.5 may be related to the underprediction of the wave-exciting moment shown in
Fig. 9.

The comparisons at Fn = 0.3 are shown in Figs. 12 and 13. Even in this case, predictions
by the present theory are not that bad except the pitch motion in the region of longer
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Fig. 8 Heave exciting force on twin Lewis-
form ships at Fn = 0.15 in head wave

Fig. 9 Pitch exciting moment on twin Lewis-
form ships at Fn = 0.15 in head wave

Fig. 10 Heave motion of twin Lewis-form
ships at Fn = 0.15 in head wave

Fig. 11 Pitch motion of twin Lewis-form
ships at Fn = 0.15 in head wave
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Fig. 12 Heave motion of twin Lewis-form
ships at Fn = 0.3 in head wave

Fig. 13 Pitch motion of twin Lewis-form
ships at Fn = 0.3 in head wave

wavelengths. The overprediction of the peak value at the resonance may be an inherent
tendency in the unified theory (Sclavounos, 1985b). It has been pointed out so far that the
strip theory taking account of the twin-hull interactions greatly overpredicts the peak value
near the resonance; this tendency is also retrieved in the calculations here.

7. CONCLUDING REMARKS

By applying the concept of Newman’s unified theory to the analysis of the flow around
the demihull of a catamaran, we presented a new theory which predicts the radiation and
diffraction forces and the wave-induced motions with relative ease.

As a validation of the theory, computations for the zero speed case were compared with
independent results by a 3-D panel method, showing virtually perfect agreement. For the
forward speed case, experiments were carried out at Fn = 0.15 and 0.3 to measure the
heave and pitch added-mass and damping coefficients, the wave-exciting heave force and
pitch moment, and the wave-induced ship motions in head waves, using a catamaran model
with a Lewis-form ship as the demihull. The overall agreement between experimental results
with present-theory predictions was favorable, except for the pitch mode at higher Froude
number and in lower frequencies.
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Numerical Seakeeping Calculations Based on
the Slender Ship Theory∗

Masashi KASHIWAGI
Research Institute for Applied Mechanics, Kyushu University

Kasuga, Fukuoka 816-8580, Japan

Abstract

The survey of recent developments in slender ship theory focuses on unified theory and
high-speed slender-body theory. The unified theory is extended to include wave diffraction
from the bow part near the free surface. The high-speed slender-body theory is extended
to include a homogeneous component in the inner solution, accounting for the transverse
wave system in addition to the longitudinal wave system dominant for high speeds. Several
numerical examples demonstrate the usefulness of these extensions. These theories can
be used as a practical calculation method, bridging the gap between the traditional strip
theory and more involved 3-D panel method.

Keywords: Slender ship theory, seakeeping, radiation, diffraction, ship motion, added
resistance, high speed.

1. Introduction

Because of numerical simplicity and relatively good agreement with measurements, the strip
theory has been used for predicting the seakeeping performance of ships. However, the strip
theory is deficient in accounting for the 3-D effects important for low frequencies and for
some forward-speed effects. In the 1960s and 70s, slender-body theories were extensively
studied to overcome the defects of strip theory. Many slender-ship theories were developed,
assuming in several ways the order of the forward speed of a ship, U , and the frequency
of oscillation, ω. Maruo (1974), Adachi and Ohmatsu (1977), Takagi and Ohkusu (1977)
review these theories.

Early slender-ship theories could only validate the strip theory for high frequencies. How-
ever, since the late 1970s, a number of useful theories have been established, which account
for some 3-D and forward-speed effects while still encompassing the strip theory as a special
case, e.g. Yeung and Kim (1985), Maruo (1989). Among these theories, this review focuses
on the ‘unified theory’, Newman (1978), and the ‘high-speed slender-body theory’, Chapman
(1975, 1976). Both theories have been extended and enhanced and are recognized as prac-
tical calculation methods, bridging the gap between the strip theory and more complicated
3-D calculation methods. Other related theories, such as the ‘rational strip theory’, Ogilvie
and Tuck (1969), are also briefly reviewed.

∗ Reprinted from Ship Technology Research (Schiffstechnik), Vol. 44, No. 4, pp. 167-192, 1997
(October)
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2. General Description of Slender-Ship Theory

We consider the linearized 3-D problem, assuming the inviscid fluid with irrotational motion.
Then the flow can be described with the velocity potential, which is expressed as

Φ = U
[
−x+ φs(x, y, z)

]
+ ℜ

[
ϕ(x, y, z)eiωt

]
(1)

Fig. 1 Coordinate system

ϕ =
iga

ω0

{
ϕ0(x, y, z) + ϕ7(x, y, z)

}
+iω

6∑
j=1

ξj ϕj(x, y, z) (2)

ϕ0 = exp{k0z − ik0(x cosχ+ y sinχ)} (3)

U is the constant forward speed of a ship,
ω = ω0−k0U cosχ the circular frequency of os-
cillation, ω0 the circular frequency of incident
wave, k0 = ω2

0/g the wavenumber, and χ the
incident wave angle, Fig. 1.

The amplitudes of incident wave, a, and of
the j-th mode of oscillation, ξj (j = 1 ∼ 6), are
all assumed small. The unsteady potential ϕ
is divided into the incident wave potential ϕ0,

the scattering potential ϕ7, and the radiation potential ϕj . These potentials are subject to
the free-surface condition of the form(

iω − U
∂

∂x

)2
ϕ+ g

∂ϕ

∂z
+ µ

(
iω − U

∂

∂x

)
ϕ = 0 on z = 0 (4)

where µ is Rayleigh’s artificial viscosity coefficient ensuring the radiation condition to be
satisfied at infinity.

The unknown potentials are ϕj (j = 1 ∼ 7), which can be characterized by the body
surface condition

∂ϕj
∂n

= nj +
U

iω
mj (j = 1 ∼ 6) (5)

= −∂ϕ0
∂n

(j = 7) (6)

where (n1, n2, n3) = n (m1, m2, m3) = −(n · ∇)V

(n4, n5, n6) = r × n (m4, m5, m6) = −(n · ∇)(r × V )

r = (x, y, z) V = ∇[−x+ φs(x, y, z) ]

 (7)

φs(x, y, z) is the steady disturbance potential, which may be computed in advance, satisfying
the rigid-wall free-surface condition on z = 0. The unit normal vector, n, is positive when
pointing into the fluid.

In the slender-ship theory, above equations may be simplified further by introducing the
slenderness parameter ε as a guide, which is usually taken as B/L or T/L (B, T , L being
ship’s breadth, draft, and length, respectively). In the limit of ε→ 0, the ship will be viewed
as a segment in the x-axis, and then the body boundary condition cannot be imposed (which
is called the outer problem). To zoom in the body surface, the y- and z-axes may be stretched
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by the variable transformation of y = εY and z = εZ. Then, the body boundary condition
can be satisfied in the magnified Y -Z plane. On the other hand, in this inner problem there
is no radiation condition, because that holds for the flow at infinity.

Namely, both the outer and inner problems can be simplified to some extent, but includes
unknowns. For a unique solution, the inner and outer problems have to be matched in an
overlap region.

In the inner problem, besides the variable stretching in the y- and z-axes, it is customary
to assume the order of U and ω, because the waves generated by the steady translation and
the harmonic oscillation are different in nature and those wavelengths are related to U2/g
and g/ω2, respectively. These assumptions have produced a number of variations in the
slender-ship theory. Before proceeding to the details of those theories, the outer solution
and its asymptotic and series expansions will be summarized first. In what follows, for
clarity only the ‘longitudinal problem’, i.e. surge (j = 1), heave (j = 3), and pitch (j = 5)
in the radiation problem and the symmetric component with respect to y of the diffraction
problem (j = 7), will be discussed. Similar analyses are possible for the ‘lateral problem’
(see Appendix 1).

3. Outer Solution and Its Expansion

In the outer region far from the ship, the ship may be viewed as a segment along the x-axis.
Then the disturbance due to the ship can be described by a line distribution of 3-D sources:

ϕ
(o)
j (x, y, z) =

∫ ∞

−∞
Qj(ξ)G3D(x− ξ, y, z) dξ . (8)

Here G3D stands for the 3-D Green function, equivalent physically to the velocity potential
of the source with unit strength. Qj is its strength, which is unknown at this stage, because
the body boundary condition is not considered.

The 3-D Green function, satisfying the 3-D Laplace equation and (4) together with the
radiation condition, has been extensively studied; its Fourier transform with respect to x is

G∗
3D(k; y, z) = − 1

2π
lim
µ→0

∫ ∞

−∞

ez
√
k2+m2−imy

√
k2 +m2 − 1

g (ω + kU − iµ)2
dm (9)

= − 1

π
K0(|k|R) +

ν

π

∫ 0

−∞
eνζ K0

{
|k|
√
y2 + (z − ζ)2

}
dζ

+


iϵk√

1− k2/ν2
eνz−iϵkν|y|

√
1−k2/ν2

for ν > |k|

−1√
k2/ν2 − 1

eνz−ν|y|
√

k2/ν2−1 for ν < |k|
(10)

where
ν = (ω + kU)2/g = K + 2τk + k2/K0

ϵk = sgn(ω + kU)

R =
√
y2 + z2 , K = ω2/g , τ = Uω/g , K0 = g/U2

 (11)

K0(x) in (10) is the modified Bessel function of second kind.
One important information to be obtained from the outer solution may be the Kochin

function, which is physically the wave amplitude far from the ship. The Kochin function
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can be defined by considering the asymptotic expression of (10) and substituting it into (8):

Cj(k) =

∫ ∞

−∞
Qj(x) e

ikx dx (12)

C(k) = C7(k) +
ωω0

g

∑
j=1,3,5

ξj
a
Cj(k) . (13)

The amplitude of ship motion in the j-th mode, ξj/a, will be given after solving the
motion equation. Further the source strength, Qj(x), will be determined by matching (8)
with the inner solution in an overlap region.

For the matching procedure to follow, expansions of (10) must be sought. For νR ≫ 1,
the Taylor expansion for the integrand appearing in (10) gives readily the desired expansion.
On the other hand, for νR ≪ 1, we can use a method of Kashiwagi and Ohkusu (1989) or
Newman’s (1978) analysis extended from Ursell’s (1962) analysis for U = 0. The results
are:

G∗
3D(k; y, z) = i ϵk e

ν(z−iϵk|y|) +
cos θ

πνR

+O( (νR)−2, k2/ν2, k2y/ν ) for νR≫ 1 (14)

G∗
3D(k; y, z) =

1

π
(1 + νz)

(
ln

|k|R
2

+ γ
)
+

1

π
νR (cos θ + θ sin θ)

+
1

π
(1 + νz)


1√

1− k2/ν2

{
πiϵk + cosh−1

( ν
|k|

)}
1√

k2/ν2 − 1

{
−π + cos−1

( ν
|k|

)}


+O(ν2R2, k2R2 ) for νR≪ 1 (15)

where z = −R cos θ, y = R sin θ, γ is Euler’s constant, and the upper and lower expressions
in the brackets apply to ν > |k| and ν < |k|, respectively.

Eq. (14) must be valid for the whole range of U , insofar as the frequency is high enough.
However, further simplifications are possible for U = O(1):

G∗
3D(k; y, z) ∼ i eK(z−i|y|)−i2τk|y| . (16)

This is the expression of the rational strip theory of Ogilvie and Tuck (1969), under the
assumption of ω = O(ε−1/2) and U = O(1).

4. 2-D Green Function and Its Expansion

The 2-D Green function considered here for the inner problem is the pseudo 3-D one, satis-
fying ( ∂2

∂y2
+

∂2

∂z2

)
G(i) = δ(x− ξ) δ(y − η) δ(z − ζ) (17)

[ (
iω − U

∂

∂x

)2
+ g

∂

∂z
+ µ

(
iω − U

∂

∂x

) ]
G(i) = 0 on z = 0 (18)

where δ(x) on the right-hand side of (17) denotes Dirac’s delta function.
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The explicit form of G(i) may be given by the Fourier transform, e.g. Yeung and Kim
(1985):

G(i)(x, y, z; ξ, η, ζ) =
δ(x− ξ)

2π
ln

R

R1
+Gp(x− ξ, |y − η|, z + ζ) (19)

Gp(x, y, z) =
1

2π

∫ ∞

−∞
G∗

p(k; y, z) e
−ikx dk (20)

G∗
p(k; y, z) = − 1

2π
lim
µ→0

∫ ∞

−∞

ez|m|−imy

|m| − 1
g (ω + kU − iµ)2

dm (21)

= − 1

π
ℜ
[
eν(z−i|y|)E1{ν(z − i|y|)}

]
+ iϵk e

ν(z−iϵk|y|) . (22)

E1(u) is the exponential integral function with complex variable.
Eq. (20), which is the inverse Fourier transform of (22), can be written in the form

Gp(x, y, z) = u(−x) ei ω
U x

√
K0

π

∫ ∞

0

dℓ√
ℓ
eℓz cos(ℓy) sin(

√
K0ℓ x) (23)

= u(−x) ei ω
U x

√
K0

π
ℑ
[√

π

|z|+ i|y|

{
w(α)− e−α2

}]
(24)

where
w(α) = e−α2

Erfc(−iα) , α =
x

2

√
K0

|z|+ i|y|
. (25)

Erfc(−iα) denotes the error function with complex variable, and u(−x) the unit step func-
tion, equal to 0 for x > 0 and 1 for x < 0.
Gp(x, y, z) represents physically the divergent (longitudinal) wave, existing far behind the

source point. This fact can be explicitly shown either by using the expansion of (24) for
y, z = O(ε), in which exp(−α2) is the leading term, or by applying the stationary-phase
method, Faltinsen (1983), to the integral in (23).

By substituting into (22) the asymptotic and power-series expansions of the exponential
integral function, the expansions of G∗

p(k; y, z) for νR ≫ 1 and νR ≪ 1 can be obtained in
the form

G∗
p(k; y, z) = i ϵk e

ν(z−iϵk|y|) +
cos θ

πνR
+O( (νR)−2) for νR≫ 1 (26)

G∗
p(k; y, z) =

1

π
(1 + νz)

(
ln νR+ γ + πiϵk

)
+

1

π
νR (cos θ + θ sin θ)

+O(ν2R2) for νR≪ 1 . (27)

Eq. (26) is identical to (14) in the leading term, implying that the pseudo 3-D Green
function is equivalent to the 3-D Green function for all values of U for high frequencies. On
the other hand, for low frequencies, comparison of (15) with (27) gives:

G∗
3D(k; y, z) = G∗

p(k; y, z)−
1

π
(1 + νz) g∗(k) +O(ν2R2, k2R2) (28)

where

g∗(k) = ln
2ν

|k|
+ πi ϵk −


1√

1− k2/ν2

{
πiϵk + cosh−1

( ν
|k|

)}
1√

k2/ν2 − 1

{
−π + cos−1

( ν
|k|

)}
 . (29)
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Since Gp represents only the divergent wave, g∗(k) given by (29) can be understood as the
correction term associated with the transverse wave which exists in the genuine 3-D wave
field. g∗(k) reduces to zero for ν ≫ |k|, giving automatically the relation Gp(x; y, z) ≈
G3D(x, y, z).

Let the zero-speed 2-D Green function be denoted by G2D(y, z). Because the substitution
of U = 0 in (21) gives the same result as k = 0, the following holds

G2D(y, z) = G∗
p(0; y, z) . (30)

Therefore, expansions of G2D(y, z) can be readily obtained from (26) and (27). The
relation between G2D and the 3-D Green function is also obtained from (28) and (29), by
simply putting k = 0, i.e. ν = K and ϵk = 1.

5. Unified Theory

5.1 Radiation problem

In the inner problem, due to the coordinate stretching, differentiations with respect to y and
z cause the change in order by O(ε−1). This slender-body assumption allows us to use the
2-D Laplace equation as the governing equation. With the same argument, the leading term
in the free-surface condition may be the rigid-wall condition, ∂ϕj/∂z = 0. This establishes
the ordinary slender-body theory.

However, to seek a unified solution valid for the whole range of frequencies, Newman
(1978) considered the following boundary-value problem:

∇2
2D ϕ

(i)
j = 0 (31)

∂ϕ
(i)
j

∂z
−Kϕ

(i)
j = 0 on z = 0 (32)

∂ϕ
(i)
j

∂N
= Nj +

U

iω
Mj (j = 1, 3, 5) on B(x) (33)

where Nj and Mj are slender-body approximations of nj and mj defined in (5), and B(x)
denotes the contour of the transverse section at station x along the ship’s length.

The surge mode (j = 1) is retained in (33), although the surge mode is of higher order
as compared to heave (j = 3) and pitch (j = 5) modes. In the conventional strip theories,
the surge mode has been simply discarded as higher order. However, with slenderness
assumption, the surge mode is of the same order as the roll mode which is commonly
included in strip theories. We note that no radiation condition is specified in (32). Except
for that, the computation method for solving (31)–(33) can be the same as that used in strip
theories.

The unified theory considers a homogeneous solution plus the particular solution, i.e. the
general inner solution takes the form:

ϕ
(i)
j (x; y, z) = φj(y, z) +

U

iω
φ̂j(y, z) + Cj(x)φH(y, z)

φH(y, z) = φ3(y, z)− φ3(y, z)

 (34)

where φj and φ̂j are the particular solutions, corresponding to the first and second terms
on the r.h.s. of (33) respectively, and the overbar means the complex conjugate. Therefore,
φH(y, z) satisfies the homogeneous body boundary condition.
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The complex conjugate of the velocity potential is physically equivalent to the situation
in which the time is reversed, meaning the inward propagation of the wave, which must
be allowed due to the absence of the radiation condition. Therefore φH(y, z) represents the
standing wave and its amplitude, Cj(x), is related to the magnitude of 3-D interaction effects
among transverse sections; which is unknown in the inner problem but will be determined
in the matching procedure with the outer solution.

With (26) and (30) taken into account, the outer expansion of (34) can be obtained in
the form

ϕ
(i)
j (x; y, z) ∼

[
σj +

U

iω
σ̂j + Cj(x) {σ3 − σ3}

]
G2D(y, z) + 2i Cj(x)σ3 e

Kz cosKy (35)

where σj and σ̂j denote the 2-D Kochin functions which can be computed from particular
solutions of φj and φ̂j , respectively.

The outer solution is given by (8) and the 3-D Green function has its inner expansion
given as (28). However, in order to match with (35), further approximations may be needed
concerning the order of forward speed. According to Newman’s (1978) analysis, it takes the
form

G∗
3D(k; y, z) = G2D(y, z)− 1

π
(1 +Kz) f∗(k) +O(K2R2, (ν −K)R, k2R2) (36)

where

f∗(k) = ln
2K

|k|
+ πi−


1√

1− k2/ν2

{
πiϵk + cosh−1

( ν
|k|

)}
1√

k2/ν2 − 1

{
−π + cos−1

( ν
|k|

)}
 . (37)

The upper and lower expressions in the brackets apply to ν > |k| and ν < |k|, respectively.
The term O((ν − K)R) is neglected as a small quantity. This implies that the unified

theory may be consistent for relatively low forward speeds. However, since the genuine 3-D
wavenumber, ν(k), is retained in f∗(k), forward-speed effects as well as 3-D interactions
among transverse sections are to some extent expected to be accounted for; these will be
made clear by comparison with experiments.

Substituting (36) in (8), the inner expansion of the outer solution can be expressed as

ϕ
(o)
j (x, y, z) ∼ Qj(x)G2D(y, z)− 1

π
(1 +Kz)

∫ ∞

−∞
Qj(ξ) f(x− ξ) dξ . (38)

The expression for f(x−ξ), suitable for numerical computations, can be found in Newman
and Sclavounos (1980), Sclavounos (1984a), and Sclavounos (1984b).

The inner and outer solutions may be matched by comparing (35) with (38). To leading
order, the results are of the form

Qj(x) = σj +
U

iω
σ̂j + Cj(x) {σ3 − σ3} (39)

2i Cj(x)σ3 = − 1

π

∫ ∞

−∞
Qj(ξ) f(x− ξ) dξ . (40)

Eliminating Cj(x) from these two equations, the integral equation for Qj(x) can be ob-
tained in the form

Qj(x) +
i

2π

(
1− σ3/σ3

)∫ ∞

−∞
Qj(ξ) f(x− ξ) dξ = σj +

U

iω
σ̂j (j = 1, 3, 5) . (41)
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In numerical computations, the integration range with respect to ξ may be reduced over
the ship’s length. Once (41) is solved, it is straightforward to compute Cj(x) from (39),
thereby completing the inner and outer solutions.

5.2 Diffraction problem

The body boundary condition (6) can be written as

∂ϕ7
∂n

= k0 e
k0z−ik0y sinχ

{
in2 sinχ− (n3 − in1 cosχ)

}
eiℓx (42)

where the wavenumber in the x-axis is denoted by ℓ = −k0 cosχ, which will be used hereafter.
The rapidly varying part along ship’s length is described by exp(iℓx). In beam sea, ℓ = 0.

However, as in the radiation problem, no assumption should be made on the order of ℓ to
obtain a unified solution applicable to all the wavelengths and incident-wave angles.

The inner solution may be sought in the form

ϕ
(i)
7 (x; y, z) =

{
ψS(x; y, z) + ψA(x; y, z)

}
eiℓx (43)

where ψS and ψA are symmetric and antisymmetric components with respect to y = 0,
respectively, of the slowly-varying part of the solution.

For clarity, the explanations will be made only for ψS component. Similar analysis can
be done for the ψA component, Appendix-1.

With the slender-ship assumption, the boundary-value problem for the inner solution can
be formulated as follows:

∇2
2D ψS − ℓ2ψS = 0 (44)

∂ψS

∂z
− k0 ψS = 0 on z = 0 (45)

∂ψS

∂N
= k0 e

k0z
{
N2 sinχ sin(k0y sinχ)

−(N3 − iN1 cosχ) cos(k0y sinχ)
}

on B(x) . (46)

The governing equation is not the Laplace equation but the 2-D modified Helmholtz
equation, and the wavenumber appearing in the free-surface condition is not K = ω2/g but
k0 = ω2

0/g.
The contribution from the N1-component (the x-component of the normal vector) is

retained in (46). In conventional slender-body theories, the N1-term has been discarded as
higher order by comparison to N2 and N3, implying that the effects of wave diffraction from
the bow part near the water line cannot be taken into account in the context of slender-
body theory. However, once the value of N1 is given, no difficulty exists in solving (44)–(46)
with N1-term kept in (46). (The only thing to do in the program is replacing N3 with
N3 − iN1 cosχ.) In fact, the N1-term is expected to be more crucial than the N2- and N3-
terms near the ship ends, in predictions of the surge exciting force and the added resistance
in head waves.

The inner solution can be constructed in the form of the particular solution ψP
S plus a

homogeneous solution ψH
S :

ψS(x; y, z) = ψP
S (y, z) + C7S(x)ψ

H
S (y, z) (47)

ψP
S = −ek0z cos(k0y sinχ) (48)

ψH
S = ψ2D(y, z) + ek0z cos(k0y sinχ) . (49)
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Here the particular solution is taken as the incident wave with opposite sign, and C7S(x) is
the unknown coefficient of homogeneous component. ψ2D(y, z) denotes a numerical solution
for (44)–(46), which may be obtained using the integral-equation method. In that method,
the Green function satisfying the 2-D modified Helmholtz equation is needed, for which
Kashiwagi (1992) adopted the following:

GH(ℓ; y, z; η, ζ) = − 1

2π

{
K0(|ℓ|R)−K0(|ℓ|R1)

}
+H2D(ℓ; |y − η|, z + ζ) (50)

H2D(ℓ; y, z) = ℜ
[
H2D(ℓ; y, z)

]
+ i ek0z cos(k0y sinχ) (51)

H2D(ℓ; y, z) = − 1

2π
lim
µ→0

∫ ∞

−∞

ez
√
ℓ2+m2−imy

√
ℓ2 +m2 − (k0 − iµ)

dm . (52)

Here H2D(ℓ; y, z) is the exact expression satisfying the extraneous radiation condition,
which can be given by substituting k0 and k0| cosχ| instead of ν and |k|, respectively, into
the Fourier transform of the 3-D Green function given in (9). Therefore, as is clear from
(10), the imaginary part of H2D takes the form

ℑ
[
H2D(ℓ; y, z)

]
= i cscχ ek0z cos(k0y sinχ) . (53)

This function is singular at χ = π (head wave). The proper analysis for head wave was
shown by Ursell (1968), indicating that the imaginary part is proportional to |y| and thus
no progressive wave exists in the y-direction. This unrealistic property is inherent in the 2-D
head-wave problem, and was surmounted by the matched asymptotic-expansion analyses of
Faltinsen (1971), Maruo and Sasaki (1974), Adachi (1977).

To seek a unified solution which is valid not only for head wave but also for all heading an-
gles, Sclavounos (1984a) took only the real part ofH2D as the inner-problem Green function;
this is one of the possible choices, because there is no need to satisfy the radiation condi-
tion in the inner problem. However, numerical computations based on the integral-equation
method using the Green function of Sclavounos’ choice showed the irregular-frequency phe-
nomena at some frequencies. Kashiwagi (1992) resolved these defects by adopting a complex
form, (51), as the inner-problem Green function, which is another possible choice and in fact
regular for all heading angles.

An efficient calculation method for (52) is less popular than the radiation Green function,
G2D(y, z). This seeming complexity might be a reason why the strip theory is still being
used despite of its shortcomings. Appendix-2 provides a calculation method, with much
attention paid on the calculation efficiency.

From (43) and (47)–(49), the outer expansion of the inner solution can be expressed as

ϕ
(i)
7S(x; y, z) ∼ C7S(x)σ7 e

iℓxH2D(ℓ; y, z) +
{
C7S(x)− 1

}
ek0z cos(k0y sinχ) e

iℓx (54)

where σ7 denotes the 2-D Kochin function to be computed from ψ2D(y, z).
For obtaining the inner expansion of the outer solution, the relation between H2D(ℓ; y, z)

and G∗
3D(k; y, z) must be known; which can be achieved by noting the similarity between

(9) and (52), i.e. ν → k0 and |k| → k0| cosχ|. The result can be expressed in the form

ϕ
(o)
7S (x, y, z) ∼ Q7(x)H2D(ℓ; y, z)− 1

π
(1 + k0z)LS(Q7;x) (55)

where
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LS(Q7;x) = Q7(x)hS(χ) +

∫ ∞

−∞
Q7(ξ) f(x− ξ) dξ (56)

hS(χ) = cscχ cosh−1(| secχ|)− ln(2| secχ|) (57)

and the kernel function f(x− ξ) in (56) is the same as that used in the radiation problem.
The matching requirement between (54) and (55) gives two equations for two unknowns,

C7S(x) and Q7(x). Eliminating C7S(x) from those two equations, we can have the integral
equation for Q7(x), in the form

Q7(x) +
1

π
σ7 LS(Q7;x) = σ7 e

iℓx . (58)

A numerical solution of Q7(x) determines readily C7S(x), completing the inner and outer
solutions. The integral equation (58) may be solved with the same scheme as that for the
corresponding equation, (41), in the radiation problem.

For Fn < 0.15, the x-axis may be divided into several segments of equal length and on
each segment the unknown source strength be assumed to vary linearly, which can set up
a linear system of simultaneous equations, giving stable solutions. However, as the Froude
number increases, that scheme becomes unstable, probably because the integral equation will
be of Vorterra type. To overcome this difficulty, Sclavounos (1984b) proposed a Chebyshev-
polynomial representation for the unknown source distribution and the use of Galerkin’s
method to construct a well-conditioned matrix. This scheme seems to give a stable solution
especially when the forward speed is relatively high.

6. Hydrodynamic Forces

Substituting the completed inner solution into the linearized Bernoulli equation, integrating
over the mean wetted surface of the ship, and using Tuck’s theorem, Ogilvie and Tuck (1969),
the hydrodynamic force acting in the i-th direction can be summarized as

Fi = −(iω)2
∑

j=1,3,5

[
Aij +Bij/iω

]
ξj (i = 1, 3, 5) (59)

Aij +Bij/iω =−ρ
∫
L

dx

∫
B(x)

(
Ni −

U

iω
Mi

){
φj(y, z) +

U

iω
φ̂j(y, z)

}
ds

−ρ
∫
L

dxCj(x)

∫
B(x)

(
Ni −

U

iω
Mi

)
φH(y, z) ds (60)

where Aij and Bij are the added-mass and damping coefficients in the i-th direction due to
the j-th mode of motion, and B(x) denotes the sectional contour below z = 0 at station x.
Mi is the slender-body approximation of the m-term, defined in (7). If this is approximated
further by neglecting the steady disturbance potential φs, it follows that M1 = M3 =
0, M5 = N3, and N5 = −xN3. Correspondingly, φ̂1 = φ̂3 = 0, φ̂5 = φ3, and φ5 = −xφ3.

The solutions to be obtained are φ1 and φ3. The calculation method for those can be
the same as that commonly used in the strip theory, except that the surge mode (j = 1) is
included in the present case.

The first line in (60) gives identical results to the strip theory except for surge-related
coefficients, and the second line in (60) contains the 3-D and forward-speed effects through
the coefficient of homogeneous solution, Cj(x).

In the diffraction problem, not only the integrated value of exciting forces, but also the
pressure distribution is required to predict local wave loads, e.g. Mizoguchi et al. (1992).
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Neglecting the contribution of the steady disturbance potential and applying the differen-
tiation with respect to x only to the rapidly-varying term, exp(iℓx), the symmetric part of
the diffraction pressure is

Pd = −ρga ω

ω0

(
1− U

iω

∂

∂x

)
C7S(x)ψ

H
S (y, z) eiℓx

∼= −ρgaC7S(x)
{
ψ2D(y, z) + ek0z cos(k0y sinχ)

}
eiℓx . (61)

Integrating (61) over the ship hull gives the exciting force in the j-th direction:

Ej = ρga

∫
L

dxC7S(x) e
iℓx

∫
B(x)

{
ψ2D(y, z) + ek0z cos(k0y sinχ)

}
nj ds . (62)

In seakeeping, the wave-induced steady force and moment are also important. The added
resistance can be computed by Maruo’s (1960) formula, using the Kochin function. Maruo’s
analysis is based on the stationary-phase method and thus rather complicated. Kashiwagi
(1991) showed a simpler analysis by use of Parseval’s theorem in the Fourier transform,
and gave formulae for the steady lateral force (Y ) and yaw moment (N) as well; those are
summarized as follows:

RAW

ρga2
=

1

4πk0

[
−
∫ k1

−∞
+

∫ k3

k2

+

∫ ∞

k4

]{
|C(k)|2 + |S(k)|2

} ν (k − k0 cosχ)√
ν2 − k2

dk (63)

Y

ρga2
= − 1

4πk0

[
−
∫ k1

−∞
+

∫ k3

k2

+

∫ ∞

k4

]
ℑ
{
2C(k)S(k)

}
ν dk

+
1

2
sinχ ℑ

[
C(k0, χ) + iS(k0, χ)

]
(64)

N

ρga2
=

1

4πk0

[
−
∫ k1

−∞
+

∫ k3

k2

+

∫ ∞

k4

]
ℜ
{
C ′(k)S(k)− S′(k)C(k)

}
ν dk

−1

2
sinχ ℜ

[
C ′(k0, χ) + iS′(k0, χ)

+
1

k0

(
τ +

k0 cosχ

K0

){
C(k0, χ) + iS(k0, χ)

}]
(65)

where
k1

k2

}
= −K0

2

(
1 + 2τ ±

√
1 + 4τ

) k3

k4

}
=
K0

2

(
1− 2τ ∓

√
1− 4τ

)
. (66)

C(k) is the symmetric part of the Kochin function, which, as shown in (12) and (13),
can be evaluated with the source strength Qj(x) in the outer solution. In the unified
theory, Qj(x) will be given as numerical solutions of integral equations (41) and (58). The
antisymmetric part of the Kochin function, S(k), may be evaluated in a similar manner
from the doublet distribution along the ship’s length, Appendix-1. C ′(k) and S′(k) in (65)
denote differentiations with respect to k, and C(k0, χ) and S(k0, χ) are the values evaluated
at k = k0 cosχ and

√
ν2 − k2 = k0 sinχ.

The effects of wave diffraction are rationally taken into account in ψ2D(y, z) by retaining
the N1-term in the body boundary condition. This means that the bow diffraction effects
are implicitly included in σ7 and therefore in Q7(x) as well, because σ7 is computed from
ψ2D and Q7(x) is a solution of (58).
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The present analysis also includes the surge motion and its indirect effects on the heave
and pitch motions through the cross-coupling terms in the motion equations. This is also
different from the original unified theory; thus the name ‘enhanced’ unified theory, Kashiwagi
(1995a), is used.

A few comments should be made on the numerical treatment of the infinite integrals in
(63). Conventional methods based on the strip theory, e.g. Takahashi (1987), usually mul-
tiply the integrand by a convergence acceleration factor, like exp(−νz0) with small positive
value for z0, to ensure the convergence at infinity. This treatment is apparently inconsistent
in the context of slender-ship theory. Kashiwagi and Ohkusu (1993) showed that no diffi-
culty arises in the convergence, even if the sources are placed on z = 0. Their calculation
method utilizes the Fourier-series representation for the line distribution of sources, and
the resultant singular integral, similar to that appearing in the wing theory, is evaluated
analytically.

7. High-Speed Slender-Body Theory (HSSBT)

The unified theory can account for the 3-D interactions among transverse sections for the
whole range of frequencies. Particularly for zero speed, the unified theory gives satisfactory
results. However, for rather high speed, the matching procedure shows a little constraint,
because the inner solution satisfies the zero-speed free-surface condition. As is pointed out
by Yeung and Kim (1985), the 3-D flow is dictated by the inner flow in the unified theory.
Reversely, the 3-D flow should dictate the inner flow.

In that respect, there is no ambiguity in the derivation of (28), the relation between
the 2-D (pseudo 3-D) Green function, Gp(x; y, z), and the 3-D Green function, G3D(x, y, z).
Therefore we are tempted to consider (18) as the free-surface condition in the inner problem,
implying the assumption of ω ≤ O(ε−1/2) and U ≤ O(ε−1/2). Then we have

∇2
2D ϕj = 0 (67)(
iω − U

∂

∂x

)2
ϕj + g

∂ϕj
∂z

= 0 on z = 0 (68)

∂ϕj
∂N

= Nj +
U

iω
Mj (j = 2 ∼ 6) on B(x) . (69)

If the above equations are supplemented with the radiation condition, the resulting for-
mulation will be the same as that considered by Chapman (1975, 1976). Chapman solved
the sway and yaw motions of a plate, applying the finite difference scheme to the above
boundary-value problem.

Inspired by excellent agreement of Chapman’s results with experiments, a number of stud-
ies have been made to extend to a general ship-like geometry; for lateral motion problems,
by Kashiwagi and Hatta (1984), Kashiwagi (1984), and Yamasaki and Fujino (1983, 1984,
1985). For heave and pitch problems, by Saito and Takagi (1978), Adachi (1980), Yeung
and Kim (1981), and Faltinsen (1983). Recently, Faltinsen and Zhao (1991) and Ohkusu et
al.(1991) applied the same formulation to the analysis of a high-speed catamaran.

However, calculation methods used in those studies are much more difficult than the strip
theory or the unified theory. In fact several solution methods have been developed; such
as Fourier-transform method, integral-equation method using the Green function of (19),
boundary-element method with logR used as the Green function, and so on. Nevertheless,
it seems that a reliable calculation method is still not established.

From the viewpoint of the matching with the outer solution, few studies have been done,
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except for Adachi (1980) and Ohkusu and Faltinsen (1990). Thus a brief discussion will be
made below on the matching at the level of outer and inner Green functions.

Firstly, in the range of high frequencies assuming ω = O(ε−1/2) and U ≤ O(ε−1/2),
as is clear from comparison between (14) and (26), Gp(x; y, z) can be smoothly matched
with G3D(x, y, z), and thus there is no need to consider 3-D correction terms (homogeneous
solutions). This conclusion is valid irrespective of the order of U . Therefore, as suggested in
(16), HSSBT encompasses theoretically the rational strip theory of Ogilvie and Tuck (1969)
assuming U = O(1).

Next let us consider the case of low frequencies assuming ω = O(ε) and U ≤ O(ε−1/2). In
this case, as explicitly shown in (28), the inner expansion of the 3-D Green function includes
3-D correction terms associated with the transverse wave in addition to the divergent wave
represented by Gp(x; y, z). Following the idea of the unified theory, the 3-D correction terms
may be matched with the homogeneous component in the inner solution. However, unlike
the unified theory, constructing the homogeneous solution is not so easy because of the
convection term in the free-surface condition. Fig. 2 sums up the above discussion showing
where existing slender-ship theories can be applied.

Theory Applicable Region

Strip Theory (2)

RST (2) (3)

HSSBT (2) (3) (4)

UT (1) (2)

RST : Rational Strip Theory
HSSBT: High-Speed Slender-Body Theory
UT : Unified Theory

Fig. 2 Order of parameters valid for
various theories

Returning to the homogeneous solution of HSSBT, Kashiwagi (1995b) recently showed an
equation for that. Let us denote ϕ+j for the solution satisfying (67)–(69) and the real-flow

radiation condition, and likewise ϕ−j for the reverse-flow and reverse-time solution (with
both signs of U and ω reversed).

Even when both U and ω are reversed in sign, (68) and (69) remain unchanged. Thus
ϕ+j − ϕ−j gives a possible homogeneous solution. However, this solution is a function of x,
affecting the downstream sections.

Therefore the homogeneous solution should have a form of convolution integral. Namely
we can write

ϕ
(i)
j (x; y, z) = ϕ+j (x; y, z) +

∫ ∞

−∞
Cj(ξ)ϕH(x− ξ; y, z) dξ (70)

where ϕH(x; y, z) = ϕ+j (x; y, z)− ϕ−j (x; y, z) . (71)

The weight function Cj(ξ) is unknown in the above expression, which can be matched
with the outer solution more easily by use of Fourier transform, Kashiwagi (1995b).

Yeung and Kim (1985) also studied the 3-D corrections in the framework of HSSBT.
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Instead of (70), they introduced a “generalized inner Green function”, which is the same as
the r.h.s. of (28), with (1+ νz) replaced by exp(νz) cos(νy). They proposed a method using
the generalized inner Green function in the 3-D panel method, but no numerical results were
presented.

Lastly, let me refer to the popular transformation of the HSSBT formulation into an
equivalent 2-D initial-value problem, which has been used in several published papers.

ϕj(x; y, z) = ei
ω
U (x−L/2)ψj(x; y, z)

= e−iωt∗ψj(t
∗; y, z) , t∗ = (L/2− x)/U . (72)

With this transformation, (67)–(69) can be rewritten as

∇2
2D ψj = 0 (73)

∂2ψj

∂t∗2
+ g

∂ψj

∂z
= 0 on z = 0 (74)

∂ψj

∂N
=
(
Nj +

U

iω
Mj

)
eiωt∗ (j = 2 ∼ 6) on B(x) . (75)

If t∗ is viewed as the time variable, the above is a 2-D time-domain problem and thus
various existing solution methods may be used.

Equivalent initial condition can be given by

ψj = 0 ,
∂ψj

∂t∗
= 0 at t∗ = 0 , (76)

which means physically no disturbances at the bow.
Kashiwagi (1995b) showed numerical results based on this initial-value formulation, using

the quadratic isoparametric elements in the boundary-element method and a numerical
absorbing beach to satisfy the radiation condition.

Fig. 3 Heave added-mass and damping coefficients of twin half-immersed spheroids with
L/B = 8 and D/B = 2 at U = 0 (D being the separation distance between twin
hulls)
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8. Comparison of Numerical Results with Experiments

Figure 3 shows the zero-speed results for the radiation problem of a catamaran with half-
immersed spheroid of L/B = 8 used as a demihull, Kashiwagi (1993). In this analysis, the
inner region is defined as flow field near the right (or left) demihull, and the interaction
effects from the other demihull are taken into account through the matching with the outer
solution. The results for a monohull are also shown and compared with independent results
by a more rigorous 3-D panel method. The agreement is very good for the whole range of
frequencies.

Fig. 4 Exciting surge force on a half im-
mersed spheroid of L/B = 5 in head
waves at U = 0

Fig. 5 Surge motion of a half immersed
spheroid of L/B = 5 in head waves
at U = 0

It has been said that the surge mode and the diffraction in the x-direction near the ship
ends cannot be computed with the slender-ship theory. However, once the x-component of
the normal vector is given, there are no fundamental difficulties in computations, as was
shown by Kashiwagi (1995a) with various numerical examples. Fig. 4 shows the wave-
exciting surge force on a rather blunt half-immersed spheroid of L/B = 5. The results agree
well with the 3-D panel method, despite the small amplitude of the force. The dotted line
is the result by the Froude-Krylov force only, which has been used in the strip theory but is
obviously not enough.

With surge-related radiation forces and wave-exciting force, the surge motion was com-
puted (Fig. 5). The solid line was obtained from the coupled motion equation between surge
and pitch, and the dashed line is the solution as the single mode of surge. The noticeable



106 Masashi KASHIWAGI

Fig. 6 Drift force on a fixed spheroid of
L/B = 5 in head waves at U = 0
(diffraction only)

Fig. 7 Drift force on a freely oscillating
spheroid of L/B = 5 in head waves
at U = 0

2

Fig. 8 Added-mass and damping coefficients in heave and pitch of a mathematical ship
model at Fn = 0.1 and 0.2. Experiments are reproduced from Matsunaga and
Maruo (1981)

discrepancy between the two and the good agreement between the solid line and the 3-D
panel method implies that the coupling effects between surge and pitch must be taken into
account.
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Fig. 9 Surge added-mass and damping coefficients of a half-immersed ellipsoid (L/B = 4,
B/2T = 1.25) at Fn = 0.0 and 0.3

Exp. by Kobayashi

Unified Theory

3-D Panel Method

Fig. 10 Exciting surge force of a half-
immersed ellipsoid in head waves
at Fn = 0.3

Exp. by Kobayashi

Unified Theory

3-D Panel Method

Fig. 11 Exciting heave force of a half-
immersed ellipsoid in head waves
at Fn = 0.3

The effects of wave diffraction near the
bow are expected to be pronounced in the
drift force in head waves. Fig. 6 shows
the results exerted by the wave diffraction
only, and Fig. 7 the results including all
effects of ship motions, demonstrating the
importance of the N1-term in the body-
boundary condition.

Fig. 8 compares the diagonal coeffi-
cients in the heave and pitch motions of
a mathematical ship model (L/B = 8)
with transverse sections represented by the
Lewis form to experiments of Matsunaga
and Maruo (1981). Except for the pitch
damping coefficient at Fn = 0.2, the re-
sults of the unified theory agree well, in-
cluding the rapid change near the critical
frequency at τ = 1/4. The unified the-
ory is apparently superior to the interpo-
lation theory developed by Matsunaga and
Maruo (1981, 1982) and comparable to
the 3-D Green function method of Inoue
and Makino (1989).

Experimental results for the surge
added-mass and damping coefficients are
published in very few papers. Com-
parisons are made here with experi-
ments done by Kobayashi (1981), using
a half-immersed ellipsoid with length ra-
tio L/B = 4 and B/2T = 1.25. L/B =
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4 is blunt considering the assumption of
slender-ship theory.

Exp. by Kobayashi

Unified Theory

3-D Panel Method

Fig. 12 Exciting pitch moment of a half-
immersed ellipsoid in head waves
at Fn = 0.3

Experimental values for Fn = 0 scatter
due to the tank-wall interference, Fig. 9.
Furthermore, the measurement of damp-
ing coefficient at Fn = 0.3 was not accu-
rate, Kobayashi (1981) . With these taken
into account, the ‘enhanced’ unified theory
accounts well for the forward-speed effects.

Figs. 10, 11, and 12 compare the wave-
exciting surge force, heave force, and pitch
moment, respectively, at Fn = 0.3 with
experiments of Kobayashi (1981) and 3-
D panel method results of Lin et al.
(1993). The unified theory underestimates
the surge exciting force, but captures the
tendency. Predictions in heave and pitch agree well with experiments. In the ‘enhanced’
unified theory, the effects of the bow diffraction are taken into account in the pressure level,
and thus the heave force and pitch moment must, to some extent, differ from the results of
original unified theory by Sclavounos (1984a).

The contribution of the N1-term will be understood clearer by Fig. 13, which shows

Fig. 13 Hydrodynamic pressure distributions on a half-immersed ellipsoid (L/B = 4,
B/2T = 1.25) in head waves of λ/L = 1.0 (diffraction problem)
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Fig. 14 Added resistance on a half-immersed
spheroid ofB/L = 1/5 in head waves
at Fn = 0.2 (motions restrained)

Fig. 15 Added resistance of SR108 container
ship in head waves at Fn = 0.2 (free
to surge, heave and pitch)

hydrodynamic pressure distributions in the head-sea diffraction problem of λ/L = 1.0,
measured at Fn = 0.1 and 0.3 and at three different transverse sections (x/(L/2) ≡ ξ =
0.793, 0.131, −0.793). The section at ξ = 0.793 is near the bow and θ = 90◦ in the abscissa
is the center of the section.

The strip theory does not contain the 3-D effects of wave attenuation along the ship,
resulting in the same pressure at ξ = 0.793 and −0.793. In contrast, the unified theory
accounts for the 3-D effects, and the agreement with measured values is remarkable. Par-
ticularly at Fn = 0.1, the results with the N1-term show a sizable improvement over the
results neglecting the N1-term.

For precise predictions of the added resistance in short wavelengths it has been argued
that the wave diffraction in x-direction near the bow should be taken into account but the
slender-ship theory cannot, e.g. Takahashi (1987). With this reasoning, Fujii and Takahashi
(1975) proposed a semi-empirical formula, and other theoretical studies have been also
made, Faltinsen et al.(1980), Nakamura et al.(1980), Sakamoto and Baba (1986), Ohkusu
(1986). As expected from Fig. 13, the ‘enhanced’ unified theory provides a rational way of
accounting for the wave diffraction near the bow. One example of that is shown in Fig. 14,
which gives the added resistance on a half-immersed spheroid of L/B = 5 at Fn = 0.2.
Experimental data were obtained at Hiroshima University, using the unsteady wave-pattern
analysis proposed by Ohkusu (1980). Other calculation by Lin et al.(1993), using CBIEM
(Combined Boundary Integral Equation Method) and the forward-speed version of the 3-D
Green function method with flat-panel approximation, are also reproduced. The magnitude
of wave diffraction effect in the x-direction is shown by the difference between the solid and
dotted lines predicted by the unified theory. This difference is essential in the prediction of
the added resistance in head waves.

Another example of the added resistance is shown in Fig. 15 for the SR108 container
ship free to surge, heave and pitch, running at Fn = 0.2 in head waves. Due possibly to
wave breaking or related phenomena, the prediction in short wavelengths is still smaller
than measured forces, but the agreement becomes better as the wavelength increases. In
head waves, the encounter frequency is relatively high at Fn = 0.2, which may be a good
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Fig. 16 Added-moment of inertia and damping coefficient in yaw of a half-immersed
spheroid of L/B = 5 at U = 0

circumstance for the strip theory shown by the dashed line. However, the unified theory
stands out in that it gives stable and favorable results for all heading angles, Kashiwagi and
Ohkusu (1993).

The results demonstrated above are all related to ‘longitudinal’ ship motions. As summa-
rized in Appendix 1, the unified theory can be applied to the lateral ship-motion problems
too, taking account of the 3-D and forward-speed effects. However, since the strip theory is
valid at the limiting cases ω → 0 and ω → ∞, no correction terms are needed in the unified
theory at those limiting cases. In fact, unlike ‘longitudinal’ motions, 3-D effects on the lat-
eral motions are not so large, and forward-speed effects may be more prominent, Kashiwagi
(1985).

Fig. 16 shows the 3-D effects on the added moment of inertia and damping coefficient
in yaw mode at U = 0 for a half-immersed spheroid of L/B = 5. In the limit ω → 0, the
theory shown in Appendix 1 includes no 3-D corrections (the term |k|2y ln(|k|R) appearing
in the first line on the r.h.s. of (A.3) is ignored). Therefore the unified theory is identical
to the strip theory at ω → 0, which is different from the result of the 3-D panel method.
Except for that point, the unified theory accounts for the 3-D effects over the wide range
of frequencies. It is noteworthy that the 3-D effects on the sway mode are smaller than in
Fig. 16, but qualitatively the same.

It is still difficult to make a definitive judgment on the Froude number range in which
the unified theory is expected to give relatively good results. Judging from comparisons
with experiments in the past published papers, it seems that Fn = 0.25 ∼ 0.3 is a limiting
value. For the Froude number higher than that, pseudo 3-D methods like HSSBT may be
recommended. For comparison, Fig. 17 shows results of the unified theory, computed by
Newman and Sclavounos (1980), and Fig. 18 corresponding results of the HSSBT, computed
by Yeung and Kim (1981); both are compared with the same experiments at Fn = 0.35.
Apparently cross-coupling terms between heave and pitch are well predicted by HSSBT, but
the degree of agreement in the heave added-mass and damping coefficients is more or less
the same.

The forward-speed term in the free-surface condition influences the cross coupling coeffi-
cients as a correction of O(U) to the strip theory, whereas no corrections are necessary on the
heave diagonal terms and O(U2) corrections on the pitch diagonal terms, Ogilvie and Tuck
(1969). These theoretical results are confirmed numerically by Faltinsen (1974). Recalling
that HSSBT encompasses the rational strip theory, we can expect that the cross-coupling
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coefficients predicted by HSSBT agree well with experiments.
Computations for sway and yaw motions using HSSBT were initiated by Chapman (1975,

1976), and followed by Kashiwagi and Hatta (1984), Kashiwagi (1984), and Yamasaki and
Fujino (1983, 1984, 1985). In particular, Yamasaki and Fujino conducted extensive com-
parisons with experiments for a flat plate, Wigley ship, Series 60, and SR108 container ship
models, showing encouraging agreement.

According to the comparison with experiments for the SR108 container ship by Takaki
and Tasai (1973), HSSBT accounts well for the forward-speed effects compared to the strip
theory. However, at Fn = 0.15, the degree of agreement seems not enough in low frequencies.
In that range, 3-D interaction effects among transverse sections become important, which
are not taken into account in HSSBT.

Troesch (1981) extended the rational strip theory to the lateral motion problem and
compared with the same experiments for SR108 container ship by Takaki and Tasai (1973).
Troesch’s results are apparently superior to the strip theory but not so good as compared
to the results of HSSBT.

Fig. 17 Radiation force coefficients of a frigate hull (CB = 0.55) due to heaving at Fn = 0.35
(computed by Newman and Sclavounos (1980) using the unified theory)
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/L

Fig. 18 Radiation force coefficients of a frigate hull (CB = 0.55) due to heaving at Fn = 0.35
(computed by Yeung and Kim (1981) using high-speed slender-body theory)

9. Concluding Remarks

The unified theory encompasses the strip theory and includes the 3-D and forward-speed
effects. However, for higher Froude numbers, we had better rely on a pseudo 3-D method
like HSSBT, although its numerical calculation scheme is not fully validated. Furthermore,
HSSBT must become faster to serve as a practical tool like strip theory.

It has been said that the slender-ship theory cannot account for the wave diffraction
in x-direction near the ship ends and that the surge mode should be treated uncoupled
using only the Froude-Krylov force. However, these defects are resolved by the ‘enhanced’
unified theory by retaining the x-component of the normal vector in the body boundary
condition. Numerical examples showed that this theory can predict reasonably surge-related
hydrodynamic forces and also remarkably improves the pressure distribution and the added
resistance in head waves.
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Appendix

A1. Unified Theory for Lateral Modes

Kashiwagi (1985) extended the unified theory developed by Newman (1978) for longi-
tudinal modes to the lateral modes in the radiation problem. Here, not only its summary
but also a new analysis for the asymmetric component of the diffraction problem will be
described. The Kutta condition must be imposed to determine the strength of circulation,
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crucial for computing the lift force. However, that condition is not accounted for in the
present analysis.

The velocity potential in the outer region can be expressed by a doublet distribution
along the x-axis:

ϕ
(o)
j (x, y, z) =

∫ ∞

−∞
Mj(ξ)G

A
3D(x− ξ, y, z) dξ (A.1)

Mj is the unknown strength of the doublet, and GA
3D is the velocity potential due to the

doublet with unit strength and axis parallel to the y-axis, satisfying the 3-D Laplace equa-
tion, linearized free-surface condition, and the radiation condition. Therefore GA

3D can be
computed from G3D by differentiating with respect to y, and its expansion in the Fourier-
transformed domain can be expressed as

GA∗
3D (k; y, z) ≡ − ∂

ν∂y
G∗

3D(k; y, z) (A.2)

=− 1

πν

{
sin θ

R
+

1

2
|k|2y

(
ln

|k|R
2

+ γ − 1

2

)
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+

1

π
νy
(
ln

|k|R
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+ γ − 1
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− θ

π
(1 + νz) + · · ·

+
1

π
νy


√
1− k2/ν2

{
πiϵk + cosh−1

( ν
|k|

)}
−
√
k2/ν2 − 1

{
−π + cos−1

( ν
|k|

)}
 . (A.3)

The Kochin function can be defined in the same manner as in the longitudinal mode,
by substituting the asymptotic expansion of (A.2) as |y| → ∞ into (A.1). The expressions
corresponding to (12) and (13) are given in the form

Sj(k) =
√
1− k2/ν2

∫ ∞

−∞
Mj(x) e

ikx dx (A.4)

S(k) = S7(k) +
ωω0

g

∑
j=2,4,6

ξj
a
Sj(k) . (A.5)

(1) Radiation Problem (j =2, 4, 6)

The inner solution and its outer expansion, corresponding to (34) and (35), may be
written as

ϕ
(i)
j (x; y, z) = φj(y, z) +

U

iω
φ̂j(y, z) + Cj(x)

{
φ2(y, z)− φ2(y, z)

}
(A.6)

∼
[
µj +

U

iω
µ̂j + Cj(x) {µ2 − µ2}

]
GA

2D(y, z)

+2i Cj(x)µ2 e
Kz sinKy (A.7)

where
GA

2D(y, z) ≡ − ∂

K∂y
G2D(y, z)

= − sin θ

πKR
+

1

π
Ky
(
lnKR+ γ − 1

)
− θ

π
(1 +Kz) + iKy + · · · (A.8)

and µj and µ̂j are the 2-D Kochin functions which can be computed from φj and φ̂j problems.
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The inner expansion of the outer solution to be matched with (A.7) can be obtained with
(A.3), in the form

ϕ
(o)
j (x, y, z) ∼Mj(x)G

A
2D(y, z)− 1

π
Ky

∫ ∞

−∞
Mj(ξ)h(x− ξ) dξ (A.9)

where
h(x) =

1

2π

∫ ∞

−∞
h∗(k) e−ikx dk (A.10)

h∗(k) = ln
2K

|k|
+ πi−
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πi ϵk + cosh−1

( ν
|k|

)}
−
√
k2/ν2 − 1

{
−π + cos−1

( ν
|k|

)}
 . (A.11)

Two equations to be obtained by the matching between (A.7) and (A.9) are summarized
as follows:

Mj(x) +
i

2π

(
1− µ2/µ2

)∫ ∞

−∞
Mj(ξ)h(x− ξ) dξ = µj +

U

iω
µ̂j (A.12)

Cj(x) {µ2 − µ2 } =Mj(x)−
{
µj +

U

iω
µ̂j

}
(j = 2, 4, 6) . (A.13)

Solving the integral equation (A.12) and substituting its solution into (A.13), Cj(x) can
be determined, thereby completing the inner solution (A.6). On the other hand, substituting
a numerical solution for Mj(x) into (A.4) gives the asymmetric component of the Kochin
function.

(2) Diffraction Problem (j =7)

The asymmetric component in (43), ψA(x; y, z), can be constructed in the same fashion
as (47)–(49):

ψA(x; y, z) = ψP
A(y, z) + C7A(x)ψ

H
A (y, z) (A.14)

ψP
A = i ek0z sin(k0y sinχ) (A.15)

ψH
A = ψ2D(y, z)− i ek0z sin(k0y sinχ) . (A.16)

ψ2D(y, z) is a numerical solution for the asymmetric component, which can be computed
by the 2-D integral-equation method using the Green function to be obtained from (50). In
that computation, the body-boundary condition may be given by

∂ψ2D

∂N
= ik0 e

k0z
{
N2 sinχ cos(k0y sinχ) + (N3 − iN1 cosχ) sin(k0y sinχ)

}
. (A.17)

The contribution of N1-term is retained here but expected to be small, because it is zero
for both of χ = π/2 (beam wave) and π (head wave).

The outer expression of (A.14) can be expressed as

ϕ
(i)
7A(x; y, z) ∼ C7A(x)µ7 e

iℓxHA
2D(ℓ; y, z)− i

{
C7A(x)− 1
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π
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2 χ (A.19)
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and µ7 denotes the 2-D Kochin function associated with ψ2D problem.
The present Green function, HA

2D, does not satisfy the radiation condition, because it is
obtained from H2D given in (51).

After establishing a relation between (A.3) and (A.19) and substituting the obtained
relation into (A.1), the inner expansion of the outer solution can be obtained in the form

ϕ
(o)
7A(x, y, z) ∼M7(x)H

A
2D(ℓ; y, z)− 1

π
k0yLA(M7;x) (A.20)

where
LA(M7;x) =M7(x)hA(χ) +

∫ ∞

−∞
M7(ξ)h(x− ξ) dξ (A.21)

hA(χ) = sinχ cosh−1(| secχ|)− ln(2| secχ|)− πi cos2 χ . (A.22)

The relations to be obtained by matching (A.18) with (A.20) can be summarized as
follows:

M7(x) +
i cscχ

π
µ7 LA(M7;x) = µ7 e

iℓx (A.23)

C7A(x) =M7(x) / µ7 e
iℓx . (A.24)

Eq. (A.23) is the integral equation forM7(x). With its solution, C7A(x) can be determined
by (A.24), completing the inner solution expressed by (A.14). The 3-D Kochin function,
S7(k), can be computed by substituting a solution of (A.23) into (A.4). With completed
inner solutions of the radiation and diffraction problems, we can compute hydrodynamic
forces and then the amplitude and phase of ship motions. Substituting those in ξj/a of (A.5)
gives the Kochin function, with ship motion effects taken into account. Finally performing
the integrations in (62)–(64) gives the wave-induced steady forces.

A2. Computation of the Diffraction Green Function

Let the real part of (50) times 2π be denoted by GH . Then GH and its derivatives can be
computed from the followings:

GH = lnR− lnR1

−
{
K0(|ℓ|R) + ln

|ℓ|R
2

}
+
{
K0(|ℓ|R1) + ln
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2

}
+G(k0, χ; y − η, z + ζ) (A.25)
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where R , R1 =
√
(y − η)2 + (z ∓ ζ)2 .

1) For k0R1 > 5.5
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F = ek0X E1(k0X) , X = (z + ζ)− i|y − η| . (A.31)
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where β = cosh−1(| secχ|) = ln{| secχ|(1 + sinχ)}
z + ζ = −R1 cos θ , |y − η| = R1 sin θ

}
(A.34)

Kn(x) is the modified Bessel function of second kind, and E1(u) the exponential integral
function with complex variable; for these, numerical calculation methods are available in
public libraries.

In summary, the Green function and its derivatives can be computed in terms of two
functions only, G and Y , given by (A.28) and (A.29) for large k0R1 and (A.32) and (A.33)
for small k0R1. The first line on the r.h.s in each of (A.25)–(A.27) is the singular part, which
can be treated in the integral-equation method in the same way as in the corresponding 2-D
radiation problem.
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Abstract

This paper presents an effective scheme for computing the wave-induced hydroelastic re-
sponse of a very large floating structure, and a validation of its usefulness. The calculation
scheme developed is based on the pressure-distribution method of expressing the distur-
bance caused by a structure, and on the mode-expansion method for hydroelastic deflection
with the superposition of orthogonal mode functions. The scheme uses bi-cubic B-spline
functions to represent unknown pressures and the Galerkin method to satisfy the body
boundary conditions. Various numerical checks confirm that the computed results are ex-
tremely accurate, require relatively little computation time, and contain fewer unknowns,
even in the region of very short wavelengths. Measurements of the vertical deflections in
both head and oblique waves of relatively long wavelength are in good agreement with the
computed results. Numerical examples using shorter wavelengths reveal that the hydroe-
lastic deflection does not necessarily become negligible as the wavelength of incident waves
decreases. The effects of finite water depth and incident wave angle are also discussed.

Keywords: Very large floating structure, hydroelastic response, B-spline function,
Galerkin scheme.

1. Introduction

Very large floating structures (VLFS) will become increasingly necessary for airports, stor-
age, and manufacturing facilities. This need comes from the lack of adequate land space
and/or environmental concerns about such things as the pollution and noise associated with
having such facilities near residential areas.

In Japan, a floating airport is being considered, and its safety and performance in waves
are being intensively studied. The preferred configuration is a barge-type structure 5 km
long, 1 km wide, and a few meters deep. This type of structure has two features: (1) the
wavelengths of practical interest are small compared with the horizontal dimensions of the
structure; and (2) hydroelastic responses are more important than the rigid-body motions
owing to the relatively small flexural rigidity of the structure.

Several methods have been proposed to take account of these features (e.g., refs [1]– [5]
and references therein). Among these, the most common is probably the mode-expansion
method in the framework of linear potential theory, which represents the structural deflection
by a set of “generalized” modes of hydroelastic responses, in addition to the conventional

∗ Reprinted from Journal of Marine Science and Technology, Vol. 3, No 1, pp. 37–49, 1998 (May)
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components of the diffraction problem and the six separate radiation problems for rigid-
body motions. One of the problems with this method is that accurate computations must
be performed for very short wavelengths. Specifically, if realistic waves with wavelength of
50–100m are considered, the length ratio to a VLFS 5 km long is 1/50–1/100.

The structure under consideration can be approximated by a zero-draft rectangular plate
and thus hydrodynamically by the pressure distribution on the free surface. This approxi-
mation is known as the pressure distribution method. Several authors [6]– [8] have presented
numerical results for a VLFS on the basis of this method. However their results are not
accurate in the short-wavelength regime, because the integral equation used in this method
is discretized with a limited number of panels, and on each panel the unknown pressure is
represented by a constant value. If this traditional zero-th order panel method is used for
wavelengths in this investigation, the number of unknowns would have to be O(104), and
thus the computational burden would be enormous. Recently, Wang et al. [9] proposed two
computationally efficient techniques, but those are still not effective for very short wave-
lengths.

This paper presents a new calculation scheme to solve the integral equation in the
pressure-distribution method. The scheme employs bi-cubic B-spline functions to repre-
sent the unknown pressure, and a Galerkin method to convert the integral equation into a
linear system of simultaneous equations. The Galerkin method is effective in increasing the
accuracy, but it also increases the computation time. In the present case, however, “relative
similarity relations” can be used to evaluate the most influential coefficients in the matrix,
which drastically reduces the computational time. Singular integrals originating from a
Rankine-source part of the Green function multiplied by B-spline functions are evaluated
analytically, which also contributes to the high accuracy with fewer unknowns.

Wave-induced hydroelastic responses are computed by a mode-expansion method, which
represents the structural deflection by a superposition of normalized orthogonal functions.
In this paper, the natural modes for the bending of a uniform beam with free ends are
employed as a system of orthogonal functions both in both the x- and y-directions. The
amplitude of each mode function is determined by solving the vibration equation of an elastic
plate, with free-end boundary conditions along the periphery of the plate satisfied in the
process of transforming the stiffness matrix by partial integrations.

The satisfactory performance of the present scheme is demonstrated by numerical checks
of the energy-conservation principle, the Haskind-Hanaoka relation extended to elastic modes
of motion [10], and the convergence of the numerical results as the number of panels in-
creases. For routine use, accurate results up to L/λ = 50 (L, structure length; λ, wave-
length) can be obtained with relatively short computation times and a small number of
unknowns.

Computed hydroelastic responses were compared with the results of experiments con-
ducted at Ship Research Institute [11] for relatively long wavelengths (L/λ < 10). The
results are in virtually perfect agreement. For shorter wavelengths, experiments become dif-
ficult, and no reliable data are available in published papers. Therefore, the characteristic
hydroelastic responses of a VLFS in short waves are discussed based only on the numerical
results computed for several values of wavelength, incident wave angle, and water depth.

2. Mathematical Formulation

Cartesian coordinates are defined as shown in Fig. 1, with z = 0 as the plane of undisturbed
free surface and z = h as the horizontal sea bottom. The incident regular wave comes from
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the negative x-axis with incidence angle β.
Time-harmonic motions of small amplitude are considered, with the complex time depen-

dence eiωt being applied to all first-order oscillatory quantities. The boundary conditions
on the body and free surface are linearized, and the potential flow is assumed.

We then write the velocity potential ϕ, pressure p, and vertical displacement of the
structure w, in the following decomposed form:

ϕ = iωa
{
ϕI + ϕS

}
+

∞∑
j=1

iωXj ϕj (1)

p = ρga

[
pI(x, y) + pS(x, y) +

∞∑
j=1

(
Xj

a

)
pj(x, y)

]
(2)

w = a

[
ζI(x, y) + ζS(x, y) +

∞∑
j=1

(
Xj

a

)
ζj(x, y)

]
(3)

Fig. 1 Coordinate system and notation

where a is the amplitude of an inci-
dent wave, ρ is the fluid density, and
g is the gravitational acceleration.

Suffix I represents quantities re-
lated to the incident wave, suffix S
refers to the scattering component,
and suffix j refers to the radiation
component of the j-th mode of mo-
tion. The definition of mode indices
indicates that not only conventional
rigid-body motions, but also a set
of “generalized” modes to represent
elastic deformations. Xj denotes the
complex amplitude of the normalized
mode function, ζj , which will be de-
scribed later.

The structure under consideration
is rectangular in plan, with length L and width B. In linear theory, the draft is regarded as
zero because of its very small value relative to L and B.

In what follows, the length dimensions are nondimensionalized in terms of L/2, and thus
the structure exists in the region |x| ≤ 1 and |y| ≤ b ≡ B/L on z = 0.

Hydrodynamically, the disturbance due to the presence of a structure can be expressed
by the pressure applied on the free surface. Then the dynamic and kinematic free-surface
boundary conditions are given by

pj = Kϕj + ζj ,
∂ϕj
∂z

= ζj on z = 0 (4)

where K = ω2/g and pj = 0 outside of the structure.
Since the velocity potential can be given by the convolution integral of the unknown

pressure pj and the Green function satisfying Eq. (4) with pj = 0, it follows from the dynamic
free-surface condition in Eq. (4) that the integral equation for the unknown pressure takes
the form

pj(x, y)−K

∫∫
SH

pj(ξ, η)G(x− ξ, y − η, 0) dξdη = ζj(x, y) (5)
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where SH denotes the bottom of the structure situated on z = 0 and G(x, y, z) is the Green
function, which is given for the finite-depth case in the form

G(x, y, z) =
1

π

∞∑
n=1

Cn
cos kn(z − h)

cos knh
K0(knR) +

i

2
C0

cosh k0(z − h)

cosh k0h
H

(2)
0 (k0R) (6)

where
C0 =

k20
K + h(k20 −K2)

, Cn =
k2n

K − h(k2n +K2)

k0 tanh k0h = K , kn tan knh = −K

 (7)

K0(knR) and H
(2)
0 (k0R) in Eq. (6) are the 2nd kind of modified Bessel function and Hankel

function, respectively, with R =
√
x2 + y2. In numerical computations, the Green function

is evaluated using the method developed by Seto [12, 13].
The right-hand side of Eq. (5) is the vertical displacement of the structure, which will be

specified below.
In the diffraction problem (j = S), ζI + ζS = 0 and thus the vertical displacement due to

scattering is given by

ζS(x, y) = −ζI(x, y) = − exp
{
−ik0(x cosβ + y sinβ)

}
(8)

In the extended radiation problem (j = 1, 2, . . .), the vertical displacement is expressed
in terms of an appropriate set of mathematical mode functions. Here we write

∞∑
j=1

Xj ζj(x, y) =

∞∑
m=0

∞∑
n=0

Xmnum(x)vn(y) (9)

where the mode functions in the x- and y-axes, um(x) and vn(y), respectively, are the natural
modes for the bending of a uniform beam with free ends. Specifically um(x) can be written
as [14]

u0(x) =
1

2

u2m(x) =
1

2

[
cosκ2mx

cosκ2m
+

coshκ2mx

coshκ2m

]
 (10)

u1(x) =

√
3

2
x

u2m+1(x) =
1

2

[
sinκ2m+1 x

sinκ2m+1
+

sinhκ2m+1 x

sinhκ2m+1

]
 (11)

where the factors κm denote the positive real roots of the equation

(−1)m tanκm + tanhκm = 0 (12)

These functions are orthogonal, satisfying∫ 1

−1

um(x)uk(x) dx =
1

2
δmk (13)

for allm and k, where δmk is the Kronecker delta, equal to 1 whenm = k and zero otherwise.
vn(y) can be also written in a similar form, with x replaced by y/b on the right-hand

sides of Eqs. (10) and (11).
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Summing up the above, the right-hand side of Eq. (5) is given as ζj(x, y) = um(x)vn(y).
Depending on the combination of odd and even numbers of m and n, these are categorized
into four types, as follows:

1. ζj(x, y) = u2m+1(x)v2n(y); which is odd in x and even in y, and referred to as the F (X)
type.

2. ζj(x, y) = u2m(x)v2n+1(y); which is even in x and odd in y, and referred to as the F (Y )
type.

3. ζj(x, y) = u2m(x)v2n(y); which is even in both x and y, and referred to as the F (Z)
type.

4. ζj(x, y) = u2m+1(x)v2n+1(y); which is odd in both x and y, and referred to as the F (N)
type.

Equation (8) for the diffraction problem can also be categorized into the same four types.
Therefore, taking advantage of that the pressure has the same symmetries as those of the
mode shapes, the unknowns in Eq. (5) can be confined to the first quadrant (x > 0 and
y > 0) of the structure.

In numerical computations, the upper limits of summations in Eq. (9) are truncated to
MX−1 form andMY −1 for n. Note that only three modes correspond to the conventional
rigid-body motions: u1v0 (pitch), u0v1 (roll), and u0v0 (heave).

3. Numerical Method

To solve Eq. (5) with fewer unknowns even for very short wavelengths, the unknown pressure
is represented by use of bi-cubic B-spline functions, in the form

p(x, y) =
NX+2∑
k=0

NY+2∑
ℓ=0

αkℓBk(x)Bℓ(y) (14)

Here Bk(x) and Bℓ(y) are normalized cubic B-spline functions, which can be obtained by
Boor-Cox’s recursion formula [15].
NX and NY are the number of panel divisions in the x- and y-directions, respectively.

Since one cubic spline function extends its influence over four panels, the number of total
unknowns, αkℓ in Eq. (14), is (NX + 3)× (NY + 3).

To determine these unknowns with good accuracy, a Galerkin scheme is employed. That
is, after substituting Eq. (14) in Eq. (5), both sides of Eq. (5) are multiplied by Bp(x)Bq(y),
where p = 0 ∼ NX + 2 and q = 0 ∼ NY + 2, and integrated over the plate SH .

This procedure gives a linear system of simultaneous equations in the form

NX+2∑
k=0

NY+2∑
ℓ=0

αkℓ

[
L(1)
pq,kℓ −K L(2)

pq,kℓ

]
= Rpq (15)

where p = 0 ∼ NX + 2, q = 0 ∼ NY + 2.
The influence coefficients in this matrix are defined as

L(1)
pq,kℓ =

∫∫
SH

Bp(x)Bq(y)Bk(x)Bℓ(y) dxdy (16)

L(2)
pq,kℓ =

∫∫
SH

Bp(x)Bq(y)
[ ∫∫

SH

Bk(ξ)Bℓ(η)G(x− ξ, y − η, 0) dξdη
]
dxdy (17)
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Rpq =

∫∫
SH

Bp(x)Bq(y) ζj(x, y) dxdy (18)

Among these, Eqs. (16) and (18) are relatively easy to evaluate, because these integrands
are simple products of independent functions of x and y, respectively. For these integrals, a
Clenshaw-Curtis quadrature is used in the x- and y-directions independently, with absolute
error less than 10−7 specified.

x

y

j=1 j=3

P1 P3

Fig. 2 Explanation of the relative similarity rela-
tion

The most time-consuming part
of the computation is the integral
in Eq. (17). However, when the
discretization is made into panels
of equal size, the amount of com-
putations can be drastically di-
minished by taking advantage of
“relative similarity relations” in
the integral. For example, let us
consider the case where the field
point (x, y) is located at P1 and
the panel to be integrated is j = 1
(see Fig. 2). Since the Green func-
tion depends only on the relative
distance, x − ξ and y − η, the
integral with respect to (ξ, η) in
Eq. (17) is equivalent to the case
where the field point (x, y) is at
P3 and the panel to be integrated
is j = 3. (Some care must be paid to the order of B-spline functions, because there are
4 × 4 different patterns of Bk(ξ)Bℓ(η) within one panel.) With these similarity relations,
it is enough to consider only one panel for the integration with respect to (ξ, η), which can
reduce the computational time to the order of O(1/N), where N is the total number of panel
divisions. For integrals with respect to (ξ, η) and (x, y) in Eq. (17), the Gauss quadrature is
applied with 6× 6 = 36 points used as integration points over one panel, which is intended
to maintain a high degree of accuracy, although 36 points may be more than necessary.

The treatment described above is valid for the regular part of the integrand. When the
field point is located near or within the integration panel, a special treatment is required for
singularities due to 1/R and lnR included in the Green function.

In the present case, since the bi-cubic B-spline function is used as a weight function in
the Galerkin scheme, the following singular integrals must be evaluated:

ψmn ≡
∫∫

∆S

(ξ − x)m(η − y)n

R
dξdη (19)

φmn ≡
∫∫

∆S

(ξ − x)m(η − y)n lnRdξdη (20)

where m and n are integers between 0 and 3, and ∆S denotes an elementary panel of the
rectangle.

In this paper, these are analytically integrated by applying the idea described in New-
man [16] for evaluating a higher-order polynomial distribution of sources.
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4. First-Order Pressure Force

In the radiation problem that includes elastic modes, computation of the pressure force
acting in the i-th direction due to the j-th mode of motion can be summarized as

Fi

ρga(L/2)2
=

∞∑
j=1

[
K
{
A′

ij − i B′
ij

}
− C ′

ij

](Xj

a

)
(21)

where
A′

ij − i B′
ij = − 1

K

∫∫
SH

( pj − ζj ) ζi dxdy (22)

C ′
ij =

∫∫
SH

ζj ζi dxdy =
b

4
δij (23)

Here indices i and j can take on any values among not only rigid-body modes but also
elastic modes. A′

ij , B
′
ij , and C

′
ij are “generalized” added mass, damping, and hydrostatic

restoring force coefficients, respectively, given in nondimensional form. Equation (23) has
been obtained by using Eqs. (9) and (13).

In the diffraction problem, pI = 0 on z = 0 and thus the wave-exciting force in the i-th
direction can be computed by

Ei

ρga(L/2)2
≡ E ′

i = −
∫∫

SH

pS ζi dxdy (24)

The numerical accuracy of the above computations can be confirmed by checking various
hydrodynamic relations which have been theoretically proven. In this paper, two differ-
ent relations are considered: one is the energy-conservation principle associated with the
damping force, and the other is the Haskind-Hanaoka relation between the radiation and
diffraction problems. These relations can be derived by exploiting Green’s second identity,
e.g. Ertekin et al. [10], or the reciprocity theorem for a flat ship studied by Bessho [17].

Omitting derivations, final results are expressed in the form

B′
ij =

C0

4π

∫ 2π

0

H∗
i (k0, θ)Hj(k0, θ) dθ (25)

E ′
j = Hj(k0, β + π) (26)

where Hj(k0, θ) =

∫∫
SH

pj(ξ, η) e
ik0(ξ cos θ+η sin θ) dξdη (27)

is defined as the Kochin function, and the asterisk in Eq. (25) means the complex conjugate.
As will be explained later, numerical satisfaction in the above relations does not neces-

sarily mean the convergence of solutions when the number of discretized panels is increased.

5. Elastic Response in Waves

Using the pressure distribution obtained from Eqs. (14) and (15) as a forcing term, the
amplitude of specified elastic modes can be determined from the vibration equation of a
plate:

−mB ω
2w(x, y) +D

{
∂4

∂x4
+ 2

∂4

∂x2∂y2
+

∂4

∂y4

}
w(x, y) = −p(x, y) (28)
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where mB is the distribution of mass, which is equal to M/LB in the case of uniform
distribution (M being the total mass), andD is the flexural rigidity given byD = Et3/12(1−
ν2), with E, ν, and t being Young’s modulus, Poisson’s ratio, and the equivalent thickness
of structure, respectively.

Since the structure is freely floating, the bending moment and the equivalent shear force
must be zero along the periphery of the structure. That is,

∂2w

∂n2
+ ν

∂2w

∂s2
= 0,

∂3w

∂n3
+ (2− ν)

∂3w

∂n∂s2
= 0 (29)

where n and s denote the normal and tangential directions, respectively.
In the case of a rectangular plate, a concentrated force, stemming from the replacement

of the torsional moment with an equivalent shear force, acts at the four corners, and this
must be also zero.

R = 2D(1− ν)
∂2w

∂x∂y
= 0 at x = ±1, y = ±b (30)

Substituting Eqs. (2) and (3) into Eq. (28) and writing the result in nondimensional form,
we have

−KM ′Λ
∞∑
j=1

(Xj

a

)
ζj(x, y) + D′

∞∑
j=1

(Xj

a

){ ∂4

∂x4
+ 2

∂4

∂x2∂y2
+

∂4

∂y4

}
ζj(x, y)

= −pS(x, y)−
∞∑
j=1

(Xj

a

)
pj(x, y) (31)

whereM ′ =M/ρLBd, Λ = 2d/L, andD′ = D/ρg(L/2)4, with d being the draft of structure.
In obtaining Eq. (31), the relations of pI = 0 and ζI + ζS = 0 on z = 0 have been used.

Multiplying Eq. (31) by ζi(x, y) = uk(x)vℓ(y) (the relation of mode indices among k, ℓ
and i is the same as that among m, n and j defined in Eq. (9) ) and integrating over the
bottom of the structure, we obtain a linear set of equations

∞∑
j=1

(Xj

a

)[
−K

(
Mij +A′

ij − i B′
ij

)
+ C ′

ij +Dij

]
= E′

i (32)

where
Mij =M ′Λ

∫∫
SH

ζi(x, y) ζj(x, y) dxdy =M ′Λ
b

4
δij (33)

Dij = D′
∫∫

SH

ζi(x, y)

{
∂4

∂x4
+ 2

∂4

∂x2∂y2
+

∂4

∂y4

}
ζj(x, y) dxdy (34)

Here Mij is called the mass matrix and Dij the stiffness matrix, which is the restoring
force coefficient due to structural rigidity. A′

ij , B
′
ij , C

′
ij , and E

′
i in Eq. (32) are defined in

Eqs. (22)–(24).
It should be noted that the free-end conditions, Eqs. (29) and (30), are not explicitly

imposed as constraints on the solution. In fact, the adopted mode functions, ζj(x, y) =
um(x)vn(y), does not satisfy the conditions of Eqs. (29) and (30). However, as suggested
in Newman [14], the end conditions can be satisfied in the weaker context in the process of
transforming the stiffness matrix by partial integrations.
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Applying the Gauss theorem twice, the integral in Eq. (34) can be rewritten in the form

Dij ≡
∫∫

SH

ζi(x, y)∇4ζj(x, y) dS

=

∫∫
SH

∇2ζi ∇2ζj dS +

∫
C

{
ζi

∂

∂n

(
∇2ζj

)
− ∂ζi
∂n

∇2ζj

}
ds (35)

The line integral in Eq. (35) is to be performed along the periphery where Eq. (29) must
be satisfied, and Eq. (29) can be expressed as

∂

∂n

(
∇2ζj

)
=

∂

∂n

(∂2ζj
∂n2

+
∂2ζj
∂s2

)
= −(1− ν)

∂3ζj
∂n∂s2

∇2ζj =
∂2ζj
∂n2

+
∂2ζj
∂s2

= (1− ν)
∂2ζj
∂s2

 (36)

Therefore, we first substitute the above into Eq. (35) and then transform the resulting
integrals further by partial integrations with respect to x and y to take account of the remain-
ing condition Eq. (30). The stiffness matrix after these transformations can be expressed in
the form

Dij = D′
∫∫

SH

{
∂2ζi
∂x2

∂2ζj
∂x2

+
∂2ζi
∂x2

∂2ζj
∂y2

+
∂2ζi
∂y2

∂2ζj
∂x2

+
∂2ζi
∂y2

∂2ζj
∂y2

}
dxdy

+D′(1− ν)

∫ 1

−1

[
∂ζi
∂x

∂2ζj
∂x∂y

− ∂ζi
∂y

∂2ζj
∂x2

]b
−b

dx

+D′(1− ν)

∫ b

−b

[
∂ζi
∂y

∂2ζj
∂x∂y

− ∂ζi
∂x

∂2ζj
∂y2

]1
−1

dy (37)

All integrals shown above can be evaluated analytically with the orthogonality relation,
Eq. (13), and the 4-th order differential equation satisfied by the mode functions ζi and ζj .

6. Results and Discussion

6.1 Numerical accuracy and computation time

Computations were performed for a rectangular plate of L/B = 5 in regular waves with an
incidence angle of β = 30◦. The discretization of the plate into panels was made such that
the first quadrant (x > 0 and y > 0) is subdivided into NX in the x-axis and NY in the y-
axis with the ratio NX/NY = 5, meaning that each panel is a square. The number of mode

Table 1 Computation time versus numbers of panels

(NX,NY ) Number of unknowns Average CPU time∗

(10, 2) 65 9 s

(20, 4) 161 38 s

(30, 6) 297 2min 22 s

(40, 8) 473 5min 10 s

(50, 10) 689 11min 42 s

* By EWS HP 9000 series/model 735
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Fig. 3 Convergence of added mass in heave
mode for the plate L/B = 5 in deep
water

Fig. 4 Convergence of the heave damping co-
efficient for the plate L/B = 5 in deep
water

functions was set to 25 for each of F (X), F (Y ), F (Z), and F (N) types, and computations
were implemented using an engineering workstation, HP 9000 series/model 735.

Table 2 Relative numerical error in the energy-
conservation principle, shown as a percentage,
for L/λ = 45 in deep water. The number of
panels in the first quadrant is NX = 40 and
NY = 8

Mode BX(I, I) BY(I, I) BZ(I, I) BN(I, I)

1 0.2227E-01 0.1363E-01 0.2505E-01 0.1330E-01
2 0.2189E-01 0.1239E-01 0.1886E-01 0.1301E-01
3 0.2784E-02 0.1170E-02 0.1010E-01 0.4330E-02
4 0.2280E-02 0.4132E-02 0.3198E-02 0.4178E-02
5 0.2068E-01 0.1342E-01 0.2298E-01 0.1263E-01
6 0.2018E-02 0.4629E-02 0.1112E-02 0.3293E-02
7 0.5100E-02 0.4719E-03 0.6977E-03 0.3421E-02
8 0.5151E-02 0.4239E-02 0.5964E-02 0.3460E-02
9 0.4536E-02 0.2332E-02 0.4328E-02 0.2234E-02

10 0.1985E-01 0.1177E-01 0.1827E-01 0.1227E-01
11 0.9950E-03 0.2454E-02 0.2263E-02 0.2821E-02
12 0.3865E-02 0.2049E-02 0.4611E-02 0.1258E-02
13 0.3102E-02 0.2718E-02 0.9917E-02 0.1117E-02
14 0.2565E-02 0.1865E-02 0.2021E-02 0.1467E-02
15 0.4295E-02 0.8927E-03 0.3059E-02 0.3270E-03
16 0.5915E-02 0.1047E-03 0.5317E-02 0.6188E-03
17 0.1833E-01 0.1245E-01 0.2014E-01 0.1180E-01
18 0.1058E-03 0.3354E-02 0.3817E-04 0.2941E-02
19 0.3582E-02 0.2958E-03 0.3300E-02 0.1900E-03
20 0.7494E-02 0.8798E-03 0.6425E-02 0.1233E-02
21 0.2638E-02 0.3325E-02 0.8399E-04 0.4133E-02
22 0.2698E-02 0.3287E-02 0.2854E-02 0.3404E-02
23 0.1430E-02 0.3313E-02 0.2055E-02 0.2427E-02
24 0.7174E-03 0.2087E-02 0.1323E-02 0.1779E-02
25 0.2679E-03 0.1618E-02 0.4669E-03 0.1239E-02

The computer program de-
veloped is not fully optimized.
Nevertheless, as shown in Ta-
ble 1, the average computa-
tion time per wavelength was
found remarkably small, which
is largely due to the exploita-
tion of “relative similarity rela-
tions”. In obtaining Table 1, the
number of integration points for
the Gauss quadrature over one
panel was taken equal to 6 ×
6 = 36, which may be more
than necessary. In fact, it has
been confirmed that 25 points
are sufficient to obtain almost
the same results, and that the
computation time in that case
is approximately 80% of that
shown in Table 1.

Examples of numerical con-
vergence with increasing num-
bers of panels are shown in
Figs. 3 and 4, where Fig. 3
shows the added mass in heave
mode ( ζj = u0(x)v0(y) in Eq.
(9) ) and Fig. 4 shows the damp-
ing coefficient in the same heave
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mode. The water depth is infinity and the abscissa is the length ratio, L/λ, between the
structure length L and wavelength λ.

It can be seen that the results converge smoothly as the number of panels increases and
reliable results are obtained provided L/λ < 0.8×NX is satisfied.

It should be noted that all results plotted in Figs. 3 and 4 satisfy quite accurately the
energy-conservation principle and the Haskind-Hanaoka relation, even when the results are
a little different from the converged values. One typical example of that is shown in Table 2,
which shows the relative error in the energy-conservation principle, checked for L/λ = 45
in deep water with NX = 40 and NY = 8. Surprisingly the error is within 0.03% for all
specified mode shapes. Good agreement, of the same order, was also found in the Haskind-
Hanaoka relation, and for different numbers of panels.

This fact implies that a numerical check based only on the energy-conservation princi-
ple and/or the Haskind-Hanaoka relation may be not sufficient to ensure the accuracy of

Fig. 5 Comparison of longitudinal distribu-
tions of the amplitude of vertical elastic
displacement in head waves (β = 180◦).
The wavelength ratio is λ∞/L = 0.1,
0.3 and 0.5, where λ∞ = 2πg/ω2, with
ω being the circular frequency of the
wavemaker

Fig. 6 Comparison of longitudinal distribu-
tions of the amplitude of vertical elas-
tic displacement in oblique (β = 210◦,
240◦) and beam (β = 270◦) waves. The
wavelength ratio is λ∞/L = 0.5, where
λ∞ = 2πg/ω2, with ω being the circu-
lar frequency of the wavemaker
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numerical results.

6.2 Comparison with experiments on elastic response

It is not easy to carry out model experiments of a VLFS, because the similarity of the bending
rigidity as well as the geometrical dimensions must be satisfied at the same time. At the
Ship Research Institute, the model experiments (assuming a floating structure of L × B =
300 m × 60 m) were conducted using a 1/30.77 scale model (L = 9.75m, B = 1.95m, d =
1.67 cm, the bending rigidity EI = 1.752 × 104 Nm2) in a wave tank of L × B = 40m ×
27.5m with the water depth set to h = 1.9m. Those results are reported by Yago and
Endo [11]. The ratio of the wavelength in the experiments to the model length was in the
range of λ∞/L > 0.1 (where λ∞ is given by 2πg/ω2, with ω being the circular frequency of
the wavemaker). This ratio is not small enough considering real wavelengths for the VLFS
problem, but the results may be used to confirm the validity of the numerical method in
this paper.

Figure 5 shows the amplitude of vertical displacement of the model in head waves, in-
coming from the positive x-axis. The deflection is large at the bow, attenuates toward the
lee side and then increases again near the tip of the lee side. As the wavelength decreases,
especially for λ∞/L = 0.1, elastic deflections of a higher order becomes prominent. We can
also observe that little difference in amplitude exists between the center line and the rim of
the port or starboard sides. These measured properties of vertical deflection are precisely
accounted for by the present computations.

Figure 6 shows the results in oblique (β = 210◦ and 240◦) and beam (β = 270◦) waves for
the wavelength of λ∞/L = 0.5. Compared to the head-wave case, the amplitude is large and
its variations along the center line, port, and starboard sides are different from each other.
Computed results are in good agreement, confirming the validity of the present method.

6.3 Elastic response in a short-wavelength regime

For a study of a realistic floating airport, the relative wavelength must be much smaller
than that in the experiments discussed above. However, experiments corresponding to a
realistic situation are very difficult to design. Fortunately, the calculation method described
in this paper has been validated for longer wavelengths, and confirmed numerically as being
accurate enough for shorter wavelengths. Therefore, on the basis of numerical computations,
the characteristics of the elastic response of a VLFS is discussed below.

Table 3 Numerical data for computations
of elastic motions

L×B × d = 5000 (m)× 1000 (m)× 5 (m)

h = 50 (m) or infinity

D = 1.96× 1011 (Nm), ν = 0.3

M ′ = M/ρLBd = 1.0

D ′ = D/ρg(L/2)4 = 0.512× 10−6

As an illustration, computations were
performed with the data shown in Table 3,
which are for a floating airport of L =
5000m, B = 1000m, and d = 5m. The
bending rigidity was taken equal to D =
1.96× 1011 Nm to give a realistic value.

There might be a problem about the con-
vergence of elastic deflection with increasing
the number of mode functions, because each
individual mode function does not satisfy
the free-end boundary conditions, Eqs. (29)
and (30), as it is. Here, the free-end conditions are satisfied in the weaker context, with
Eqs. (29) and (30) being taken into account in transforming the stiffness matrix by partial
integrations. The validity of this technique was generally confirmed by Figs. 5 and 6. To
provide a more rigorous numerical confirmation, Table 4 shows the amplitudes of elastic
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Table 4 Convergence of the amplitude of the local elastic deflection and relative numerical
error in the energy-conservation principle (as a percentage), computed for L/λ = 20
and β = 0◦ in deep water, using NX = 40 and NY = 8

On the center line On the side line

MX MY (−1, 0) (0, 0) (+1, 0) (−1, 0.2) (0, 0.2) (+1, 0.2) Error in Eq. 38

10 2 1.0815 0.0255 0.0846 0.8837 0.0197 0.0278 0.2477E-3
15 3 0.8050 0.2378 0.6125 0.8555 0.1527 0.4116 0.8208E-4
20 4 0.7594 0.2284 0.5932 0.8161 0.1456 0.3958 0.8112E-4
25 5 0.7551 0.2272 0.5878 0.8056 0.1517 0.3913 0.8236E-4
30 6 0.7550 0.2262 0.5856 0.8048 0.1530 0.3911 0.8308E-4
35 7 0.7552 0.2268 0.5846 0.8051 0.1539 0.3912 0.8347E-4
40 8 0.7560 0.2262 0.5834 0.8056 0.1545 0.3913 0.8285E-4

deflection at several selected positions. These are computed for L/λ∞ = 20 and β = 0◦

in deep water, using panel divisions of NX = 40 and NY = 8. The selected positions are
(x, y) = (−1, 0), (0, 0), (1, 0) on the center line and (x, y) = (−1, 0.2), (0, 0.2), (1, 0.2) on the
side line. Note that x = −1 is the weather side for β = 0◦. As the number of elastic modes
increases (with ratio MX/MY = 5 kept constant in the present case), the amplitudes at all
computed positions converge within engineering accuracy.

The entry in the last column in Table 4 shows the numerical errors in the energy conser-
vation principle for the case of a freely floating structure in an incident wave. The equation
for that conservation principle can be written as

H(k0, β)−H∗(k0, β) = −iKC0

2π

∫ 2π

0

|H(k0, θ) |2 dθ (38)

where
H(k0, θ) = HS(k0, θ) +

∞∑
j=1

(Xj

a

)
Hj(k0, θ) (39)

Here Hj(k0, θ) (j = S, 1, 2, · · · ) is defined in Eq. (27) and Xj/a is the complex amplitude
which can be computed from Eq. (32). It can be seen from Table 4 that the energy conser-
vation principle is satisfied very accurately, even when the local elastic deflections are not
converged.

The results of diffraction pressure and elastic deflection are shown in Fig. 7 and Fig. 8,
respectively, at the frequency corresponding to L/λ∞ = 20. Only the real part (i.e., a
snapshot taken at t = 0) is shown. In both Figs. 7 and 8, the upper section is the result
for head wave in deep water, the middle section is for head wave in shallow water of h =
50m (h/λ∞ = 1/5), and the lower section is for oblique wave of β = 30◦ in shallow water
of h = 50m. The number of panel divisions was set to NX = 30 and NY = 6 in the first
quadrant and the mode functions in each of four motion types were taken as MX = 30 and
MY = 6.

We can see that the diffraction pressure in head waves is almost zero inside the plate but
increases sharply near the weather side, with small oscillations along the rim of both sides
parallel to the direction of wave propagation.

However, the elastic deflection is large even inside the plate, and especially at the tip of
the lee side. We can envisage that a thin elastic plate with free ends is excited near the tip
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Fig. 7 Real parts of diffraction pressure distri-
bution on the plate of L/B = 5. The
upper section is for β = 0◦ in deep wa-
ter, the middle section is for β = 0◦ in
shallow water, and the lower section is
for β = 30◦ in shallow water. L/λ∞ =
20 in all cases, and h/λ∞ = 1/5 in shal-
low water

Fig. 8 Real parts of elastic deflection of the
plate of L/B = 5. The upper section
is for β = 0◦ in deep water, the middle
section is for β = 0◦ in shallow water,
and the lower section is for β = 30◦ in
shallow water. L/λ∞ = 20 in all cases,
and h/λ∞ = 1/5 in shallow water
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Fig. 9 The upper and the middle sections are
the real parts of elastic deformation
and the total pressure distribution, re-
spectively, on the plate of L = 5000 m
and B = 1000 m in deep water. The
lower section shows the amplitude in
each of elastic mode shapes. The wave-
length ratio is L/λ = 30 in head wave
(β = 0◦)

Fig. 10 As in Fig. 9 except that the wave-
length ratio L/λ = 40
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of the weather side by a wave force which is like a delta function, and that the disturbance
is propagated towards the end of the plate. The dominant wavelength of elastic deflection is
longer than that of the incident wave. In fact, as explained by Ohkusu and Nanba [18], the
wavelength of elastic deflection is determined by the dispersion relation, in which the finite
value of flexural rigidity is equivalent to a larger gravitational acceleration in water waves.

In shallow water, the wavelength of incoming wave becomes short relative to the infinite-
depth case, which results in the shorter wavelength of the pressure oscillation. Another
shallow water effect is that the flow under the plate is constrained horizontally, thus in-
creasing the magnitude of the pressure and the depth of penetration of the dominant peak
pressure. These shallow-water effects can be also observed in the elastic deflection, although
the oscillation pattern looks similar to the infinite-depth case. It is noticeable that the
amplitude is a little smaller than that in deep water.

In oblique waves, the diffraction pressure has several spikes along the up-wave side, in
phase with the incident wave, which are negligible elsewhere. The elastic deflection, on the
other hand, is not necessarily large along the up-wave side, and the amplitude is smaller
than the head-wave case except near the fore end exposed to the incident wave.

Computations were also performed for L/λ = 30 and 40 in deep water to investigate
the characteristics of hydroelastic deflection in the short wavelength region. The number of
panels was NX = 50 and NY = 10, satisfying L/λ < 0.8×NX which is a requirement for
the numerical convergence suggested by Figs. 3 and 4. The number of mode functions was
set to MX = 50 and MY = 10 in both F (X) and F (Z) types of motion.

The results for L/λ = 30 are shown in Fig. 9 and those for L/λ = 40 are shown in Fig. 10,
where the upper part of the figure is the real part of the elastic deflection, the middle part is
the total pressure distribution when the structure is freely oscillating in waves, and the lower
part is the nondimensional amplitude of specified mode shapes. The serial mode number,
j, is defined such that j = n ×MX +m + 1, m = 0 ∼ MX − 1 for sequential integers of
n = 0 ∼MY − 1.

We can see that the elastic deflection does not necessarily become negligible when the
wavelength of incident waves decreases, and that a prominent wavelength exists in the elastic
deflection. The latter can clearly be seen in the lower sections of Figs. 9 and 10, which show
the contribution of each mode function.

Lastly, by comparing the distribution of total pressure with the diffraction pressure alone,
as shown in Fig. 7, we can see that the pressure distribution is strongly influenced by the
elastic motions and, except near the rim at both sides parallel to the x-axis, the fluctuation
pattern of the total pressure looks similar to that of the elastic deflection.

7. Conclusions

A new method to solve the integral equation in the pressure-distribution method has been
described. To maintain a high level of accuracy in the very short wavelength regime, with
short computational times and few unknowns, the scheme uses bi-cubic B-spline functions
to represent the unknown pressure, and a Galerkin method to satisfy the body boundary
conditions. The good performance of the scheme was validated through numerical checks
of various hydrodynamic relations, and a convergence test with an increasing number of
panels.

The hydroelastic responses of a plate were computed by the mode-expansion method, us-
ing a superposition of one-dimensional free-free beam modes in both the x- and y-directions.
The free-end boundary conditions along the periphery of each plate were satisfied as being
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the natural boundary conditions in the process of transforming the stiffness matrix by par-
tial integrations. The validity of this technique was confirmed by observing the numerical
convergence of the local elastic deflection at several positions as the number of elastic modes
was increased.

The computed results of the amplitude of the elastic response were in good agreement
with the results of experiments with wavelengths of λ∞/L > 0.1 conducted at the Ship
Research Institute.

Assuming a realistic floating airport of 5000m in length, computations were also per-
formed for shorter wavelengths of L/λ = 20, 30 and 40. Those numerical results have shown
that, as the wavelength of incident waves decreases, the elastic deflection does not necessarily
become negligible and its amplitude becomes almost constant over the whole structure.
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Summary

A nonlinear calculation method based on the Mixed Eulerian Lagrangian method is
presented for wave-induced motions of a 2-D floating body. Attention is placed on an
effective calculation of the hydrodynamic force associated with the temporal derivative of
the velocity potential in Bernoulli’s pressure equation. Unlike other existing methods, the
acceleration field can be computed simultaneously with the velocity field, which contributes
greatly to the reduction of computation time. By use of Green’s second identity, the new
method is explained as an extension from the mode decomposition method, and close
relations between the two methods are emphasized.

Computations are performed for a wall-sided model and a flared model, and numerical
results of the waves at upwave and downwave positions and the body motions (sway, heave,
and roll) are compared with corresponding experiments. The overall agreement is very
good, confirming validity of the present method. Discussion is also made on the parametric
oscillation in roll, observed for the flared model.

1. Introduction

Nonlinear calculation methods for the motion of a floating body in large-amplitude waves
have been drawing attention in the seakeeping and ocean engineering research. Recently,
great interest is placed on effects of the body geometry above the sea level, for which no
information has been given by conventional linear theories. For this kind of research, the so-
called Mixed Eulerian Lagrangian (MEL) method, initiated by Longuet-Higgins & Cokelet1),
is the most promising in the framework of the potential flow.

The MEL method has been studied by many researchers; recent references in this context
are Cao et al.2), Tanizawa3),4), Kashiwagi5), Wu & Eatock Taylor6), and others cited therein.
However, simulations of the wave-body interaction were not so successful, because of the
difficulty in precise evaluation of the temporal derivative of the velocity potential, ∂ϕ/∂t ≡
ϕt, appearing in Bernoulli’s pressure equation.

The simplest way of evaluating ϕt is to use a backward finite-difference scheme in time.
However, it is known that this scheme makes a solution inherently unstable, resulting in the
breakdown of computations. An alternative is to solve the boundary-value problem for ϕt,
which was initially proposed by Vinje & Brevig7). The difficulty in this case is that the body
boundary condition for ϕt includes the acceleration of a body which is to be computed from
the motion equation. The hydrodynamic force in the motion equation, in turn, requires the

∗ Reprinted from Journal of the Society of Naval Architects of Japan, Vol.184, pp.139-148, 1998
(December)
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pressure integration and thus evaluation ϕt. To resolve this ‘nested’ situation, several ideas
have been proposed. However, one common defect among those is that the boundary-value
problem for ϕt must be solved after the velocity field is completely determined. That is, two
boundary-value problems must be solved separately within one step of the time marching;
this is a reason of large computation time in the wave-body interaction problem.

The present paper investigates a new indirect method, originally proposed by Wu &
Eatock Taylor6), in which the boundary-value problem is solved for an artificial function ψi

(which is superficially similar to the radiation problem in the linear theory) instead of ϕt it-
self. In this method, the boundary-value problem for ψi is the same in form but independent
of the velocity field. Thus it can be solved simultaneously with the boundary-value problem
for the velocity field, which contributes greatly to the reduction of computation time. Math-
ematical transformations in the new method are based on Green’s second identity. Close
relations are noted between the new method and the mode decomposition method known
as a conventional method for the present problem.

Computations are performed for two different profiles of a 2-D floating body: wall-sided
and flared models. Results of waves and the sway, heave, and roll motions of a floating
body are compared with corresponding experiments. Discussion is made on the validity and
limitation of the present method and also on the parametric oscillation in roll observed for
the flared model.

2. Formulation for the Velocity Potential

As shown in Fig. 1, we consider a freely floating body on the free surface, subjected to a
wave generated by a plunger-type wavemaker. The x-axis of the coordinate system coincides
with the plane of the undisturbed free surface and the positive y-axis is taken downward.
The bottom of water is finite and horizontal, with its depth denoted by h.

The gravitational center of a floating body is initially located at the point (xG, yG), and
subsequent displacement of that point due to wave-induced motions is denoted by ξ1(t),
ξ2(t), and α(t) for sway, heave, and roll, respectively. The body is moored by a weak spring
to prevent from a large excursion in the horizontal direction.

Fig. 1 Coordinate system and schematic view of experiment
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The boundary of a fluid is denoted by S0 on the y-axis, SA on a wavemaker, SF on the
free surface, SB on a floating body, SW on a wave absorbing beach, and SC on a control
surface which is placed artificially at some distance from a body to make the fluid domain
bounded.

In the analyses that follow, all quantities are nondimensionalized in terms of the half
beam of a floating body, b, the gravitational acceleration, g, and the fluid density, ρ.

Assuming the fluid to be inviscid with irrotational motion, the velocity potential ϕ can
be introduced, satisfying the Laplace equation:

∇2ϕ(x, y, t) = 0 in the fluid (1)

The boundary conditions to be satisfied by the velocity potential are written as follows:

Dx

Dt
=
∂ϕ

∂x
,

Dy

Dt
=
∂ϕ

∂y
Dϕ

Dt
= y +

1

2
∇ϕ∇ϕ

 onSF (2)

∂ϕ

∂n
= ẏ0(t)n2 onSA (3)

∂ϕ

∂n
=

3∑
j=1

vj nj onSB (4)

∂ϕ

∂n
=
∂ϕ

∂x
= 0 onS0 (5)

∂ϕ

∂n
= −∂ϕ

∂y
= 0 at y = h (6)

where D/Dt in (2) denotes the substantial derivative; ẏ0(t) in (3) is the velocity of the
wavemaker, and n = (n1, n2) is the unit normal vector; n3 in (4) is defined as n3 = (x −
xG − ξ1)n2 − (y − yG − ξ2)n1, and v1 = ξ̇1(t), v2 = ξ̇2(t), and v3 = α̇(t). Note that the
normal vector is defined in the spaced-fixed coordinate system and positive when directing
from the body surface into the fluid.

The far-field condition of outgoing waves is satisfied by installing an artificial wave absorb-
ing beach. Mathematically, as in the previous paper5) for the radiation problem, Newtonian
cooling terms are introduced only in the kinematic free-surface condition in (2), in the form

Dx

Dt
=
∂ϕ

∂x
,

Dy

Dt
=
∂ϕ

∂y
− 2νy − ν2ϕ on SW (7)

Here ν is nonzero inside the beach and given by

ν = 3CS(x− xf )
2/C3

W for x ≥ xf (8)

with xf being the starting point of the wave absorbing beach which extends over a length
CW (see Fig. 1). The value of coefficient CS is taken equal to 1.2 for all computations in
this paper.

3. Acceleration Field and Force

To compute the velocity field at some time instant, the displacement and velocity of a
floating body must be known; these may be given by integrating in time the equations of
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the body motion expressed in the form

ma1 = F1 , m a2 = F2 , mκ2a3 = F3 (9)

where m and κ are the body mass and the gyrational radius in roll, respectively, and
a1 = ξ̈1(t), a2 = ξ̈2(t), and a3 = α̈(t) are the components of the acceleration defined in
the space-fixed reference frame.

The right-hand side of each equation in (9), Fi, is the force (i = 1, 2) and moment
(i = 3) on a body, in which the components of hydrodynamic and hydrostatic forces may
be obtained by integrating Bernoulli’s pressure over the wetted surface of a body. Including
the gravitational force and horizontal restoring force due to a weak spring, the total force
in the i-th direction can be computed by

Fi =

∫
SB

{
ϕt +

1

2
∇ϕ∇ϕ− y

}
ni dℓ− k ξ1 δi1 +W δi2 (10)

where ϕt = ∂ϕ/∂t is the temporal derivative of the velocity potential, k is the linear spring
constant, and W is the weight of the body, equal to mg. δij denotes the Kronecker delta,
equal to 1 when i = j, otherwise zero.

A numerical problem in (10) is evaluating ϕt. The simplest way for that may be to use
a backward finite-difference scheme in time. However, it has been shown that the use of
a backward finite-difference scheme makes a solution unstable, resulting in the breakdown
of computations. Several recent works, e.g. Cointe et al.8) and Tanizawa3), recommend to
solve the boundary-value problem for ϕt for stable and accurate simulations of motions of a
freely oscillating body.

According to Tanizawa3), the body boundary condition for ϕt can be written as

∂ϕt
∂n

=
3∑

j=1

aj nj + qB on SB (11)

where
qB =− kn

{(∂ϕ
∂x

− ξ̇1 + α̇
(
y − yG − ξ2

) )2
+
(∂ϕ
∂y

− ξ̇2 − α̇
(
x− xG − ξ1

) )2}
+ n1

{
α̇2(x− xG − ξ1)− 2α̇

(∂ϕ
∂y

− ξ̇2

)}
+ n2

{
α̇2(y − yG − ξ2) + 2α̇

(∂ϕ
∂x

− ξ̇1

)}
+ kn

{(∂ϕ
∂x

)2
+
(∂ϕ
∂y

)2}
+
∂ϕ

∂n

∂

∂s

(∂ϕ
∂s

)
− ∂ϕ

∂s

∂

∂s

(∂ϕ
∂n

)
(12)

Here kn is the curvature of body surface, and s is the tangential direction orthogonal to n
(see Fig. 1).

It should be noted that qB defined by (12) can be explicitly evaluated from solutions of
the velocity field, whereas the components of the body acceleration, aj , are unknown and
to be given from (9) and (10). Namely, the calculation of the acceleration field is coupled
with the body-motion equations.

The boundary condition on the wavemaker (SA) can be obtained simply by substituting
ξ1 = α = 0 and ξ2 = y0(t) into (11), with the result

∂ϕt
∂n

= qA on SA (13)
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where
qA = ÿ0 n2 − kn ẏ0

(
ẏ0 − 2

∂ϕ

∂y

)
+
∂ϕ

∂n

∂

∂s

(∂ϕ
∂s

)
− ∂ϕ

∂s

∂

∂s

(∂ϕ
∂n

)
(14)

Since y0(t) may be given as an input, the right-hand side of (13), qA, can be explicitly
evaluated.

Other boundary conditions for ϕt are written as follows:

ϕt = −1

2
∇ϕ∇ϕ+ y on SF (15)

∂ϕt
∂n

=
∂ϕt
∂x

= 0 on S0 (16)

∂ϕt
∂n

= −∂ϕt
∂y

= 0 at y = h (17)

Eq. (15) has been obtained from the dynamic free-surface condition of p = 0.
The above boundary-value problem for ϕt is the same in the nature as that for ϕ itself.

Therefore, as will be explained later, the velocity and acceleration fields can be calculated
with the same numerical scheme based on the boundary-element method. However, it should
be noted that the right-hand sides of (12)–(15) may not be evaluated unless the velocity
field is completely determined. This implies that the boundary-value problem for ϕ and ϕt
can not be solved at the same time.

4. Mode Decomposition Method

Several methods have been proposed for solving the acceleration field coupled with the mo-
tion equations of a floating-body; for instance, the iteration method by Cao et al.2), the mode
decomposition method by Vinje & Brevig7) and Cointe et al.8), and the implicit boundary-
condition method by Tanizawa.3) These are essentially the same in that the boundary-value
problem for ϕt must be solved after the velocity field is completely determined. In this sec-
tion, the mode decomposition method will be summarized as a typical conventional method.

Since the body boundary condition (11) is linear with respect to the acceleration, ϕt may
be obtained in the form

ϕt =
3∑

j=1

aj ψj + ψ4 (18)

Then, ψj must be calculated so as to satisfy the followings:

∂ψj

∂n
=

{
nj (j = 1 ∼ 3)

qB (j = 4)
on SB (19)

∂ψj

∂n
=

{
0 (j = 1 ∼ 3)

qA (j = 4)
on SA (20)

ψj =


0 (j = 1 ∼ 3)

−1

2
∇ϕ∇ϕ+ y (j = 4)

on SF (21)

∂ψj

∂n
= 0 on S0 and at y = h (22)

With this decomposition, ψj can be determined irrespective of the body acceleration,
and the boundary-value problems for j = 1 ∼ 3 are independent of the velocity field. It is
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noteworthy that (18) and (19) are reminiscent of the decomposition in the linear theory into
the radiation and diffraction problems.

Once the boundary-value problems for ψj are solved, the total force in the i-th direction
can be obtained in the form

Fi = −
3∑

j=1

aj Aij +Qi (23)

where Aij = −
∫
SB

ψj ni dℓ (24)

Qi =

∫
SB

{
ψ4 +

1

2
∇ϕ∇ϕ− y

}
ni dℓ− k ξ1 δi1 +W δi2 (25)

Here Aij may be understood as the added mass andQi represents the other forces, dependent
on the velocity, displacement, and incident waves.

Substituting (23) in (9), the components of the body acceleration can be explicitly given,
which will give the velocity and displacement of the body in the next time step.

5. New Indirect Method

One defect in the above method is that the ψ4-problem can not be solved unless the velocity
field is completely determined. That is, after solving the boundary-value problems for ϕ and
ψj (i = 1 ∼ 3), the boundary-value problem for ψ4 must be solved separately in one time
step; which is disadvantageous from a viewpoint of computation time, especially for long
time simulations.

A favorable style in that respect is that the boundary-value problems for the velocity and
acceleration fields can be solved at the same time. This requirement may be achieved by
an idea proposed by Wu & Eatock Taylor6). Unfortunately, the body boundary condition
for ϕt in their paper is different from (11) and no numerical results have been published.
Therefore, necessary equations for computing the acceleration of a body, particularly the
modification of Qi given by (25), will be described below.

In Wu & Eatock Taylor6), Green’s second identity was applied to ϕt and ψi (i = 1 ∼ 3),
but here we consider that identity for ψ4 and ψi (i = 1 ∼ 3), which is written as∫

S0+SA+SB+SF+S∞

{
ψ4
∂ψi

∂n
− ψi

∂ψ4

∂n

}
dℓ = 0 (26)

From the boundary conditions to be satisfied by ψ4 and ψi, the integral along S0 and S∞
(which includes SC and the water bottom) may be zero. Further, taking account of ψi = 0
on SF , ∂ψi/∂n = 0 on SA, and ∂ψi/∂n = ni on SB, it follows that∫

SB

ψ4 ni dℓ =

∫
SA+SB

ψi
∂ψ4

∂n
dℓ−

∫
SF

ψ4
∂ψi

∂n
dℓ

=

∫
SA

ψi qA dℓ+

∫
SB

ψi qB dℓ+

∫
SF

{ 1

2
∇ϕ∇ϕ− y

}∂ψi

∂n
dℓ (27)

In obtaining (27), conditions of (19)–(21) have been used.
With (27), the force term Qi defined by (25), can be calculated as follows:

Qi =

∫
SA

ψi qA dℓ+

∫
SB

ψi qB dℓ+

∫
SB+SF

{ 1

2
∇ϕ∇ϕ− y

}∂ψi

∂n
dℓ− k ξ1 δi1 +W δi2 (28)
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It should be emphasized that there is no need to solve the ψ4-problem for computing (28)
and that the boundary-value problems for ψi (i = 1 ∼ 3) and ϕ are independent and thus can
be solved at the same time. With these facts, we can expect reduction of the computation
time compared to the mode decomposition method.

We note that transformations in this new method are reminiscent of a proof of the Haskind
relation in the linear theory, saying that the wave-exciting force can be computed in terms of
only the radiation solutions. Another thing to be noted is that the pressure is not calculated
in the new method and hence a solution of the ψ4-problem is still needed if the pressure
distribution is of concern.

6. Numerical Procedure

In the MEL method, the positions of fluid particles (x, y) on the free surface and the velocity
potential ϕ on those points are pursued by integrating (2) in time. This means that the
boundary condition for ϕ on SF is of Dirichlet type, which is the same as that for ψj , (21).

Therefore, at each time step, the velocity field described by ϕ and the artificial flow
described by ψj can be determined in the same manner. Let ϕ or ψj be denoted by ψ in
general. Then a solution of ψ can be obtained by solving the boundary integral equation of
the form

C(P )ψ(P ) +

∫
S0+SA+SB

ψ(Q)
∂G(P ;Q)

∂nQ
dℓ−

∫
SF+SW

∂ψ(Q)

∂nQ
G(P ;Q) dℓ

=

∫
SA+SB

∂ψ(Q)

∂nQ
G(P ;Q) dℓ−

∫
SF+SW

ψ(Q)
∂G(P ;Q)

∂nQ
dℓ (29)

where
G(P ;Q) =

1

2π

(
log r + log rh

)
r =

√
(x− x′)2 + (y − y′)2

rh =
√

(x− x′)2 + {y − (2h− y′)}2

 (30)

P = (x, y) is a point on the boundary and Q = (x′, y′) is an integration point. C(P )
is referred to as the solid angle, which is computed numerically from the equi-potential
condition over the entire boundary.

As shown in (30), the Green function includes the mirror image reflected in the water
bottom, so that the water bottom is excluded from the integration area in (29). Also
excluded is a control surface SC shown in Fig. 1, because ψ = 0 and ∂ψ/∂n = 0 are
expected by virtue of the absorbing beach.

To solve (29) accurately, a higher-order boundary-element method is applied using
quadratic isoparametric elements, which is the same as in the previous paper5). Once the
values at nodes are determined, higher-order shape functions may be used for the interpo-
lation; in this paper the Lagrangian interpolation function is used for that purpose.

In a higher-order boundary-element method, a double node is placed at the intersections
between the free surface and a freely floating body. Then the potential ψ at a double node is
assumed to be single-valued, but ∂ψ/∂n on SF and SB can be different. In the present case,
ψ on SF is given from the Dirichlet condition, (2) and (21), and ∂ψ/∂n on SB is specified by
the body boundary conditions, (4) and (19). Therefore the only unknown at the intersection
is ∂ψ/∂n on SF , which will be obtained as a solution of (29). The same numerical treatment
is used at the intersection between the free surface and the wavemaker.
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The 4-th order Runge-Kutta-Gill method is adopted as the time-marching scheme. At
each time step, re-arranging the nodes on the free surface is conducted to avoid dense or
sparse distribution of nodes, which is necessary for stable and accurate simulations for a
long time.

7. Results and Discussion

7.1 Tested models and experiments

Experiments were carried out in the wave channel ( length × breadth × depth = 14 m ×
0.30 m × 0.45 m ) at Osaka University. As shown schematically in Fig. 1, a plunger-type
wavemaker is installed at the left end of the wave channel. The section shape and principal
dimensions of a float of the wavemaker are shown in Fig. 2.

Fig. 2 Section shape and principal dimen-
sions of the wavemaker

Two different floating bodies were used
in experiments; one is a wall-sided model
shown in Fig. 3, similar to the shape of
midship section of a ship, and the other is
a flared model shown in Fig. 4, similar to
the shape of bow section of a ship. Other
data associated with the equations of the
body motion are listed in Table 1. Both
models were initially placed at xG = 3.586
m from the rear of the wavemaker, i.e. the
origin of the coordinate system.

Measured items are the motions (sway,
heave, and roll) of a floating body and
the wave elevations at x = 1.940 m (be-
tween the wavemaker and a floating body)
and at x = 4.676 m (the downwave side
of a floating body). The movement of
the wavemaker from the state of rest was
also measured, which was found to include
higher harmonic terms and thus approxi-
mated with a mathematical function of the form

y0(t) =M(t)
(
a0 + b1 sinωt+ b2 sin 2ωt+ a2 cos 2ωt

)
M(t) = 1− e−αt−βt2

}
(31)

Coefficients α, β, a0, b1, b2 and a2 were determined for each run of experiments by the least-
square method using the iteration.

7.2 Waves generated by the wavemaker

When a floating body is absent, the present calculation scheme is the same as in the previous
paper5), in which good agreement was confirmed between calculated and measured waves
generated by a plunger-type wavemaker with wedge section. However, the experiments
in this paper were carried out in a wave channel of small size and the section shape of
the wavemaker was different from the previous one. Therefore, as a check of input waves
impinging upon a floating body, simulations are performed first only for the waves generated
by the wavemaker.
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Fig. 3 Section shape and principal dimensions
of a wall-sided model

Fig. 4 Section shape and principal dimensions
of a flared model

Table 1 Principal dimensions of tested models and constants in experiments

Kind of tested model Wall-sided Flared

Half breadth at W.L. (b) 0.100m 0.125m

Draft (d) 0.120m 0.230m

Length (L) 0.297m 0.297m

Center of gravity (yG) 0.040m 0.085m

Radius of gyration (κ) 0.067m 0.123m

Natural period of heave (Th) 0.82 sec 0.93 sec

Natural period of roll (Tr) 1.07 sec 2.25 sec

Spring constant (k) 42.44 N/m

Weight of swaying carriage 6.272 N

Two examples are shown here; Fig. 5 is the results for the oscillation period T = 0.9
sec and the wave steepness (the ratio of wave height to wavelength) H/λ ≈ 0.022, and
Fig. 6 is a case of longer wave with T = 1.2 sec and H/λ ≈ 0.019. Results are shown
in nondimensional form in terms of the oscillation amplitude of the wavemaker, Y . The
abscissa is the nondimensional time t

√
g/a, with a = 0.160 m the breadth of the wavemaker

at water line. Each figure is plotted such that the positive of the ordinate indicates the
upward direction of movement.

In numerical computations, the length of the wave absorbing beach, CW , is taken equal
to 2λ, and the time-step size ∆t is selected to be T/20, with T the oscillation period. The
number of discretized elements is 30 on the wavemaker and 30 per wavelength on the free
surface.

The overall agreement is very good, but we can point out two things. Firstly, measured
waves include some disturbances, because the wave profile becomes distorted from that to
be expected as a nonlinear wave, as the time elapses. Secondly, in a case of shorter wave, the
wave amplitude is slightly attenuating with increasing the distance from the wavemaker; this
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Fig. 5 Surface waves generated by the wave-
maker shown in Fig. 2. The oscilla-
tion period is T = 0.9 sec and the wave
steepness is H/λ ≈ 0.022

Fig. 6 Surface waves generated by the wave-
maker shown in Fig. 2. The oscilla-
tion period is T = 1.2 sec and the wave
steepness is H/λ ≈ 0.0185

may be due to a viscous effect from the boundary layer on side walls of the wave channel.

7.3 Floating-body motions in waves

When a floating body is placed on the free surface, the pursuit of the intersection between
the body and free surfaces is crucial and the numerical accuracy of qB expressed by (12)
may influence subsequent results in the time marching. For these reasons, the number of
discretized elements on the wetted surface of a floating body must be relatively large. In
the present computations, 80 elements are used on SB. The number of elements on other
boundaries can be the same as in the preceding problem without a floating body. The length
of the wave absorbing beach, CW , and the time-stepping size, ∆t, are also the same; that
is, CW = 2λ and ∆t = T/20.

It should be mentioned firstly that the numerical results by the new indirect method
described in Section 5 are substantially the same as those by the mode decomposition method
described in Section 4. The difference may not be distinguished in figures which will be
shown below. This means that Eq. (26) is satisfied within a very small error, because the
mathematical difference between the two methods stems from applying (26). However, we
emphasize that the computation time in the new method is considerably reduced and roughly
half of the computation time in the mode-decomposition method.

The results for the wall-sided model are shown in Figs. 7 and 8 in nondimensional form.
The oscillation period of the wavemaker in Fig. 7 is 0.85 sec, which is close to the natural
period of heave ( Th = 0.82 sec ). Hence the heave amplitude is certainly large. However,
measured results of heave are smaller than the calculated results. This difference can be
partly explained from that the present calculation is based on the potential theory. Another
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Fig. 7 Time histories of wave elevations, sway, heave, and roll of the wall-sided model
shown in Fig. 3. The oscillation period is T = 0.85 sec and the wave steepness is
H/λ ≈ 0.0129

Fig. 8 Time histories of wave elevations, sway, heave, and roll of the wall-sided model
shown in Fig. 3. The oscillation period is T = 1.10 sec and the wave steepness is
H/λ ≈ 0.0235
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Fig. 9 Time histories of wave elevations, sway, heave, and roll of the flared model shown
in Fig. 4. The oscillation period is T = 0.95 sec and the wave steepness is H/λ ≈
0.0199

reason is that the measured incident wave, the input, is slightly smaller that the calculated
one, which has been already pointed out in relation to Fig. 5.

In the present computations and experiments, the reflection of waves is repeated between
a floating body and the wavemaker. This is evident from the time history of the wave
elevation labelled as Wave 1. Although there are some small differences in the amplitude,
the overall agreement is very good.

Fig. 8 is an example of a longer-wave case and the oscillation period is T = 1.1 sec. Since
this period is close to the natural period of roll ( Tr = 1.07 sec ), the amplitude of roll is
much larger than that in Fig. 7. Here again measured results are smaller than the calculated
results, which may be due to viscous effects. The waves are in good agreement, including
a distorted profile after wave reflections. It can be seen for the wall-sided model that the
oscillation period of roll is the same as that of the incident wave and the interaction between
heave and roll is not large.

Next comparisons are for the flared model. Fig. 9 is the results for the oscillation period
of T = 0.95 sec and the wave steepness of approximately H/λ = 0.02. This oscillation period
is selected close to the natural period of heave ( Th = 0.930 sec ).

Similar to the case of wall-sided model, the amplitudes of computed heave and sway are
slightly larger than the measurements, but the phases are in good agreement. A big difference
from the wall-sided model exists in the roll motion. We can see the steady inclination in the
beginning of motion and then transition to a large amplitude of the parametric oscillation
with the period of twice the heave oscillation period. This parametric oscillation may be
induced by a reflected wave from the wavemaker (the amplitude of which is increased as
seen from the time history of Wave 1). These transient and nonlinear phenomena are well
accounted for by the present calculations.
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Fig. 10 Time histories of wave elevations, sway, heave, and roll of the flared model shown
in Fig. 4. The oscillation period is T = 1.20 sec and the wave steepness is H/λ ≈
0.0132

Fig. 11 Time histories of wave elevations, sway, heave, and roll of the flared model shown
in Fig. 4. The oscillation period is T = 1.20 sec and the wave steepness is H/λ ≈
0.0184
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It is known that the parametric oscillation in roll is most likely to occur when the period
of the incident wave is close to half of the natural period of roll. Fig. 10 is the results for
T = 1.2 sec and H/λ ≈ 0.013, and as shown in Table 1, the roll natural period of the flared
model is Tr = 2.25 sec.

Despite a small amplitude of the incident wave, the parametric oscillation is induced after
transition for a certain period of time. Tanizawa et al.9) studied the amplitude dependence
on the parametric oscillation. According to that study, we can expect that the inception of
the parametric oscillation becomes earlier as the amplitude of the incident wave increases.
The correctness of this speculation is supported by Fig. 11, in which the oscillation period
remains the same as Fig. 10, whereas the wave steepness is increased to H/λ ≈ 0.0184.
(In Fig. 11, the measurement was intentionally stopped at t

√
g/b ≈ 93, because the roll

amplitude approached the mechanical limit angle for measurement.) At any rate, in both
cases of Figs. 10 and 11, calculated results are in excellent agreement with measured results.

8. Concluding Remarks

A nonlinear simulation method was presented for wave-induced transient motions of a float-
ing body, using a new indirect method to compute the hydrodynamic force on and the
acceleration of a body. With Green’s second identity, the new method was explained as a
further extension from the mode decomposition method. It is interesting to note that math-
ematical transformations in the new method are reminiscent of a derivation of the Haskind
relation in the linear theory.

It was confirmed that the results by the new method are in virtually perfect agree-
ment with the ones by the mode decomposition method. However, the new method is
greatly advantageous in reducing the computation time, because there is no need to solve
the boundary-value problem for ϕt itself. Conversely, the new method has a disadvantage,
not capable of providing the pressure distribution.

Of course, the MEL method has a fatal defect that the computation can not proceed once
the wave breaking occurs. However, as Tanizawa et al.9),10) has shown recently, we believe
that the MEL method is still useful in studying nonlinear phenomena. Future work in this
direction is the extension to 3-D problems, including a ship-motion problem with forward
speed in severe waves.
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ABSTRACT

A hierarchical interaction theory is presented, which can treat hydrodynamic interactions
among a great number of bodies rigorously in the framework of linear potential theory.
After checking numerical accuracy and convergence for a square array of 64 half-immersed
spheres, the theory is applied to column-supported structures with 1280, 2880, and 5120
equally spaced circular cylinders as supporting columns. With the computed hydrody-
namic and hydrostatic forces, the motion equation of an upper deck is solved using the
mode-expansion method. Trapped-wave phenomena among a large number of columns are
observed at relatively short waves, and numerical examples of those effects on the elastic
deflection of the upper deck and the wave pattern around column-supported structures are
also shown.

1. INTRODUCTION

Very Large Floating Structures (VLFSs) are being considered for use as floating airports,
storage, and manufacturing facilities. Those VLFSs are categorized according to the config-
uration under the sea level into: (i) a pontoon-type VLFS, having a box-shaped structure
with very shallow draft, and (ii) a column-supported-type VLFS, consisting of a thin upper
deck and a great number of buoyancy elements.

A number of studies have been made on the pontoon-type VLFS; e.g. Ohmatsu (1997),
Kashiwagi (1998), Lin & Takaki (1998), and others cited therein. However, it may not be
the case that pontoon-type structures are overwhelmingly advantageous. In fact, Kagemoto
(1995) reported some engineering aspects in favor of a column-supported structure, under
the assumption of the same flexural rigidity in both types of structure. His study was
largely based on an approximate analysis, and therefore more careful study is needed using
a rigorous but efficient numerical method.

In the case of column-supported-type VLFS, besides the upper deck being flexible due
to its relatively small rigidity, hydrodynamic interactions among a great number of columns
are important in evaluating the diffraction and radiation forces. It is said that the number
of columns could exceed 10,000, and the conventional calculation methods cannot be used
owing to the huge amount of computer memory and computation time required. In order
to surmount this difficulty, a new hierarchical interaction theory is developed in this paper,
which is regarded as an extension of Kagemoto & Yue’s (1986) interaction theory. No matter

∗ Reprinted from Journal of Fluids and Structures, Vol.14, No.7, pp.1013–1034, 2000 (October)
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how many columns are used, the present theory can be applied with reasonable computation
time, and hydrodynamic interactions can be taken into account rigorously in the framework
of linearized potential theory. In the hierarchical scheme, a great number of actual columns
are grouped into several fictitious bodies and the fictitious bodies are grouped further into
a certain number of larger fictitious bodies. This procedure can be repeated up to any
hierarchical level, if necessary. The interactions are then considered at each level, and
information on interactions can be transmitted upward or downward as required.

The elastic deflection of an upper deck is represented by a superposition of modal func-
tions. Then, the hydrodynamic forces acting on supporting columns in response to specified
modes of the deck are computed by the hierarchical interaction theory. With the computed
hydrodynamic and hydrostatic forces, the amplitude of each modal function is determined
by solving the motion equation of the deck by means of a Galerkin scheme.

Recently, Murai et al. (1998) independently developed almost the same theory and con-
ducted some pilot computations. However, the contributions of evanescent wave components
were ignored at the outset, and the motion equation of the deck was solved in a different
way: that is, firstly the elastic deflection of the deck was represented by a succession of
rigid-body vertical motions of small substructures; and then coupled equations of motion
of the substructures were solved, with hydrodynamic and structural interactions taken into
account. Their investigation seems not to extend to the effect of resonant interactions among
many columns whose number is of a realistic order of several thousands.

In connection with hydrodynamic interactions, some researchers have recently studied
trapped wave phenomena among a certain number of cylinders; e.g. Yoshida et al. (1994),
Maniar & Newman (1997), Evans & Porter (1997), and Utsunomiya & Eatock Taylor (1998).
According to these studies, trapped wave phenomena occur at some specific frequencies
when the wavelength is of the same order as the distance between the centerlines of adjacent
cylinders. This wavelength may be short for a realistic column-supported VLFS but must be
studied, because these phenomena may cause detrimental effects on elastic responses of the
upper deck. The present paper provides computations for these phenomena, including the
wave pattern around column-supported-type structures with 1280 and 5120 equally spaced
circular cylinders.

2. FORMULATION

Fig. 1 Coordinate system and notations

We consider a column-supported
VLFS, comprising of a thin deck and
a great number of buoyancy columns.
The deck is rectangular in plan, with
length L and width B. Theoreti-
cally, the geometry and arrangement
of elementary columns can be arbi-
trary, but in this paper identical and
equally spaced columns are consid-
ered and each column is a truncated
circular cylinder with radius a and
draft d. The centerlines of adjacent
cylinders are separated by a distance
2s in both x- and y-axis of a Carte-
sian coordinate system, where z = 0 is the plane of the undisturbed free surface and the
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water depth is constant at z = h (see Figure 1). Incident plane waves propagate in the
direction with angle β relative to the x-axis. In addition to the global coordinate system, we
shall use a local cylindrical coordinate system (rj , θj , z), with the origin placed at (xj , yj , 0),
i.e. the center of the jth cylinder. Time-harmonic motions of small amplitude are consid-
ered, with the complex time dependence eiωt applied to all first-order oscillatory quantities.
The boundary conditions on the body and free surface are linearized, and potential flow is
assumed. We then express the velocity potential, governed by Laplace’s equation, in the
form

Φ =
gA

iω

(
ΦI + ΦS

)
+

∞∑
k=1

iωXk Φk (1)

where A is the amplitude of an incident wave, ω is the circular frequency, and g is the
gravitational acceleration.
ΦI is the incident-wave velocity potential, which is given by

ΦI = Z0(z) e
−i k0(x cos β+y sin β) (2)

where
Z0(z) =

cosh k0(z − h)

cosh k0h
, k0 tanh k0h =

ω2

g
≡ K (3)

ΦS in (1) represents the scattered potential and the sum, ΦI + ΦS = ΦD, is referred to as
the total diffraction potential.

In the radiation component, suffix k refers to the kth mode of motion, which includes not
only rigid-body motions but also a set of “generalized” modes to represent elastic deflections
of a deck. Xk denotes the complex amplitude of each mode.

Since the deck is very thin compared with other dimensions of the structure, it is enough
to consider only the vertical deflection. This is expressed in the form

w(x, y) =

∞∑
k=1

Xk ζk(x, y) =

∞∑
m=0

∞∑
n=0

Xmn um(x) vn(y) (4)

where the modal functions in the x- and y-axes, um(x) and vn(y), respectively, are the
natural modes for the bending of a uniform beam with free ends. Specifically um(x) can be
written as

u0(x) =
1

2

u2m(x) =
1

2

[cosκ2mx
cosκ2m

+
coshκ2mx

coshκ2m

]
 (5)

u1(x) =

√
3

2
x

u2m+1(x) =
1

2

[ sinκ2m+1 x

sinκ2m+1
+

sinhκ2m+1 x

sinhκ2m+1

]
 (6)

Here the coordinate x is normalized with L/2 and the same implication will be used hereafter.
The factors κm are the positive roots of the equation

(−1)m tanκm + tanhκm = 0 (7)

vn(y) can also be written in a similar form, with x replaced by y/b, where b = B/L, on the
right-hand sides of (5) and (6).
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Following the notation of Newman (1994), the normal component of the kth modal func-
tion is defined as

nk = ζk(x, y)nz (8)

where nz is the z-component of the unit normal vector pointing out of the body.

3. DIFFRACTION PROBLEM

3.1 Diffraction Characteristics of a Single Body

In the interaction theory among a large number of floating bodies, it is prerequisite to solve
the diffraction problem of the jth body in a set of “generalized” incident waves, defined by

{
ψj
I

}
=

{
Z0(z)Jp(k0rj) e

−ipθj

Zn(z)Ip(knrj) e
−ipθj

}
(9)

where p = 0,±1,±2, . . . ,±∞, n = 1, 2, . . . ,∞, and

Zn(z) =
cos kn(z − h)

cos knh
, kn tan knh = −K (10)

Jp and Ip in (9) denote the first kind of Bessel and modified Bessel functions, respectively.
The above diffraction problem can be solved with, for instance, the boundary-element

method as shown in Appendix A, and the resulting scattered potentials can be written in
the form {

φj
S

}
=
[
Bj

]T{
ψj
S

}
(11)

where {
ψj
S

}
=

{
Z0(z)H

(2)
m (k0rj) e

−imθj

Zn(z)Km(knrj) e
−imθj

}
(12)

with m = 0,±1,±2, . . . ,±∞, and n = 1, 2, . . . ,∞. H
(2)
m and Km are the second kind of

Hankel and modified Bessel functions, respectively.
[
Bj

]T
denotes the transpose of the

matrix
[
Bj

]
. This coefficient matrix,

[
Bj

]
, is referred to as the diffraction characteristics

matrix of the jth body.
Wave forces in response to the “generalized” incident waves may be computed at the

same time, which are expressed in the form

{
Ej

z

}
=

∫∫
Sj

{
ψj
I + φj

S

}
nz dS =

∫∫
Sj

{
φj
D

}
nz dS (13)

where Sj denotes the surface of the jth body below z = 0.

3.2 Hierarchical Interaction Theory

We consider a rectangular array of identical and equally spaced columns, but for convenience
of explanation, only a schematic arrangement of bodies is shown in Figure 2. The shaded
bodies in Figure 2 are actual bodies, which are referred to as bodies at level one. A number
of level-one bodies are grouped to form a fictitious body, which is at level two, and several
fictitious bodies are grouped further to form a bigger fictitious body at level three. Repeating
this hierarchical treatment makes it possible to view the interactions among a large number
of bodies as a succession of simpler interactions due to smaller number of bodies. To explain
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Fig. 2 Coordinate systems in hierarchical interaction theory

the theory, it may be enough to consider only two hierarchical levels, i.e. ℓ = 2 would
correspond to the highest level in this case.

Rewriting the incident-wave potential in terms of a polar coordinate system of a fictitious
body i at level ℓ, we obtain the following:

ΦI = αi(k0, β)
∞∑

p=−∞
eip(β−

π
2 )
{
Z0(z)Jp(k0ri) e

−ipθi
}

(14)

where αi(k0, β) = e−ik0(xi cos β+yi sin β) (15)

With the vector of generalized incident waves defined by (9), (14) can be expressed in the
form

ΦI =
{
ai
}T{

ψi
I

}
(16)

where
{
ai
}
is the vector of coefficients defined by means of (14).

According to the Kagemoto & Yue (1986) interaction theory, scattered waves due to other
bodies must be viewed as incident waves upon the body under consideration. Thus, utilizing
the coordinate transformation matrix,

[
Tij
]
given in Appendix B, the total incident-wave

potential on body i at level ℓ is written as

ϕiI,ℓ =

({
ai
}T

+

Nℓ∑
n=1
n̸=i

{
An

S,ℓ

}T [
T ℓ
ni

]){
ψi
I,ℓ

}
(17)
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where Nℓ is the number of fictitious bodies at level ℓ and
{
Ai

S,ℓ

}
is the vector of unknown

coefficients of the scattered potential due to body i.
Assuming that the diffraction characteristics of a fictitious body i at level ℓ are obtained

and expressed with the matrix
[
Bi,ℓ

]
, the following relation can be established:

ϕiS,ℓ =

({
ai
}T

+

Nℓ∑
n=1
n ̸=i

{
An

S,ℓ

}T [
T ℓ
ni

])[
Bi,ℓ

]T{
ψi
S,ℓ

}
=
{
Ai

S,ℓ

}T{
ψi
S,ℓ

}
(18)

One can therefore obtain a linear set of equations for the unknown coefficients,
{
Ai

S,ℓ

}
,

in the form

{
Ai

S,ℓ

}
−
[
Bi,ℓ

] Nℓ∑
n=1
n̸=i

[
T ℓ
ni

]T{
An

S,ℓ

}
=
[
Bi,ℓ

]{
ai
}
, for i = 1 ∼ Nℓ (19)

In reality, however, the matrix
[
Bi,ℓ

]
is also unknown at this stage, because the level ℓ is

fictitious. To determine this matrix, the diffraction problem of a fictitious body for the
components of generalized incident waves,

{
ψi
I,ℓ

}
, needs to be considered.

A fictitious body at level ℓ includes Nℓ−1 bodies at level ℓ − 1 (which are actual bodies
here). Thus we must consider again the interactions among those bodies. The local (down-
ward) expansion of

{
ψi
I,ℓ

}
about the origin of body j at level ℓ − 1 can be found in the

Appendix B. Then, as in (17), the total incident-wave potential on body j at level ℓ − 1 is
written in the following form

{
φj
I,ℓ−1

}
=

([
Iℓ−1
ij

]
+

Nℓ−1∑
n=1
n̸=j

[
An

S,ℓ−1

]T[
T ℓ−1
nj

]){
ψj
I,ℓ−1

}
(20)

Here, note that the unknown coefficients for the scattered potential,
[
Aj

S,ℓ−1

]
, are given in

a matrix form.
As shown in Subsection 3.1, the diffraction characteristics of a single body can be given by

the matrix
[
Bj

]
, which is regarded as determinated, because the level ℓ−1 is the lowest level.

Therefore, in the same manner as in obtaining (19), the algebraic simultaneous equations
for the coefficient matrix

[
Aj

S,ℓ−1

]
can be derived in the form

[
Aj

S,ℓ−1

]
−
[
Bj,ℓ−1

]Nℓ−1∑
n=1
n ̸=j

[
T ℓ−1
nj

]T [
An

S,ℓ−1

]
=
[
Bj,ℓ−1

][
Iℓ−1
ij

]T
,

for j = 1 ∼ Nℓ−1 (21)

Solving (21) means that the diffraction problem at level ℓ− 1 is completely solved. Thus,
considering an outer-field expression of the corresponding scattered potentials of Nℓ−1 bod-
ies, the diffraction characteristics of a fictitious body at level ℓ may be given. For that
purpose, the multipole (upward) expansion of

{
ψj
S,ℓ−1

}
about the origin of body i at level

ℓ must be considered, which is described also in the Appendix B. Then, collecting the con-
tributions from all bodies inside a fictitious body, the vector of scattered potentials can be
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found as follows:

Nℓ−1∑
j=1

[
Aj

S,ℓ−1

]T{
ψj
S,ℓ−1

}
=

Nℓ−1∑
j=1

[
Aj

S,ℓ−1

]T [
M ℓ

ji

]{
ψi
S,ℓ

}
≡
[
Bi,ℓ

]T{
ψi
S,ℓ

}
(22)

Therefore we have [
Bi,ℓ

]
=

Nℓ−1∑
j=1

[
M ℓ

ji

]T [
Aj

S,ℓ−1

]
(23)

Substituting this diffraction characteristics matrix into (19) determines the coefficient vector
of the scattered potential at level ℓ. This completes the description of the entire flow field.

3.3 Wave Exciting Force

Since fundamental wave forces due to each component of the generalized incident waves
are already computed and given by (13), the only further requirement for computing the
wave-exciting force is to find the amplitude of waves impinging upon the actual bodies at
level ℓ− 1. This can be done by simply combining (17) and (20), with the result

ϕjI,ℓ−1 =
{
Aj

D

}T{
ψj
I,ℓ−1

}
(24)

where

{
Aj

D

}T
=

({
ai
}T

+

Nℓ∑
n=1
n ̸=i

{
An

S,ℓ

}T [
T ℓ
ni

])([
Iℓ−1
ij

]
+

Nℓ−1∑
n=1
n ̸=j

[
An

S,ℓ−1

]T [
T ℓ−1
nj

])
(25)

With this notation, the linearized pressure on body j in the diffraction problem is given
by pD = −ρgA

{
Aj

D

}{
φj
D

}
. Therefore the total wave-exciting force in the mth mode can

be computed as

−
∫∫

SH

pD nm dS = ρgA

NB∑
j=1

∫∫
Sj

{
Aj

D

}T{
φj
D

}
ζm(x, y)nz dS

≃ ρgA

NB∑
j=1

ζjm
{
Aj

D

}T{
Ej

z

}
≡ ρgAEm (26)

where the definition of (8) has been used for nm, and ζjm = ζℓ(xj , yj) is treated as constant
on the bottom of an elementary cylinder. NB is the total number of actual columns.

4. RADIATION PROBLEM

4.1 Radiation Characteristics of a Single Body

In the present study, since only the vertical deflection is considered, the basic solution
necessary for considering hydrodynamic interactions is that of heave with unit velocity. The
body boundary condition for that problem on the jth body is written as

∂Φj
R

∂n
= nz on Sj (27)
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Several methods exist for solving this radiation problem, and a solution can be written in
terms of the vector of scattered potentials defined by (12), in the form

Φj
R =

{
Rj

}T{
ψj
S

}
(28)

The coefficient vector,
{
Rj

}
, is referred to as the radiation characteristics vector of a single

body, which is assumed to be known.
The hydrodynamic forces computed from the above solution are the added-mass and

damping coefficients. The result of this computation is written as

−
∫∫

Sj

Φj
R nz dS = Aj

zz − i Bj
zz (29)

Here Aj
zz and Bj

zz are the added mass and damping coefficients in heave, respectively, for a
single body j.

4.2 Hierarchical Interaction Theory

Basic concept of the hierarchical scheme is the same as in the diffraction problem. In the
radiation problem, however, let us start by considering the interactions from the lowest level.
Firstly, the body boundary condition for the kth mode of motion of body i at level ℓ − 1
can be specified as

∂Φi
R,k

∂n
= nk = ζk(x, y)nz ≃ ζik nz (30)

Hence, by comparison with (27), the solution of Φi
R,k can be readily given by

Φi
R,k = ζik Φ

i
R = ζik

{
Ri

}T{
ψi
S

}
(31)

The radiated wave due to the above motion of body i may be regarded as an incident
wave, when viewed from other bodies included in the same fictitious body. Taking account
of interactions, the total incident-wave potential on the jth body at level ℓ− 1 is expressed
as

φj
k,ℓ−1 =

Nℓ−1∑
n=1
n ̸=j

(
ζnk
{
Rn

}T
+
{
An

k,ℓ−1

}T)[
T ℓ−1
nj

]{
ψj
I,ℓ−1

}
(32)

Following the same argument as in obtaining (19), a linear set of equations for the unknown
interaction coefficients,

{
Aj

k,ℓ−1

}
, can be obtained in the form

{
Aj

k,ℓ−1

}
−
[
Bj,ℓ−1

]Nℓ−1∑
n=1
n̸=j

[
T ℓ−1
nj

]T{
An

k,ℓ−1

}
=
[
Bj,ℓ−1

]Nℓ−1∑
n=1
n̸=j

[
T ℓ−1
nj

]T
ζnk
{
Rn

}
for j = 1 ∼ Nℓ−1 (33)

Then, by considering an outer-field expression of the sum of the forced radiation part plus
the scattered interaction part, the radiation potential due to the kth mode of motion of a
fictitious body i at level ℓ will be obtained. From this, the vector of radiation characteristics
of a fictitious body can be derived, with the following result:

{
Ri

k,ℓ

}
=

Nℓ−1∑
j=1

[
M ℓ

ji

]T(
ζik
{
Rj

}
+
{
Aj

k,ℓ−1

})
(34)
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Next, let us proceed to the interactions at the upper level, ℓ. The analysis may be
undertaken in the same way as that at level ℓ− 1, and the total incident-wave potential on
body i at level ℓ can be written as

φi
k,ℓ =

Nℓ∑
n=1
n ̸=i

({
Rn

k,ℓ

}T
+
{
An

k,ℓ

}T)[
T ℓ
ni

]{
ψi
I,ℓ

}
(35)

As shown in (23), the diffraction characteristics of body i at level ℓ are given by the
matrix

[
Bi,ℓ

]
. Hence, simultaneous equations for the vector of interaction coefficients of the

kth mode of motion can be obtained in the form{
Ai

k,ℓ

}
−
[
Bi,ℓ

] Nℓ∑
n=1
n̸=i

[
T ℓ
ni

]T{
An

k,ℓ

}
=
[
Bi,ℓ

] Nℓ∑
n=1
n̸=i

[
T ℓ
ni

]T{Rn
k,ℓ

}
,

for i = 1 ∼ Nℓ (36)

It is noteworthy that the matrices of influence coefficients on the left-hand side of (21)
and (33) are of the same form, and thus can be solved at the same time. The same is true
of the simultaneous equations at level ℓ, i.e. equations (19) and (36).

4.3 Hydrodynamic Pressure Force

The radiation potential can be divided into two parts: the first is due to the forced oscillation
in the absence of other bodies, and the second one is due to radiated waves from other bodies
and reflected waves. The first part is given by (31) and the second part may be obtained
from (32) and combination of (35) and (20). This leads to

Φj
k = ζjk Φ

j
R +

{
Aj

k

}T{
φj
D

}
(37)

where {
Aj

k

}T
=

Nℓ−1∑
n=1
n ̸=j

(
ζnk
{
Rn

}T
+
{
An

k,ℓ−1

}T)[
T ℓ−1
nj

]

+

Nℓ∑
n=1
n ̸=i

({
Rn

k,ℓ

}T
+
{
An

k,ℓ

}T)[
T ℓ
ni

]([
Iℓ−1
ij

]
+

Nℓ−1∑
n=1
n ̸=j

[
An

S,ℓ−1

][
T ℓ−1
nj

])
(38)

Therefore, the hydrodynamic pressure force in the mth mode due to a superposition of all
radiation modes can be computed as

−
∫∫

SH

pR nm dS = −ρgAK
∞∑
k=1

(Xk

A

) NB∑
j=1

∫∫
Sj

Φj
k ζm(x, y)nz dS

≡ ρgAK
∞∑
k=1

(Xk

A

)
Fmk (39)

where Fmk can be given by substituting (37) and then using (13) and (29), with the result

Fmk =

NB∑
j=1

ζjm

[
ζjk
(
Aj

zz − i Bj
zz

)
−
{
Aj

k

}T{
Ej

z

}]
(40)
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Here again ζm(x, y) has been assumed constant over the water-plane area of each cylinder,
and represented by ζm(xj , yj) = ζjm.

4.4 Hydrostatic Pressure Force

Variation of the static pressure due to the deck motion can be expressed by

pS = ρgw = ρgA
∞∑
k=1

(Xk

A

)
ζk(x, y) (41)

Thus, the resulting force in the mth mode can be analytically computed as

−
∫∫

SH

pS nm dS = −ρgA
∞∑
k=1

(Xk

A

)
Cmk (42)

where
Cmk ≃ AW

NB∑
j=1

ζjm ζjk (43)

and AW denotes the water-plane area, which is given by πa2 for a hemisphere or circular
cylinder.

5. MOTIONS OF AN ELASTIC DECK

The equation of motion of a thin plate is given as

−mB ω
2w(x, y) +D∇4w(x, y) = −p(x, y) (44)

where mB is the distribution of mass, which is equal to M/LB in the case of uniform
distribution (M being the total mass); D is the flexural rigidity given by D = EI/(1− ν2),
with EI and ν being the equivalent stiffness factor and Poisson’s ratio, respectively; and
∇ = (∂/∂x, ∂/∂y) is the 2-D differential operator. Despite a great number of columns being
attached beneath the upper deck, it is assumed that the plate is isotropic and the flexural
rigidity is constant; that is just for simplicity of the analysis.

Since the structure is freely floating, the bending moment and the equivalent shear force
must be zero along the edge of the plate. That is,

∂2w

∂n2
+ ν

∂2w

∂s2
= 0,

∂3w

∂n3
+ (2− ν)

∂3w

∂n∂s2
= 0 (45)

where n and s denote the normal and tangential directions, respectively. In the case of a
rectangular plate, a concentrated force, stemming from replacement of the torsional moment
with an equivalent shear force, acts at the four corners, and this must also be zero:

Rf = 2D(1− ν)
∂2w

∂x∂y
= 0 at x = ±1, y = ±b (46)

Substituting (4) into (44), multiplying both sides by the normal component of the mth
modal function, nm = ζm(x, y)nz;m = 1, 2, . . . ,∞, and integrating over the structure, we
obtain a linear set of equations

∞∑
k=1

(Xk

A

)[
−K

(
M ′δmk + Fmk

)
+ Cmk +D′Smk

]
= Em , (47)
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where M ′ = M/2ρL3 and D′ = D/ρg(L/2)4; δmk denotes the Kroenecker delta, equal to
1 when m = k and zero otherwise. Fmk, Cmk, and Em are pressure forces, and these are
given by (40), (43), and (26), respectively. Smk is the stiffness matrix, corresponding to the
restoring force due to the structural rigidity.

Up to this point, the free-end conditions, (45) and (46), have not been explicitly imposed
as constraints on the solution. However, as shown in Kashiwagi (1998), these conditions can
be satisfied as natural boundary conditions in the process of transforming Smk by partial
integrations. The final form of Smk to be used in (47) is expressed as

Smk =

∫∫
SH

∇2ζm∇2ζk dxdy

+(1− ν)

∫ 1

−1

[
∂ζm
∂x

∂2ζk
∂x∂y

− ∂ζm
∂y

∂2ζk
∂x2

]b
−b

dx

+(1− ν)

∫ b

−b

[
∂ζm
∂y

∂2ζk
∂x∂y

− ∂ζm
∂x

∂2ζk
∂y2

]1
−1

dy (48)

Since the present modal functions are expressed in closed form, all integrals shown above
can be evaluated analytically.

6. RESULTS AND DISCUSSION

6.1 Accuracy and Convergence Check

Numerical accuracy and convergence are checked for a square array of half-immersed spheres
with 64 total elements. As shown in Figure 3, 16 bodies in each quadrant are periodically
placed with a distance of s/a = 2.0, but each group of 16 bodies is separated on both sides

Fig. 3 Arrangement of 64 half-immersed spheres



166 Masashi KASHIWAGI

Table 1 Amplitude of wave exciting forces in surge (Ex) and heave (Ez) on a body at
(x, y) = (4a, 4a), and the average of total heave force on 64 half-immersed spheres;
h/a = 3.0,Ka = 0.5, β = 180◦, s/a = 2.0

Hierarchical Interaction Theory (Level=3)

No. of terms |Ex| |Ez| |
∑

Ez|/NB

N=0 M=12 0.36597 0.70835 0.07340

M=14 0.36579 0.70830 0.07339

M=16 0.36576 0.70828 0.07339

N=1 M=12 0.36576 0.70923 0.07306

M=14 0.36557 0.70918 0.07305

M=16 0.36552 0.70916 0.07305

N=2 M=14 0.36558 0.70918 0.07305

Kagemoto & Yue’s Theory (Level=1)

No. of terms |Ex| |Ez| |
∑

Ez|/NB

N=0 M=3 0.36574 0.70828 0.07339

M=4 0.36574 0.70828 0.07339

N=1 M=4 0.36550 0.70916 0.07305

N=2 M=3 0.36552 0.70916 0.07305

Table 2 Added-mass and damping coefficients in heave of a body at (x, y) = (4a, 4a), and
the average of total heave added mass of 64 half-immersed spheres; h/a = 3.0,Ka =
0.5, β = 180◦, s/a = 2.0

Hierarchical Interaction Theory (Level=3)

No. of terms A33 B33

∑
A33/NB

N=0 M=12 0.81751 0.29999 0.57249

M=14 0.81769 0.30000 0.57249

M=16 0.81764 0.30002 0.57246

N=1 M=12 0.82197 0.29881 0.59962

M=14 0.82216 0.29882 0.59961

M=16 0.82211 0.29884 0.59958

N=2 M=14 0.82216 0.29882 0.59961

Kagemoto & Yue’s Theory (Level=1)

No. of terms A33 B33

∑
A33/NB

N=0 M=3 0.81763 0.30003 0.57244

M=4 0.81764 0.30003 0.57246

N=1 M=4 0.82211 0.29885 0.59958

N=2 M=3 0.82211 0.29885 0.59963
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of the x- and y-axis by double the distance between adjacent bodies inside the group. The
water depth is taken as h/a = 3.0, and the head wave (β = 180◦) with wavenumberKa = 0.5
is selected as an example. Tables 1 and 2 show the results of the diffraction and radiation
problems, respectively; listed are the forces on a body at (x, y) = (4a, 4a) as depicted in
Figure 3, and the average of the forces on all 64 bodies.

The hierarchical interaction theory is tested with the highest level set to ℓ = 3, in which
2× 2 bodies are grouped at each level. Computed results are compared with corresponding
results based on Kagemoto and Yue’s (1986) interaction theory. In both tables, N denotes
the number of evanescent mode and M is the number of terms in azimuth angle in (9) and
(12). The wave-exciting forces are nondimensionalized with ρgA(πa2), and the added-mass
and damping coefficients are nondimensionalized with ρ∇ and ρ∇ω, respectively, where
∇ = 2πa3/3.

By comparison with the results of Kagemoto and Yue’s theory, the present hierarchical
theory gives converged results of four decimal points with M = 14. Need for larger number
of terms in M is caused by slow convergence of the multipole expansion, shown as (A.4) in
the Appendix. Nevertheless, the computation time is little; for example, only 6 seconds are
needed for the case of N = 0 andM = 14, by use of C200 model of HP workstation. Another
thing to be noted is that the contributions of evanescent modes are small, and practically
those effects may be ignored.

In the present computations, the diffraction and radiation characteristics of a single body
are computed by means of a higher-order boundary element method with 9-point Lagrangian
elements (Kashiwagi and Kohjoh, 1995). Furthermore, double symmetries with respect to
the x- and y-axes are exploited, which can reduce the number of unknowns to 1/4.

6.2 Responses of a Column-Supported VLFS

Computations were performed for a practical number of columns, which are identical,
equally-spaced, and attached beneath a thin rectangular deck of L = 1200m and B = 240m.

The principal particulars of this structure are shown in Table 3. The elementary column
considered here is a truncated circular cylinder, and the number of columns are 1280, 2880,
and 5120. In computations for these, 2 × 2 cylinders are grouped as one unit at the first
and second levels in the hierarchical theory. At the highest level (ℓ = 3), double symmetries
with respect to the x- and y-axis are effectively used, which reduces the number of unknowns
and thus the computation time. Despite the increase of column numbers, the displacement

Table 3 Principal particulars of column-supported structures used in calculations

Model A Model B Model C

Length (L) 1200m

Width (B) 240m

Flexural rigidity D = 1.0× 1010 Nm

Poisson’s ratio ν = 0.3

Number of columns (NB) 80× 16 = 1280 120× 24 = 2880 160× 32 = 5120

Diameter of each column (2a) 7.5m 5.0m 3.75m

Draft of each column (d) 3.75m

Separation ratio (s/a) 2.0

Water depth (h) 18.75 m (h/d = 5.0)
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Fig. 4 Real part of the deflection of Model A
(NB = 1280) in head waves of L/λ =
10

Fig. 5 Real part of the deflection of Model C
(NB = 5120) in head wave of L/λ =
10

volume is kept constant by decreasing only the diameter. (Thus the draft and the separation
ratio are unchanged and the water-plane area is also the same.)

Figure 4 shows a snap shot taken at t = 0 (real part) of the deflection of Model A

Fig. 6 Surge exciting force on bodies No. 1 and No. 40 along row No. 8 of Model A (NB =
1280); s/a = 2.0, h/d = 5.0, d/a = 1.0
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Fig. 7 Heave exciting force on bodies No. 1 and No. 40 along row No. 8 of Model A (NB =
1280); s/a = 2.0, h/d = 5.0, d/a = 1.0

(NB = 1280) in a regular head wave (β = 0◦) of L/λ = 10. (λ is the wavelength in deep
water given by 2πg/ω2.) The numbers of evanescent wave and progressive wave modes are
taken as N = 0 and M = 12, respectively. It should be noted that perfect convergence as in
Tables 1 and 2 is not achieved in the present case, probably because a fictitious cylinder at
level 3 overlaps slightly with adjacent fictitious cylinders. However, the error caused by this
is believed to be negligibly small; a similar problem was discussed by Yoshida et al. (1993).
In fact, it is confirmed that the results including the first evanescent mode (N = 1) are

Fig. 8 Real part of the deflection of Model A
(NB = 1280) in head waves of L/λ =
32.59 (Ks = 1.28)

Fig. 9 Real part of the deflection of Model C
(NB = 5120) in head wave of L/λ =
32.59 (Ks = 0.64)
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virtually the same as Figure 4 and the difference was not discernable in the figures.
Regarding the effect of increasing the number of modal functions, very good convergence

is confirmed. To be on the safe side, modal functions in (4) are taken up to m = 20 and
n = 5, which are much larger than necessary.

The deflection of a deck is strongly influenced by the rigidity, but compared to a pontoon-
type VLFS studied by Kashiwagi (1998), the deflection looks small in the middle part and
relatively large in the downwave end of a plate.

Figure 5 is the results of Model C (NB = 5120) in the same wave as that for Figure 4;
i.e. L/λ = 10 in head wave. Evanescent wave modes are not included, and the number of
progressive wave modes is taken as M = 12, which is also the same as Figure 4.

Surprisingly, computed deflection patterns are very much the same irrespective of the
number of columns. (Although the result for Model B is not shown here, it is confirmed
to be almost the same as in Figures 4 and 5.) In these computations, the wavelength
(L/λ = 10) is large relative to the size of each column, and the displacement volume, flexural
rigidity, and water-plane area are exactly the same. Therefore, the deflection pattern may be
determined predominantly by the restoring force. However, in short waves whose wavelength
is of the same order as the separation distance between neighboring columns, hydrodynamic
interactions will be intensified by the so-called trapped-wave phenomenon; this has been
recently discussed by Maniar & Newman (1997), Evans & Porter (1997), and Utsunomiya
& Eatock Taylor (1998).

To investigate this phenomenon, the wave exciting forces in surge and heave were com-
puted for the two representative cylinders in an array of 1280 cylinders (Model A in Table 3).
Figures 6 and 7 show the surge and heave forces, respectively. The dashed line denotes the
results on body No. 1 (which is at the upwave end) and the solid line denotes the results on
body No. 40 (which is at almost the center) along row No. 8.

Fig. 10 Wave pattern around Model A in head wave
of L/λ = 10, which is the same as those of
Models B and C

We can see that there are many
peaks even within a narrow range
of the wavenumbers. One distinc-
tive feature is that the surge force
acting on a cylinder at almost the
center becomes very large when
the wavenumber is slightly less
than Ks ≃ 1.3. The occurrence of
these many peaks may be caused
by a sequence of Neumann- and
Dirichlet-trapped modes to be ex-
pected for a large number of
equally spaced cylinders.

The wavenumber correspond-
ing to L/λ = 10, adopted in Fig-
ure 4, is Ks = 0.393, which is
far left of Figs. 6 and 7 and thus
the interactions are expected to
be small.

As an example for resonant hy-
drodynamic interactions, the de-
flection pattern of Model A was
computed at Ks = 1.28 and the
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result is shown in Figure 8. Ks = 1.28 corresponds to L/λ = 32.59, and the numbers of
modal functions for this case are taken up to m = 30 and n = 6 in the x- and y-direction,
respectively.

Compared to a longer-wave case of L/λ = 10 shown as Figure 4, the deflection amplitude
remains small. However, the wavelength in the deflection pattern becomes long, in spite of
shorter incident wave. A possible reason of this counter-intuitive phenomenon is as follows:
in this particular short wave, the hydrodynamic interaction forces may be more dominant
than the restoring force, and the spatial distribution of interaction forces is similar to the
deflection pattern shown in Figure 8. It is noteworthy that the vertical deflection is caused
by the vertical exciting force alone and not connected with the horizontal surge force. At
Ks = 1.28, judging from Figure 7, the vertical exciting force may not be large and this is a
reason for the small deflection.

To check the effect of resonant interactions, computations were also performed for Model
C (5120 cylinders) at the same wavelength. Since the radius of an elementary cylinder in
Model C is half the radius of that in Model A and s/a is unchanged, the nondimensional
wavenumber is Ks = 0.64 for Model C. At this wavenumber, the variation of the wave field
may be different from that in Model A. In fact, the deflection pattern of Model C shown in
Figure 9 is different from that of Model A and almost zero except near the upwave end.

6.3 Wave Pattern Around Column-Supported VLFS

In connection with trapped waves, the wave pattern is one of the great interests for the case
of a large number of cylinders. Waves outside of a structure can be computed in terms of
the scattered and radiation potentials at the highest level, with the result

ζ(x, y)

A
= ΦI(x, y) +

Nℓ∑
j=1

[{
Aj

S,ℓ

}T{
ψj
S,ℓ

}
−K

∞∑
k=1

(Xk

A

)({
Rj

k,ℓ

}T
+
{
Aj

k,ℓ

}T){
ψj
S,ℓ

}]
, (49)

where ΦI is given by (2) and other coefficients and functions are already determined in
Sections 3 and 4.

Firstly, the wave pattern at L/λ = 10 is shown in Figure 10. This pattern is the same
irrespective of the number of columns and the effects of evanescent waves and structural
deflection are also negligibly small. We can see in Figure 10 that the reflection from the bow
is small and the wave amplitude along the side of the structure decreases.

Next, the wave pattern at Ks = 1.28 (L/λ = 32.59) around Model A, comprising 1280
cylinders, is shown in Figure 11. Likewise, Figure 12 shows the pattern around Model C
(5120 cylinders) at the same wavenumber. In order to elucidate the wave height along the
longitudinal side, the structural deflection on the deck is not shown.

Interestingly, the amplitude is increasing along the longitudinal side in Model A and there
exist resonant waves whose crest line is perpendicular to that of the incident wave. These
facts are connected with trapped waves among a great number of cylinders under the deck.
In Model C, large amplitude waves still exist downstream of the structure, but the wave
pattern is markedly different from that of Model A.
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7. CONCLUSIONS

By using a newly developed hierarchical interaction theory, column-supported-type VLFSs
were studied, with emphasis placed on hydrodynamic interactions among a large number of
columns. Three different numbers of equally spaced circular cylinders were considered as
supporting columns; these were 1280, 2880, and 5120 cylinders, but the total displacement
volumes and water-plane areas were kept constant.

In the results for L/λ = 10, differences in the upper-deck deflection were very small
among those three cases. This is probably because the interactions were small at this longer
wavelength and the restoring force was dominant in the motion equation.

At shorter wavelengths, resonant phenomena were observed, which may be connected
with trapped modes of Neumann and Dirichlet types, studied by Maniar & Newman (1997)
for a single row of cylinders. In this wavelength region, the hydrodynamic interaction forces
are more dominant than the restoring force, and the intensity and spatial distribution of the
interaction forces vary depending on the ratio of the wavelength to the separation distance
between adjacent cylinders. Therefore, as expected, the structural deflection was different
between two structures supported by 1280 and 5120 cylinders.

The wave patterns around these two structures were also computed and their distinctive
features associated with trapped-wave phenomena were shown in figures.
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Appendix A: Diffraction Characteristics

Let us consider the diffraction problem of the jth body in an elementary wave of “gener-
alized” incident-wave vector defined by equation (9), and let the velocity potential of an
elementary wave and the corresponding scattered potential be denoted by ψj

I(x, y, z) and

φj
S(x, y, z), respectively.

We note that ψj
I(x, y, z) satisfies Laplace’s equation and the free-surface and bottom con-

ditions. In addition, φj
S(x, y, z) satisfies the radiation condition at infinity as well. Therefore,

we can prove with Green’s theorem that the total diffraction potential, φj
D = ψj

I + φj
S , is a

solution of the integral equation:

C(P )φj
D(P ) +

∫∫
Sj

φj
D(Q)

∂

∂nQ
G(P ;Q) dS = ψj

I(P ) , (A.1)

where C(P ) is the solid angle, P = (x, y, z) is the field point, Q = (x′, y′, z′) is the integration
point, and ∂/∂nQ denotes the normal derivative with the positive normal directed out of
the body.
G(P ;Q) is the Green function, which can be expressed as

G(P ;Q) =
i

2
C0Z0(z)Z0(z

′)H
(2)
0

{
k0
√
(x− x′)2 + (y − y′)2

}
+
1

π

∞∑
n=1

CnZn(z)Zn(z
′)K0

{
kn
√
(x− x′)2 + (y − y′)2

}
, (A.2)

where
C0 =

k20
K + h(k20 −K2)

, Cn =
k2n

K − h(k2n +K2)
, (A.3)

and other notations are defined in equations (3) and (10).

H
(2)
0 and K0 in (A.2) are the second kind of Hankel and modified Bessel functions,

respectively. These functions can be recast in the series-expansion form by expressing x +
iy = r exp(iθ) and x′ + iy′ = r′ exp(iθ′) and by utilizing the addition theorem of Bessel
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functions. Considering the case of field point P in the fluid, C(P ) = 1 and r > r′. Therefore,
from (A.1) and (A.2), we can obtain the following representation of the scattered potential:

φj
S(P ) =

∞∑
m=−∞

[
Bj

m0

{
Z0(z)H

(2)
m (k0r) e

−imθ
}
+

∞∑
n=1

Bj
mn

{
Zn(z)Km(knr) e

−imθ
}]

, (A.4)

where
Bj

m0 = − i

2
C0

∫∫
Sj

φj
D(Q)

∂

∂nQ
Z0(z

′)Jm(k0r
′) eimθ′

dS

Bj
mn = − 1

π
Cn

∫∫
Sj

φj
D(Q)

∂

∂nQ
Zn(z

′)Im(knr
′) eimθ′

dS

 . (A.5)

A set of coefficients {Bj
m0, B

j
mn } represents the diffraction characteristics corresponding

to the elementary wave ψj
I(P ). By considering the diffraction problems for all elementary

waves of {ψj
I } in the same manner, we can construct the matrix of the diffraction charac-

teristics; which is denoted as
[
Bj

]T
in equation (11).

It should be noted that there is no need to compute the normal velocity of the incident
wave in (A.1) and the solution of (A.1) is the total diffraction potential which can be directly
used for computing (A.5) and the vector of elementary wave forces defined by equation (13).

Appendix B: Graf’s Addition Theorem

Summaries are given below of Graf’s addition theorems to be used in the hierarchical inter-
action theory.

Fig. B1 Symbols used in the multiple scattering problem

In analyzing interactions at the same level, it is necessary to rewrite the scattered potential
of body i with a coordinate system fixed at body j. In this case, as shown in Figure B1,
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rj < Lij and thus the following relations hold:

H(2)
m (k0ri)e

−imθi =
∞∑

p=−∞
H

(2)
m−p(k0Lij)e

−i(m−p)αij

{
Jp(k0rj) e

−ipθj
}
, (B.1)

Km(knri)e
−imθi =

∞∑
p=−∞

(−1)pKm−p(knLij)e
−i(m−p)αij

{
Ip(knrj) e

−ipθj
}
, (B.2)

where Jp and Ip denote the first kind of Bessel and modified Bessel functions, respectively,

and H
(2)
m and Km are the second kind of Hankel and modified Bessel functions, respectively.

The above two equations can be expressed in a matrix form{
ψi
S(ri, θi, z)

}
=
[
Tij
] {
ψj
I(rj , θj , z)

}
. (B.3)

Here
[
Tij
]
is the coordinate transformation matrix, and the vectors on the left- and right-

hand sides are defined in equations (12) and (9), respectively.
For the case of rj > Lij in Figure B1, relations (B.1) and (B.2) must be modified, giving

the followings:

H(2)
m (k0ri)e

−imθi =

∞∑
p=−∞

Jm−p(k0Lij)e
−i(m−p)αij

{
H(2)

p (k0rj) e
−ipθj

}
, (B.4)

Km(knri)e
−imθi =

∞∑
p=−∞

(−1)m−pIm−p(knLij)e
−i(m−p)αij

{
Kp(knrj) e

−ipθj
}
. (B.5)

These equations can be expressed in the form{
ψi
S(ri, θi, z)

}
=
[
Mij

] {
ψj
S(rj , θj , z)

}
. (B.6)

This can be regarded as the multipole expansion of the scattered potential of body i around
the origin of the jth coordinate system, and thus

[
Mij

]
is called the multipole expansion

matrix.
Lastly, let us consider the local expansion of the vector of generalized incident waves

around the origin of the jth coordinate system. In this case, the following relations hold for
all values of rj and Lij :

Jm(k0ri)e
−imθi =

∞∑
p=−∞

Jm−p(k0Lij)e
−i(m−p)αij

{
Jp(k0rj) e

−ipθj
}
, (B.7)

Im(knri)e
−imθi =

∞∑
p=−∞

Im−p(knLij)e
−i(m−p)αij

{
Ip(knrj) e

−ipθj
}
. (B.8)

These can be written in the following form:{
ψi
I(ri, θi, z)

}
=
[
Iij
] {
ψj
I(rj , θj , z)

}
. (B.9)

Here
[
Iij
]
is the local expansion matrix, which is used in the downward transmission of the

generalized incident-wave vector in the hierarchical diffraction problem.
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A Time-Domain Mode-Expansion Method
for Calculating Transient Elastic

Responses of a Pontoon-Type VLFS∗

Masashi KASHIWAGI
Research Institute for Applied Mechanics, Kyushu University

Kasuga, Fukuoka 816-8580, Japan

Abstract

A time-domain calculation method is described for elastic responses to arbitrary time-
dependent external loads, on the basis of a general differential equation of second order
including the convolution integral related to memory effects in the hydrodynamic forces.
The time-dependent elastic deflection of a structure is represented by a superposition of
mathematical modal functions, and a Galerkin scheme is employed to obtain a linear sys-
tem of simultaneous differential equations for the amplitude of modal functions assumed.
Special care is paid to numerical accuracy in computing the memory-effect function and
the added mass at infinite frequency. The validity of the numerical results was confirmed
through a comparison with time histories of the vertical deflection measured in an impulsive
weight-drop test conducted at the Ship Research Institute and a comparison with existing
numerical results for the same problem. To check the necessity of memory-effect terms,
computations using a constant value for the hydrodynamic damping coefficient were also
performed, and practical measures for reducing the computation time are discussed.

Keywords: Very large floating structure, Hydroelastic response, Time domain, Memory
effect, Convolution integral.

1. Introduction

The safety and performance of a very large floating structure (VLFS) in various circum-
stances are being studied in Japan with the aim of using a VLFS as a floating airport. The
configuration of the VLFS being considered is a pontoon type, 5 km long, 1 km wide, and
only a few meters deep. In this type of structure, the flexural rigidity is relatively small,
and the hydroelastic responses are more important than the rigid-body motions.

In a real situation, this “sheet-like” structure could be excited in various ways. The
most probable and important one is wave excitation, and many studies have been carried
out on wave-induced hydroelastic responses in regular waves (e.g., see a recent review by
Kashiwagi [1]). The structure under consideration will also respond flexurally even under
moving loads such as those imparted by an aircraft during landing or take-off. A huge mass
impact would occur if an aircraft crashed onto the airport, or a VLFS might be used as a
platform for a spacecraft launch. These transient phenomena must be studied to assess the
safety of a floating airport.

∗ Reprinted from Journal of Marine Science and Technology, Vol. 5, No. 2, pp. 89–100, 2000
(December)
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Only a few studies of transient problems have been reported to date. Using a FEM
program, Watanabe and Utsunomiya [2] gave numerical results of the elastic responses when
an aircraft lands on a circular VLFS. Kim andWebster [3] and Yeung and Kim [4] also studied
transient phenomena on an infinite elastic runway by means of the double Fourier transform
with respect to horizontal spatial variables.

Ohmatsu [5] presented a numerical method based on the Fourier transform, utilizing the
frequency-domain responses of elastic deflection from the various excitations considered. In
his method, the infinite integral with respect to the frequency was truncated at some finite
frequency and contributions from higher frequencies were completely neglected.

In the meantime, Endo et al. [6, 7] had reported another method, in which the so-called
memory-effect function for hydrodynamic forces was computed using frequency-domain re-
sults, and then the differential equations for elastic motions were solved directly in the time
domain. Their calculation method for the structural deflection is based on a FEM, and thus
the unknown deflections are defined at a large number of discrete nodes over an elastic plate.
In the present problem, all elements in the resulting matrix are essentially nonzero, because
of the effects of hydrodynamic interactions. However, Endo et al. neglected the cross terms
in the hydrodynamic forces between the nodes located at a distance, and took advantage of
the band characteristics to solve a sparse matrix common in the FEM. Moreover, the con-
tributions of the damping coefficient at higher frequencies are approximated as zero when
computing the memory-effect function.

The present study is also based on the time-domain differential equation, including the
convolution integral which represents the memory effects in hydrodynamic forces, but the
elastic motions of a plate are analyzed by the mode-expansion method. In this mode-
expansion method, the structural deflection is expressed by a superposition of modal func-
tions with time-dependent unknown amplitudes. By applying a Galerkin scheme, a linear
system of simultaneous differential equations is obtained for the amplitudes of the modal
functions assumed. An advantage of the mode-expansion method is that the number of
unknowns (which is equal to the total number of modal functions) can be reduced in com-
parison with a discretized FEM, and that the contribution from each modal function can be
obtained directly as a solution of simultaneous equations at each time step.

Good performance in the computation of the memory-effect function and the added mass
at infinite frequency are confirmed first, and then numerical computations are carried out
to simulate the weight drop test, which was conducted at the Ship Research Institute [7].
Great care is paid to accuracy in computing the memory-effect function, the convolution
integral, and the added mass at infinite frequency for all possible combinations of modal
functions assumed. The time marching for the differential equations is performed using the
Runge-Kutta-Gill scheme with 4th-order accuracy in the time step size.

Convergence of the results with an increasing number of modal functions is checked,
and the computed results are compared with independent numerical results by Endo and
Yago [7]. The results were in good agreement with time histories measured at several points
along the centerline of a tested model. Compared with the numerical results of Endo et al.,
improvements were found in the variation pattern and amplitude of the deflection of higher
modes, particularly as time elapses. However, a slight discrepancy was also found in the
phase velocity of structural waves. Bird’s-eye views of the structural deflection computed
at several time instants were also taken to see the 3-D elastic response immediately after an
impact load.

The present method is still too time-consuming for practical use. A large part of the
computation is taken up in evaluating the convolution integral for the memory effects. To
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check the importance of memory-effect terms, complementary computations are performed
by excluding the memory-effect terms. The trade-off between the computation time and
prediction accuracy is briefly discussed.

2. Formulation

We consider a shallow-draft pontoon-type structure, which is rectangular in plan with length
L and breadth B. Cartesian coordinates are used, with z = 0 defined as the plane of the
undisturbed free surface and z = h as the horizontal sea bottom. The boundary conditions
on the body and free surfaces are linearized and the potential flow is assumed. Since the draft
is very small relative to the dimensions in plan, it can be treated as zero in the linearized
boundary-value problem.

All quantities will be described in nondimensional form, using the fluid density, ρ, the
gravitational acceleration, g, and the half-length of the structure, L/2, as the characteristic
length scale. b = B/L may be used as the aspect ratio in plan.

With this convention, the dynamic and kinematic boundary conditions on the free surface
are expressed as

p = −∂ϕ
∂t

+ w ,
∂ϕ

∂z
=
∂w

∂t
on z = 0 (1)

where p(x, y, z, t) is the pressure, ϕ(x, y, z, t) is the velocity potential, and w(x, y, t) is the
elevation of the water surface or the deflection of the structure on z = 0. Note that p = 0 on
the water surface, whereas p ̸= 0 beneath the structure because of the disturbance exerted
by the motion of the structure.

The motion equation of the VLFS under consideration can be described by the vibration
equation of a thin plate, in the form

m
∂2w

∂t2
+D∇4w = − p+ pE (2)

where m(x, y) is the mass per unit area, D is the flexural rigidity equal to EI/(1− ν2) with
EI the stiffness factor and ν Poisson’s ratio, and ∇ = (∂/∂x, ∂/∂y) is the 2-D differential
operator. pE(x, y, t) on the right-hand side denotes the external load distribution acting
along the positive z-axis, which may be due to a landing and take-off of an airplane, or a
huge mass impact onto the structure.

The boundary conditions along the edge of a plate also need to be satisfied. In the present
case, the structure floats freely, and thus the bending moment and equivalent shear force
must be zero, which can be expressed in the form

∂2w

∂n2
+ ν

∂2w

∂s2
= 0 ,

∂3w

∂n3
+ (2− ν)

∂3w

∂n∂s2
= 0 (3)

where n and s denote the normal and tangential directions, respectively.
In addition, a concentrated force stemming from replacement of the torsional moment

with an equivalent shear force must also be zero at four corners of a rectangular plate. This
condition can be expressed as

FR = 2D(1− ν)
∂2w

∂x∂y
= 0 at x = ±1, y = ±b (4)
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3. Mode-Expansion Method

As in the analysis in the frequency domain (e.g. Kashiwagi [1]), we express the structural
deflection by a superposition of modal functions in the form

w(x, y, t) =

∞∑
j=1

Xj(t)wj(x, y) (5)

=
∞∑

m=0

∞∑
n=0

Xmn(t)um(x)vn(y) (6)

where wj(x, y) is the j-th modal function, representing the modes not only of rigid-body
motions, but also of elastic deformations.

As shown by (6), wj(x, y) is expressed by a simple product of one-dimensional modal
functions in the x- and y-directions. In this paper, um(x) and vn(y) are the natural modes
for the bending of a uniform beam with free ends. Specifically, um(x) can be written as

u0(x) =
1

2

u2m(x) =
1

2

[
cosκ2mx

cosκ2m
+

coshκ2mx

coshκ2m

]
 (7)

u1(x) =

√
3

2
x

u2m+1(x) =
1

2

[
sinκ2m+1 x

sinκ2m+1
+

sinhκ2m+1 x

sinhκ2m+1

]
 (8)

where the factors κm denote the positive real roots of the equation

(−1)m tanκm + tanhκm = 0 (9)

vn(y) can also be written in a similar form, with x replaced by y/b on the right-hand
sides of (7) and (8).

These functions are orthogonal, and thus the following relation holds:∫∫
SH

wi(x, y)wj(x, y) dxdy =
b

4
δij (10)

where SH denotes the bottom of a rectangular plate, δij is Kroenecker’s delta, equal to 1
when i = j and zero otherwise, and b = B/L as defined before.

From (5) and (6), wj(x, y) = um(x) vn(y). Hence, depending on the combination of odd
and even numbers of m and n, the modal functions can be categorized into the following
four types:

1. wj(x, y) = u2m+1(x)v2n(y), which is odd in x and even in y, and is referred to as FX
type.

2. wj(x, y) = u2m(x)v2n+1(y), which is even in x and odd in y, and is referred to as FY
type.

3. wj(x, y) = u2m(x)v2n(y), which is even in both x and y, and is referred to as FZ type.
4. wj(x, y) = u2m+1(x)v2n+1(y), which is odd in both x and y, and is referred to as FN

type.
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4. Motion Equation

The exact motion equation of a rigid body in the time domain has been known since the
paper of Cummins [8]. However, the present problem is the transient elastic motion of a thin
plate, and the analysis is based on the mode-expansion method, for which no comprehensive
derivation of the motion equation has been given. Therefore, in what follows, we will consider
the general expression for the time-dependent hydrodynamic pressure on a thin plate and
the resulting equation of elastic motion in the time domain.

To avoid unnecessary complexity in the expression, let us consider only the j-th mode in
(5) for the moment.

Considering the case of Xj(−∞) = 0, the relation

Xj(t) =

∫ ∞

−∞
X ′

j(τ)u(t− τ) dτ (11)

holds in general, where u(t) denotes the unit step function. Therefore we can write

Xj(t)wj(x, y) =

∫ ∞

−∞
X ′

j(τ)
{
u(t− τ)wj(x, y)

}
dτ (12)

This implies that, if we can obtain the response (the pressure and resulting force) to
the step-wise deflection given by u(t)wj(x, y), we can compute the response to arbitrary
time-dependent input in terms of the convolution integral.

In the step-wise deflection problem, the body boundary condition for the velocity potential
is given by (1) in the form

∂ϕj
∂z

= δ(t)wj(x, y) (13)

where δ(t) = du(t)/dt is Dirac’s delta function.
The velocity potential for this problem can be constructed in the form

ϕj(x, y, z, t) = δ(t)ψj(x, y, z) + φj(x, y, z, t) (14)

Here ψj(x, y, z) is the velocity potential at infinite frequency, satisfying the following condi-
tions on z = 0 :

∂ψj

∂z
= wj(x, y) for |x| < 1, |y| < b

ψj = 0 for |x| > 1, |y| > b

 (15)

The remaining part of (14) represents the fluid motion subsequent to the initial impulsive
disturbance, and is therefore related to the so-called memory-effect part.

The pressure on z = 0 in the present case can be expressed as

pSj (x, y, t) = −δ′(t)ψj(x, y, 0) + p̂j(x, y, t) + u(t)wj(x, y) (16)

where the second term is related to the memory effect, given explicitly by p̂j(x, y, t) =
−∂φj(x, y, 0, t)/∂t, and the third term is the hydrostatic pressure due to the step-wise de-
flection.
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The convolution integral using (16) gives the pressure caused by the general time-
dependent motion of the j-th mode, in the form

pj(x, y, t) =

∫ ∞

−∞
X ′

j(τ) p
S
j (x, y, t− τ) dτ

= −X ′′
j (t)ψj(x, y, 0)

+

∫ t

−∞
X ′

j(τ) p̂j(x, y, t− τ) dτ + Xj(t)wj(x, y) (17)

With this result, let us consider next the motion equation expressed by (2). To get a
linear system of simultaneous differential equations for all modes of elastic deflection, we
substitute (5) into (2), multiply both sides of the equation by wi(x, y), and integrate the
resultant equation over the bottom of the structure. The result of this transformation takes
the form

∞∑
j=1

[{
Mij +Aij(∞)

}
X ′′

j (t) +

∫ t

−∞
X ′

j(τ)Kij(t− τ) dτ +
{
Cij +DSij

}
Xj(t)

]
= Ei(t), for i = 1, 2, · · · (18)

The matrix coefficients appearing above are defined by

Mij =

∫∫
SH

m(x, y)wi(x, y)wj(x, y) dxdy (19)

Aij(∞) = −
∫∫

SH

ψj(x, y, 0)wi(x, y) dxdy (20)

Kij(t) =

∫∫
SH

p̂j(x, y, t)wi(x, y) dxdy (21)

Cij =

∫∫
SH

wi(x, y)wj(x, y) dxdy =
b

4
δij (22)

Sij =

∫∫
SH

∇2wi(x, y)∇2wj(x, y) dxdy

−(1− ν)

∫∫
SH

{
∂2wi

∂x2
∂2wj

∂y2
+
∂2wi

∂y2
∂2wj

∂x2
− 2

∂2wi

∂x∂y

∂2wj

∂x∂y

}
dxdy (23)

Ei(t) =

∫∫
SH

pE(x, y, t)wi(x, y) dxdy (24)

Here the orthogonal relation shown by (10) has been used in (22). The same relation can
be applied to Mij in the case of uniform mass distribution.

The stiffness matrix Sij shown by (23) has been obtained by taking account of the free-
edge boundary conditions, (3) and (4); the detail of this transformation may be found
in Kashiwagi [9]. Since modal functions are given in an analytical form in this paper, all
integrals in (23) can be analytically performed.

If the distribution of external load, pE(x, y, t), is given, (18) can be solved in the time
domain with appropriate initial conditions.

5. Added Mass at Infinity Frequency

Aij(∞) defined by (20) is the added mass at infinite frequency. To compute this quantity,
the velocity potential ψj(x, y, z) must be determined as a solution of the boundary-value
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problem. Since the draft of the structure is regarded as zero and the boundary conditions
are given by (15), ψj(x, y, z) can be expressed in terms of the doublet distribution.

Taking the limit as z → 0, the first equation in (15) gives the integral equation of the
form

wj(x, y) =
1

2π

∫∫
SH

ψj(ξ, η, 0)
∂2

∂z∂ζ

(
1

r

)∣∣∣∣ ζ=0

z=0

dξdη (25)

where r =
√

(ξ − x)2 + (η − y)2 + (ζ − z)2.
We note that the kernel function in (25) can be rewritten with notation of R =√
(ξ − x)2 + (η − y)2, in the form

∂2

∂z∂ζ

(
1

r

)∣∣∣∣ ζ=0

z=0

=
∂

∂η

{
η − y

(ξ − x)2R

}
=

1

R3
(26)

As a solution method for (25), we express the unknown, ψj(ξ, η, 0), in terms of bi-cubic
B-spline functions and employ a Galerkin method to determine the coefficients of B-spline
functions. In this “B-spline Galerkin” scheme, singular integrals of the following form need
to be evaluated:

Amn ≡
∫∫

∆S

ξmηn

R3
dξdη (27)

where m and n take integers among 0 ∼ 3, and ∆S denotes the area of each discretized
panel.

Analytical results for all possible combinations of m and n in (27) are shown in the
Appendix. As in Kashiwagi [9], the “relative similarity relation” can be used effectively
when computing the elements in a matrix resulting from (25). Consequently, ψj(x, y, 0)
can be determined precisely for all specified modes, and thus the added mass at infinite
frequency, Aij(∞), can be computed from (20) with high accuracy and less computation
time.

6. Memory-Effect Function

Kij(t) defined by (21) is referred to as the memory-effect function, because p̂j(x, y, t) is
related to the memory part of the velocity potential, as explained by (14)–(16). Kashi-
wagi [10] tried to compute p̂j(x, y, t) directly by solving the integral equation in the time
domain. However, that attempt was unsuccessful because of highly-oscillatory behavior of
the time-domain Green function for the zero-draft case.

Therefore in the present paper, Kij(t) is evaluated using the frequency-domain results.
To show this relation, we start by considering the force in the i-th direction due to the
pressure of the j-th mode. With (17), it follows that

Fij(t) =−
∫∫

SH

pj(x, y, t)wi(x, y) dxdy

=−X ′′
j (t)Aij(∞)−

∫ t

−∞
X ′

j(τ)Kij(t− τ) dτ − Xj(t)Cij (28)

Then, the Fourier transform of (28) takes the form

F {Fij(t)} = Xj(ω)

[
ω2Aij(∞)− iω

∫ ∞

−∞
Kij(t) e

−iωt dt− Cij

]
(29)
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Comparing this with corresponding results in the frequency domain, we can obtain the
following relations:

Bij(ω) =

∫ ∞

0

Kij(t) cosωt dt (30)

ω
{
Aij(ω)−Aij(∞)

}
= −

∫ ∞

0

Kij(t) sinωt dt (31)

In the above expressions, the causality property of the memory-effect function, i.e.
Kij(t) = 0 for t < 0, has been taken into account.

The inverse Fourier transform of (30) gives the desired relation for computing the memory-
effect function in the form

Kij(t) =
2

π

∫ ∞

0

Bij(ω) cosωt dω (32)

One problem in the numerical computation of (32) is how we estimate the values of
Bij(ω) at higher frequencies. Even though the B-spline Galerkin scheme developed by
Kashiwagi [9] is employed, it is still difficult to compute Bij(ω) up to very high frequencies
where contributions to (32) are negligible.

In this paper, Bij(ω) for higher frequencies is approximated by

Bij(ω) = α e−β ω (33)

where α and β are determined by a nonlinear version of the least-squares method using
numerical values of Bij(ω) computed in a relatively high-frequency region.

Substituting (33) into (32) and performing analytical integration, the final result is ex-
pressed as

Kij(t) =
2

π

∫ ω0

0

Bij(ω) cosωt dω +
2

π

α e−β ω0

β2 + t2

{
β cosω0t− t sinω0t

}
(34)

where ω0 is the truncation frequency.

7. Numerical Calculation Method

f1

f2 f3

f

!1
!

!1+h !1+2h

h h

(!)

Fig. 1 Approximation of f(ω) by a
quadratic function with equal fre-
quency intervals

The linear system of simultaneous differen-
tial equations shown in (18) is solved in uni-
form time steps using the Runge-Kutta-Gill
scheme.

At each time instant, the acceleration
X ′′

j (t) is obtained by matrix inversion, with
the convolution integral and restoring-force
term transposed to the right-hand side of
(18). The coefficients of acceleration are
constant and independent of time, and
therefore the inversion of the matrix is
needed only once initially, which contributes
greatly to a reduction of the computation
time.
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The first term on the right-hand side of (34) is evaluated numerically using the values of
Bij(ω) computed beforehand at discrete frequencies with equal interval. More specifically, as
shown in Fig. 1, let us consider the following integral for ω1 ≤ ω ≤ ω1+2h (where h = ∆ω):

FC ≡
∫ ω1+2h

ω1

f(ω) cosωt dω (35)

Here f(ω) is approximated by a quadratic function in the form

f(ω) = f1 +
1

2h
(−3f1 + 4f2 − f3)(ω − ω1) +

1

2h2
(f1 − 2f2 + f3)(ω − ω1)

2 (36)

Integrating (35) after substituting (36) into it can be expressed as

FC =
1

t

[
f1

{ 1

γ
(3 + cos γ)− 4

γ2
sin γ

}
+ 4f2

{
− 1

γ
(1 + cos γ) +

2

γ2
sin γ

}
+f3

{
sin γ +

1

γ
(1 + 3 cos γ)− 4

γ2
sin γ

}]
(37)

where γ = t · 2h. In the case of t = 0, (37) can be reduced to the Simpson’s rule using a
quadratic approximation of the integrand. With this integration method, accurate results
may be obtained irrespective of the value of t.

The most time-consuming part is the convolution integral. To keep numerical accuracy,
the velocity and the memory-effect function are both approximated with linear variation
within a constant time step.

To illustrate this in more detail, let us consider the following integral:

M(t) ≡
∫ t

0

V (τ)K(t− τ) dτ (38)

Denoting a constant time-step size by ∆t and the present time by t = N∆t, the above
integral can be written as

M(N∆t) =
N−1∑
n=0

∫ tn+1

tn

V (τ)K(t− τ) dτ (39)

where tn = n∆t.
V (t) and K(t) are assumed to be obtained at each time instant in the past, and denoted

by Vn and Kn (n = 0, 1, 2, · · · , N). Then, V (τ) and K(t − τ) within tn ≤ τ ≤ tn+1 are
approximated as

V (τ) = Vn +
Vn+1 − Vn

∆t
(τ − tn)

K(t− τ) = KN−n +
KN−(n+1) −KN−n

∆t
(τ − tn)

 (40)

Substituting these into (39), the integral with respect to τ can be performed analytically
and the result takes the form

M(N∆t) =

N−1∑
n=0

∆t

[
1

2

{
VnKN−(n+1) + Vn+1KN−n

}
+
1

3

(
Vn+1 − Vn

){
KN−(n+1) −KN−n

}]
(41)
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8. Results and Discussion

8.1 Accuracy in the memory-effect function

Before starting numerical simulations, it is necessary to confirm good performance in the
computation of the memory-effect function, Kij(t), and the added mass at infinite frequency,
Aij(∞).
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Fig. 2 Damping coefficients obtained by
frequency-domain analysis for a rect-
angular plate of L/B = 5 in an infi-
nite water depth

Fig. 3 Added mass obtained by frequency-
domain analysis for a rectangular
plate of L/B = 5 in an infinite wa-
ter depth

One example of the damping coefficients is shown in Fig. 2, which is for L/B = 5 in
infinite water depth (h → ∞). The B-spline Galerkin scheme developed by Kashiwagi [9]
was used to obtain Fig. 2. The modal shapes considered are the lowest one in (7) and (8);
that is, wj = u1v0 =

√
3x/4 for FX type, u0v1 =

√
3y/4 for FY type, u0v0 = 1/4 for FZ

type and u1v1 = 3xy/4 for FN type.
The results in Fig. 2 are only for the case when i = j, and the highest frequency in

computations is ω0 = 12.53, which corresponds to L/λ = 50 (where λ is the wavelength and
thus ω =

√
πL/λ). For wavelengths shorter than this value, a larger number of panels must

be used and, although the B-spline Galerkin scheme is an efficient calculation method, this
results in a drastic increase of the computation time. Therefore asymptotic fitting using
(33) was applied. The results of asymptotic fitting are also included in Fig. 2, which seems
to be reasonable.

In the present case of ω0 = 12.53, the contributions to Kij(t) from the first and second
terms on the right-hand side of (34) are more or less of the same order, and thus the
accuracy in Kij(t) may be influenced by the accuracy of approximation of (33). It should
be emphasized that ω0 = 12.53, corresponding to L/λ = 50, is a very high frequency, at
which the conventional zero-th order panel method cannot give reliable results, as shown in
Endo and Yago [7].

To confirm indirectly the validity of the memory-effect function and the added mass at
infinite frequency, the frequency-dependent added mass is computed from (31) and compared
with corresponding values obtained from the frequency-domain solution. The results are
shown in Fig. 3. Although slight differences can be seen in the low frequency range for FZ
type, values computed by (31) are smooth and overall agreement is good.
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8.2 Simulations for the weight drop test

As the next step, numerical simulations are implemented, corresponding to the experiments
conducted at the Ship Research Institute (the results are reported in Endo and Yago [7]).
The tested model is called VL-10, and its dimensions and bending rigidity are shown in Fig. 4.
Although several kinds of experiments were made, the weight drop test (which is referred
to as “Case FF1”) is taken up as a typical impulsive experiment. In this experiment, the
vertical deflections at points Z1–Z9 in Fig. 4 were measured.

Model VL-10

-0.75 -0.5 -0.25 0.0 0.25 0.5 0.75

Z5 Z4 Z3 Z2 Z1Z6Z7Z8Z9

Hit Point

L=9.75 m, B=1.95 m, d=0.0163 m, EI/B=8985.62 Nm

Fig. 4 Arrangement of Model VL-10 used in the weight drop test at the Ship Research
Institute
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Fig. 5 Acceleration of the weight during impact
onto VL-10

In this weight drop test, a weight
of 196N was dropped from a height
of 0.12m onto the “hit point” in-
dicated in Fig. 4. The acceleration
of the weight during the impact was
measured, and the result is shown
in nondimensional form as the ra-
tio to the gravitational acceleration
g in Fig. 5. Therefore, this nondi-
mensional acceleration multiplied by
196N is regarded as the impact load.
Denoting this impact load by F0(t)
and the coordinates of the hit point
by (xp, yp), the external pressure,
pE(x, y, t), appearing in (24) can be
expressed as follows:

pE(x, y, t) = F0(t) δ(x− xp) δ(y − yp) (42)

Since the present computations are based on the mode-expansion method, convergence
must be checked by increasing the number of modes. The number of modes in the x- and
y-directions are denoted by MX and MY , respectively. In the present case, FY and FN
types of elastic deflection make no contribution, because the impulsive force acts on the
longitudinal center line. The number of modes taken for FX and FZ types is equal. An
example of a convergence study is shown in Fig. 6, for the deflection at the edge (Z1) and
the center (Z5).

Good convergence is observed for the number of modes in the x-direction (with increasing
MX), but more terms seem to be needed in the y-direction. Computationally, the time-step
size, ∆t, is determined by the highest mode, and thus if more terms inMY are adopted, the
computation time will be prohibitive. In reality, the structural deflection of higher modes
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Fig. 6 Convergence check of computed results with increasing the number of elastic modes
(structural deflection at Z1 and Z5)

includes a large structural damping, which reduces the variation amplitude as time elapses.
With these reasons taken into account, the subsequent computations have been performed
with MX = 7 and MY = 4. In this case, the time-step size is forced to be ∆t = 0.001 s for
stable computations.

The results of a comparison with measurements are shown in Fig. 7 for the vertical dis-
placement at all measured points along the centerline indicated in Fig. 4. Computed results
by Endo and Yago [7] using a FEM-BEM combined method are also reproduced by the
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Fig. 7 a Comparison of the time histories of structural deflections at Z1 and Z9 due to
weight drop impact
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Fig. 7 b Comparison of the time histories of structural deflections at Z3 and Z5 due to
weight drop impact
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Fig. 7 c Comparison of the time histories of structural deflections at Z2 and Z4 due to
weight drop impact

dashed lines in Fig. 7a and Fig. 7b. Their computations were terminated at 2.0 s and the
results were shown for Z1, Z3, Z5, and Z9 only. (In the figures, a positive value of the
displacement corresponds to vertically upward direction.)

First, by comparison with the measurements, we can see that the displacements near
the hit point, Z1 in Fig. 7a and Z2 in Fig. 7c, are larger than the computed results. This
may be attributed to the difference in the effective area of the impact load between the real
situation (the size of a weight is finite) and the idealized computation (the load acts at just
one point, as shown by (42)).

We can also see that the propagation velocity of structural waves by computation is
slightly faster than the measurement. Possible reasons for this discrepancy are nonlinearity
in the phenomenon, and the difference in the bending rigidity used in the computation from
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Fig. 7 d Comparison of the time histories of structural deflections at Z6, Z7, and Z8 due
to weight drop impact

the value in the real experiment.
At any rate, the degree of agreement is favorable (particularly at the inside points of

Z3–Z8) considering that the displacement is of the order of several millimeters, and the
duration of the transient response is short.

Looking at closely the numerical results by Endo and Yago [7] shown in Figs. 7a and 7b,
good agreement exists in the early stage of the phenomenon. However, as time proceeds, the
variation pattern becomes different from the measurements, and the amplitude of higher-
order variation seems to be large. In contrast, except for a slight difference in the propagation
velocity of structural waves, the present results agree well with the measurements even in
the vibration stage after the passing of the initial disturbance.

To indicate the 3-D responses of a structure, Fig. 8a shows snap shots of the deflection at
t = 0.20, 0.35, and 0.50 s. Likewise, Fig. 8b shows bird’s-eye view at t = 0.70, 0.95, and 1.95
s. It can be seen that the elastic deformation along the y-axis is noticeable in the early stage
after the impact and at the edge of the plate in the longitudinal direction. A part of the
structural wave is reflected at the longitudinal edge of the plate, and transient phenomena
can be seen even at t = 0.95 s. However, the shape of deformation at t = 1.95 s is almost
the same as that in the static equilibrium (which is also obvious from Fig. 7).

In the present computations, as already described, ∆t was taken as equal to 0.001 s
and thus the computation time for simulating the phenomena for a duration of 2.5 s was
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Fig. 8 Perspective view of structural deflection due to weight-drop impact, (a) at t = 0.20,
0.35 and 0.50 s, (b) at t = 0.70, 0.95 and 1.95 s

approximately 5 hours using a workstation of HP9000 series, model C200. As a measure of
reducing the computation time for practical use, adopting only a slightly smaller number of
lower modes can be recommended in the mode-expansion method. For example, the results
of MX = 7 and MY = 2 shown in Fig. 6 could be obtained within 2 min computation time.
Although small variations in the amplitude are filtered out, the overall tendency is well
predicted with MX = 7 and MY = 2. Another alternative may be to neglect the memory
effects in the hydrodynamic forces, because almost all the computation time is spent in
computing the memory-effect function.
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To check the necessity of memory-effect terms, the convolution integral in (18) was re-
placed by ∫ t

−∞
X ′

j(τ)Kij(t− τ) dτ = Bij(ωr)X
′
j(t) (43)

where ωr denotes a representative frequency.
By doing this way, the damping coefficient can be treated as a constant value, and the

computation time will only be a few seconds even when higher-order modes of deflection are
included. The value of ωr can be changed for each combination of mode indices, i and j,
but it was taken as ωr = 7.5 for all modes just as a check (ωr is nondimensional, as shown
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terms in the computation
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in Fig. 2).
The results of this approximation are shown by dashed lines in Fig. 9 for the case of

MX = 9 and MY = 4. Surprisingly, the variation pattern in the early stage after the
impact is close to more sophisticated computations including the memory effects. However,
as time elapses, the detail of the variation becomes different (for example, the damping
of the lowest mode seems to be small; see Fig. 9b for Z3 and Z5). This implies that the
memory effects must be taken into account in the vibration stage after the passing of the
impulsive disturbance. However, the selection of ωr in (43) can be tuned up, depending
on the combination of mode indices, which may improve the results. If this is the case,
neglecting the memory-effect terms will greatly enhance the computational efficiency.

9. Conclusions

A time-domain calculation method has been presented which directly solves a linear system
of general quadratic differential equations for the amplitude of specified modal functions
representing the elastic deflection of a pontoon-type VLFS. Memory effects in the hydro-
dynamic forces are taken into account through the convolution integral over the previous
history of the fluid motion. Special care was paid to numerical accuracy in evaluating the
memory-effect function, the convolution integral, and the added mass at infinite frequency
as they appeared in the differential equations.

Computed results were compared with measured data in the drop test conducted at the
Ship Research Institute. The overall agreement was favorable, but a slight discrepancy was
seen in the propagation velocity of the structural waves. This discrepancy might be caused
by the nonlinearity of the problem.

A disadvantage of this calculation method is that the computation time becomes very
large with increasing numbers of modal functions. As a practical measure to overcome this
difficulty, computations neglecting the memory effects were performed. The results were in
good agreement with more rigorous results which included the memory effects, particularly
in the early stage of the phenomena. However, as time elapses, a difference in the variation
pattern becomes prominent, implying the need to tune the damping coefficient for each
component of the elastic modes.
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Appendix: Evaluation of Singular Integrals

To get analytical expressions for singular integrals defined by (27), let us consider instead
the following integral:

Bmn =

∫∫
(ξ − x)m(η − y)n

R3
dξdη (A.1)

=

∫∫
(ξ − x)m(η − y)n

∂

∂η

{
η − y

(ξ − x)2R

}
dξdη (A.2)

Here (26) has been substituted to obtain (A.2).
It should be noted that Bmn may be easier to evaluate, because it can be expressed with

only two arguments of (ξ − x) and (η − y). Furthermore, once an analytical expression of
Bmn is obtained for m ≥ n, Bnm can easily be obtained by simply exchanging (ξ − x) for
(η − y) and (η − y) for (ξ − x). Amn defined by (27) can be expressed in terms of Bmn by
using a power-series expansion.

Since bi-cubic spline functions are considered, the values ofm and nmust be integers from
0 to 3. The final results of Bmn for necessary combinations of m and n can be summarized
as follows:
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B00 = − R

(ξ − x)(η − y)

B10 = − log
∣∣∣R+ (η − y)
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B20 = (η − y) log

∣∣∣R+ (ξ − x)
∣∣∣

B30 = (η − y)R

B11 = −R

B21 =
1

2
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−(ξ − x)R+ (η − y)2 log

∣∣∣R+ (ξ − x)
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B31 =
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3
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2(η − y)2 − (ξ − x)2

}
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B22 =
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(ξ − x)3 log
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B32 =
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4

[
(ξ − x)4 log
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R
]
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Abstract

The transient elastic deformation of a pontoon-type very large floating structure (VLFS)
caused by the landing and take-off of an airplane is computed by the time-domain mode-
expansion method. The memory effects in hydrodynamic forces are taken into account,
and great care is paid to numerical accuracy in evaluating all the coefficients appearing in
the simultaneous differential equations for the elastic motion of a VLFS. The time-histories
of the imparted force and the position and velocity of an airplane during landing and
take-off are modeled with data from a Boeing 747-400 jumbo jet. Simulation results are
shown of 3-D structural waves on a VLFS and the associated unsteady drag force on an
airplane, which is of engineering importance, particularly during takeoff. The results for
landing show that the airplane moves faster than the structural waves generated in the
early stage, and the waves overtake the airplane as its speed decreases to zero. The results
for take-off are essentially the same as those for landing, except that the structural waves
develop slowly in the early stage, and no obstacle exists on the runway after the take-off
of airplane. The additional drag force on an airplane due to the elastic responses of the
runway considered in this work was found to be small in magnitude.

Keywords: Very large floating structure (VLFS), hydroelastic response, time domain,
landing, take-off.

1. Introduction

Because of relatively simple construction and ease of maintenance, pontoon-type very large
floating structures (VLFS) are considered to be one of the most promising designs for a
floating airport or runway, particularly in sheltered areas. Typical dimensions necessary as
a floating airport could be 5 km long, 1 km wide, and only a few meters deep, so that the
flexural rigidity is relatively small. Therefore, elastic responses are more important than
rigid-body motions.

Since wave-induced motion and deflection can easily impose operational limits on the
runway, the response of such a “sheet-like” structure to incoming waves has been the subject
of many studies (e.g., see the review by Kashiwagi [1]). Even when no incoming waves exist,
the structure under consideration will still respond flexurally to moving loads such as those
imparted by an airplane during landing or take-off. In this case, structural waves generated
on the runway and the associated additional drag may interfere with the safe operation of
an aeroplane. Therefore, the transient responses of a VLFS to impulsive and moving loads
must be studied by a reliable calculation method.

∗ Reprinted from Journal of Marine Science and Technology, Vol. 9, No. 1, pp. 14–23, 2004
(April)
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Only a few studies of transient problems have been reported to date. Using a FEM
program, Watanabe and Utsunomiya [2] presented numerical results for elastic responses due
to impulsive loading on a circular VLFS. Kim and Webster [3] and Yeung and Kim [4] also
studied transient phenomena on an infinite elastic runway in terms of the Fourier transform.

Ohmatsu [5] presented a numerical calculation method using the Fourier transform of the
frequency-domain results of elastic deflection from the various excitations considered. In
the meantime, Endo and Yago [6] proposed another method using the Fourier transform,
in which the so-called memory-effect function for hydrodynamic forces was evaluated with
frequency-domain results, and then the differential equations for elastic motions were solved
directly in the time domain, with unknown structural deflections being defined by a FEM
at a large number of discrete nodes over an elastic plate. However, these methods include
several approximations, such as the truncation of high frequency components and the neglect
of some cross-coupling terms in hydrodynamic forces. With these approximations included,
Endo [7] applied his time-domain calculation method to a simulation of the landing and
take-off of an aeroplane in waves, and similar work was reported by Shin et al. [8]

Kashiwagi [9] also studied a time-domain differential equation method, with elastic de-
flections being expressed by a superposition of mathematical modal functions and time-
dependent unknown amplitudes. The numerical accuracy was much enhanced in an evalua-
tion of the memory-effect function, the convolution integral, and the added mass at infinite
frequency.

This article is concerned with numerical simulations of the transient responses of a
pontoon-type VLFS during the landing or take-off of an airplane with realistic size and
performance, and also with the increase in the drag force on an airplane due to the elastic
deformation of the runway. For these simulations, the time-domain mode-expansion method
developed by Kashiwagi [9] was used, because this method can be applied to any transient
problem when the external force on the right side of the differential equation is modified in
accordance with the problem concerned.

To know how much the drag force on an airplane will increase, particularly during take-
off from a floating VLFS, is of great importance from an engineering viewpoint. Significant
increases in the take-off drag could increase the length of runway needed (therefore increasing
the construction cost of a floating runway), and increase the fuel usage during take-off
(therefore increasing the operation costs of all flights from that runway).

In the first half of this article, the calculation method is summarized, with emphasis on
special treatment to maintain numerical accuracy. In the second half, a modeling of the
moving load during landing and take-off is described, with the assumption that a Boeing
747-400 jumbo jet lands on or takes off from a rectangular floating airport of about 5 km
in length and 1 km in width. Simulation results for the transient responses of the airport
are shown, together with some snapshots of the 3-D pattern of structural waves, and time
histories of the vertical deflection at several points along the longitudinal centerline of the
runway. We also present the time-histories of the additional drag force on an airplane
induced by the dynamic response of a flexible runway. There is also a discussion of the
characteristics of induced phenomena, the relation of the drag force to the structural waves
generated, and the importance of the additional drag force.

2. Formulation

We first consider the time-domain transient problems for a shallow-draft pontoon-type float-
ing airport, which is assumed for simplicity to be rectangular in plan with length L and
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breadth B. The z-axis of a Cartesian coordinate system is taken as positive vertically
upward, with z = 0 defined as the plane of the undisturbed free surface. The boundary
conditions on the body and free surfaces are linearized, and the potential flow is assumed.
Since the draft is very shallow relative to the dimensions in the plane, it can be treated as
zero in the linearized boundary-value problem.

Except where otherwise noted, all quantities will be made nondimensional as follows:

p(x, y, z, t) = ρga p′(x′, y′, z′, t′)

ϕ(x, y, z, t) = a
√
ga ϕ′(x′, y′, z′, t′)

w(x, y, t) = aw′(x′, y′, t′)

t =
√
a/g t′, (x, y, z) = a (x′, y′, z′)


(1)

where ρ is the fluid density, g is the gravitational acceleration, and a denotes the character-
istic length scale, which is taken as equal to L/2 in this paper. b = B/L may also be used as
the aspect ratio in plan. p(x, y, z, t) is the pressure, ϕ(x, y, z, t) is the velocity potential, and
w(x, y, t) denotes the elastic deflection of a floating airport (or the elevation of the water
surface) on z = 0.

The primed quantities in Eq. 1 are nondimensional, but for brevity the prime will be
deleted hereafter. With this convention, the boundary conditions on z = 0 are expressed as

p = −∂ϕ
∂t

− w,
∂ϕ

∂z
=
∂w

∂t
on z = 0 (2)

Note that p = 0 on the water surface, whereas p =/ 0 beneath the floating airport.
The motion equation of the structure under consideration can be described by the vibra-

tion equation of a thin plate in the form

m
∂2w

∂t2
+D∇4w = p− pE (3)

wherem(x, y) is the mass per unit area, D is the flexural rigidity (and is equal to Et3/{12(1−
ν2)}, with t the equivalent plate thickness, E the elastic modulus, and ν Poisson’s ratio),
and ∇ = (∂/∂x, ∂/∂y) is the 2-D differential operator. Here, pE(x, y, t) on the right-hand
side denotes the external time-dependent load distribution acting toward the negative z-axis
(vertically downward), due to the landing or take-off of an airplane, whose modeling will be
described subsequently.

The boundary conditions along the edge of a plate also need to be satisfied. In the present
case, the structure floats freely, and thus the bending moment and equivalent shear force
must be zero, which can be expressed in the form

∂2w

∂n2
+ ν

∂2w

∂s2
= 0,

∂3w

∂n3
+ (2− ν)

∂3w

∂n∂s2
= 0 (4)

where n and s denote the normal and tangential directions, respectively. In addition, a con-
centrated force stemming from the replacement of the torsional moment with an equivalent
shear force must also be zero at the four corners of a rectangular plate. This condition can
be expressed as

∂2w

∂x∂y
= 0 at x = ±1, y = ±b (5)
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3. Mode Expansions

The elastic deflection of the structure is expressed by a superposition of mathematical modal
functions in the form

w(x, y, t) =
∞∑
j=1

Xj(t)wj(x, y) (6)

=

∞∑
m=0

∞∑
n=0

Xmn(t)um(x)vn(y) (7)

where Xj(t) is the unknown time-dependent amplitude of the j-th modal function wj(x, y),
which is expressed, as shown in Eq. 7, by a simple product of one-dimensional modal func-
tions in the x- and y-directions. Here, um(x) and vn(y) are the natural modes for the
bending of a uniform beam with free ends. Specifically, um(x) can be written as

u0(x) =
1

2

u2m(x) =
1

2

[
cosκ2mx

cosκ2m
+

coshκ2mx

coshκ2m

]
 (8)

u1(x) =

√
3

2
x

u2m+1(x) =
1

2

[
sinκ2m+1 x

sinκ2m+1
+

sinhκ2m+1 x

sinhκ2m+1

]
 (9)

where the factors κm denote the positive real roots of the eigen-value equation

(−1)m tanκm + tanhκm = 0 (10)

and vn(y) can be written in the same form, with x replaced by y/b (where b = B/L) on the
right-hand sides of Eqs. 8 and 9.

Note that these functions are orthogonal with the following orthogonality relation:∫∫
SH

wi(x, y)wj(x, y) dxdy =
b

4
δij (11)

where SH denotes the bottom of a rectangular plate, δij is Kroenecker’s delta, which is equal
to 1 when i = j and zero otherwise.

As shown in Eqs. 8 and 9, u2m(x) is even and u2m+1(x) is odd with respect to x, and
similarly v2n(y) is even and v2n+1(y) is odd with respect to y. Thus, the modal functions
wj(x, y) = um(x)vn(y) can be categorized into the following four types:

1. wj(x, y) = u2m+1(x)v2n(y), which is odd in x and even in y, and is referred to as FX
type;

2. wj(x, y) = u2m(x)v2n+1(y), which is even in x and odd in y, and is referred to as FY
type;

3. wj(x, y) = u2m(x)v2n(y), which is even in both x and y, and is referred to as FZ type;
4. wj(x, y) = u2m+1(x)v2n+1(y), which is odd in both x and y, and is referred to as FN

type.

In accordance with this type separation, hydrodynamic forces related to the pressure p
and external loads related to pE in Eq. 3 may be separated into four types, and then the
resulting motion equation can be considered for each type separately.
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4. Motion Equation

The exact motion equation of a rigid body in the time domain has been known since the
paper by Cummins [10]. In the case of an elastic thin plate, a general expression for the
motion equation in the time domain is given in Kashiwagi [9], which can be also applied to
the present simulations.

To get a linear system of simultaneous differential equations for the time-dependent am-
plitude Xj(t) for all modes of elastic deflection, we substitute Eq. 6 into Eq. 3, multiply both
sides of the equation by wi(x, y), and integrate the resultant equation over the bottom of
the structure. The result of this transformation takes the form

∞∑
j=1

[ {
Mij+Aij(∞)

}
X ′′

j (t) +

∫ t

−∞
Kij(t− τ)X ′

j(τ) dτ

+
{
Cij +DSij

}
Xj(t)

]
= Ei(t), for i = 1, 2, · · · (12)

The matrix coefficients appearing in Eq. 12 are defined and given as follows:

Mij =

∫∫
SH

m(x, y)wi(x, y)wj(x, y) dxdy (13)

Aij(∞) = −
∫∫

SH

ψj(x, y, 0)wi(x, y) dxdy (14)

Kij(t) =
2

π

∫ ∞

0

Bij(ω) cosωt dω (15)

Cij =

∫∫
SH

wi(x, y)wj(x, y) dxdy =
b

4
δij (16)

Sij =

∫∫
SH

∇2wi(x, y)∇2wj(x, y) dxdy

−(1− ν)

∫∫
SH

{
∂2wi

∂x2
∂2wj

∂y2
+
∂2wi

∂y2
∂2wj

∂x2
− 2

∂2wi

∂x∂y

∂2wj

∂x∂y

}
dxdy (17)

Ei(t) = −
∫∫

SH

pE(x, y, t)wi(x, y) dxdy (18)

In this study, again for brevity, the mass distribution is assumed to be uniform with the
total mass being M = ρLBd (d is the draft), and then the orthogonality relation Eq. 11 can
be applied as in Eq. 16 for the hydrostatic restoring coefficients Cij . Noting that the force
is nondimensionalized with ρga3, the mass matrix Mij in the present case can be written as

Mij =
2d

L

b

4
δij (19)

The stiffness matrix Sij shown by Eq. 17 has been obtained by taking account of the free-
edge boundary conditions ( Eqs. 4–5). The details of this transformation may be found in
Kashiwagi [11]. Since the modal functions are given in an analytical form here, all integrals
in Eq. 17 can be evaluated analytically. Numerical calculation methods for other coefficients
will be briefly explained in the subsequent sections.
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5. Evaluation of Aij(∞) and Kij(t)

Aij(∞), defined by Eq. 14, is the added mass at infinite frequency, which is calculated with
ψj(x, y, 0), the velocity potential at infinite frequency satisfying the following boundary
conditions on z = 0:

∂ψj

∂z
= wj(x, y) for |x| < 1, |y| < b

ψj = 0 for |x| > 1, |y| > b

 (20)

The solution of ψj can be expressed in terms of the doublet distribution, the strength
of which is determined by solving an integral equation by means of the so-called B-spline
Galerkin scheme shown in Kashiwagi [9]. Therefore, the accuracy of Aij(∞) is believed to
be very high for all combinations of the mode indices i and j.
Kij(t) in Eq. 15 is referred to as the memory-effect (or retardation) function associated

with time-dependent hydrodynamic forces. With the causality relation and the Fourier
transform, it is known that the memory-effect function can be computed from the damping
coefficients which are evaluated in the frequency-domain calculation, Bij(ω), as specifically
shown in Eq. 15.

In practice, it is difficult to compute Bij(ω) up to very high frequencies where their
contributions to Eq. 15 are negligible, especially for a zero-draft flat plate, even if the B-spline
Galerkin scheme (Kashiwagi [11]) is employed. Therefore, Bij(ω) for frequencies higher than
the truncation frequency (denoted as ωT ) is approximated by

Bij(ω) = α e−βω for ω ≥ ωT (21)

where α and β are determined by the least-squares method using the numerical values of
Bij(ω) computed at some frequencies close to, but less than, ωT .

Substituting Eq. 21 into Eq. 15 gives

Kij(t) =
2

π

∫ ωT

0

Bij(ω) cosωt dω +
2

π

α e−βωT

β2 + t2

{
β cosωT t− t sinωT t

}
(22)

In this article, ωT is taken as equal to 12.53, which corresponds to L/λ = 50 (where λ is the
wavelength in the frequency domain).

The first term on the right-hand side of Eq. 22 is evaluated numerically using computed
values of Bij(ω) at discrete frequencies with equal intervals, say, ∆ω. To illustrate this, we
write ∫ ωT

0

f(ω) cosωt dω =
N−2∑

n=0,2,4,···
Fn , where Fn ≡

∫ ωn+2∆ω

ωn

f(ω) cosωt dω (23)

where ωn = n∆ω and the truncation frequency is given by ωT = N∆ω. In the interval of
ωn ≤ ω ≤ ωn + 2∆ω, the integrand f(ω) is approximated by a quadratic function, which
makes it possible to integrate Eq. 23 analytically, with the following result

Fn =
1

t

[
f1

{ 1

γ
(3 + cos γ)− 4

γ2
sin γ

}
+ 4f2

{
− 1

γ
(1 + cos γ) +

2

γ2
sin γ

}
+f3

{
sin γ +

1

γ
(1 + 3 cos γ)− 4

γ2
sin γ

}]
(24)
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where γ = t 2∆ω, f1 = f(ωn), f2 = f(ωn + ∆ω), and f3 = f(ωn + 2∆ω). Using this
integration method, accurate results can be obtained irrespective of the value of t. Since
there are no irregular frequencies in numerical solutions by the B-spline Galerkin scheme
(the pressure distribution method) for a zero-draft plate, no fluctuation is observed in the
asymptotic behavior of Kij(t) as t→ ∞. An analytical result on this asymptotic expression
is described in Kashiwagi [12].

Related to the memory-effect function, the convolution integral in Eq. 12 must also be
evaluated. To illustrate the calculation method, we consider the integral

M(t) ≡
∫ t

0

K(t− τ)V (τ) dτ (25)

where the integral from τ = −∞ to τ = 0 is supposed to be zero because the VLFS is
assumed to be at rest just before landing and take-off.

Denoting a constant time-step size by ∆t and the present time by t = N∆t, the above
integral can be written as

M(t) =

N−1∑
n=0

∫ tn+1

tn

K(t− τ)V (τ) dτ (26)

where tn = n∆t.
K(t − τ) and V (τ) within tn ≤ τ ≤ tn+1 are both approximated with linear variations,

and then the integral with respect to τ in Eq. 26 can be performed analytically, giving

M(N∆t) =
N−1∑
n=0

[
1

2

{
KN−(n+1)Vn +KN−nVn+1

}
+
1

3

{
KN−(n+1) −KN−n

}(
Vn+1 − Vn

)]
∆t (27)

6. External Force

The motion equation Eq. 12 can be applied to any transient problem where the external
force Ei(t) is calculated for the problem concerned. Here, realistic landing and take-off of an
airplane will be simulated, for which the external pressure distribution pE(x, y, t) in Eq. 18
must be modeled.

First, the position of the time-varying load is assumed to move with a constant accelera-
tion α0, and then the position of the load ξ(t) and its velocity V (t) are given by

ξ(t) = ξ0 + V0 t+
1

2
α0 t

2

V (t) = V0 + α0 t

 (28)

where ξ0 and V0 are the initial values of the position and velocity, respectively.
Second, for simplicity, the load distribution is assumed to be axisymmetric about the

center of the moving load (ξ(t), 0). In this case, in terms of a moving Cartesian coordinate
system ō -x̄yz and a polar coordinate system ō -r̄θ, with the origin fixed to the center of
loading, pE(x, y, t) can be written as

pE(x, y, t) = pE(r̄, t) ≡ F0(t)f(r̄) (29)
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where r̄ =
√
x̄2 + y2 and x̄ = x− ξ(t).

As in Kim and Webster [3] and Yeung and Kim [4], the function of spatial distribution
f(r̄) in Eq. 29 is assumed to be a Gaussian distribution given by

f(r̄) =
1

R2
e−π(r̄/R)2 (30)

with R being an effective radius of the loading.
Note that Eq. 30 is normalized such that∫∫ ∞

−∞
f(r̄) dxdy =

∫ ∞

0

f(r̄) 2πr̄ dr̄ = 1 (31)

Therefore, F0(t) in Eq. 29 is the total force exerted by the landing or take-off of an airplane.
With the assumption of a smooth transition, F0(t) may be given by the difference between
the total weight W and the lift force FL(t) of an airplane. Supposing that W and FL(t) are
provided with real physical unit, F0(t) can be given by

F0(t) =
{
W − FL(t)

}
/ρg(L/2)3 (32)

The lift force during landing or take-off is calculated with the formula

FL(t) =
1

2
ρaV

2(t)AW CL(t), where CL(t) = aL e
bL t (33)

Here, CL(t) is the coefficient of the lift force, the parameters aL and bL are given as constant
for the cases of landing and take-off, respectively. ρa is the density of air, V (t) is the
instantaneous speed to be given by Eq. 28, and AW is the effective wing area of an airplane.

Substituting Eqs. 29 and 30 into Eq. 18, the external force in the i-th mode Ei(t) can be
computed as

Ei(t) =
F0(t)

R2

∫∫
SH

e−π(r̄/R)2wi(x, y) dxdy

=
F0(t)

R2

∫ 3R

−3R

e−π(x̄/R)2um
(
x̄+ ξ(t)

)
dx̄

∫ 3R

−3R

e−π(y/R)2vn(y) dy (34)

Here, the range of integration is taken from −3R to 3R with respect to both x and y, because
the exponential function decays very rapidly, becoming

e−π(x̄/R)2 = e−9π ≃ 5.26× 10−13 (35)

at x̄ = ±3R.
The integrals in Eq. 34 with respect to x and y are numerically evaluated using Clenshaw-

Curtis quadrature with the absolute error specified to be less than 10−8.

7. Drag Force

The increase in the drag force on an airplane due to the elastic deformation of the runway is
of particular engineering importance during take-off, since it will lengthen the running time
and distance, which will eventually increase the fuel use of an airplane and the construction
cost of a floating airport.
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The drag force on the moving load, defined as positive in the negative x-direction, can
be computed by

FD = −
∫∫

SH

pE(x, y, t)
∂

∂x
w(x, y, t) dxdy

= −
∞∑
j=1

Xj(t)F0(t)

∫∫
SH

f(r̄)
∂

∂x
wj(x, y) dxdy (36)

Substituting Eq. 30 for f(r̄) into Eq. 36, the resulting integral can be evaluated in the
same manner as in Eq. 34. The derivative of the j-th modal function wj(x, y) with respect
to x can readily be given by analytical differentiation of Eqs. 8 and 9.

It should be noted that the computation of the drag force based on Eq. 36 is similar to
that of the wave-making resistance on a shallow-draft (flat) ship in water waves [13] under
the potential-flow assumption, and thus Eq. 36 is associated with work equal to the energy
dissipated in generating structural waves on a VLFS.

8. Modeling of an Airplane Landing and Take-off

We consider a realistic situation where a Boeing 747-400 airplane lands on or takes off from a
floating VLFS with rectangular geometry in plan. The numerical data for these simulations
are prepared as in Table 1 by referring to Takarada [14].

The initial positions of an airplane in landing and take-off are shown in Fig. 1 together with
measurement points (Z1–Z9) for the elastic deflection. The time-histories of the airplane
position ξ(t), the velocity V (t), and the external force (denoted as loading) W − FL(t) by
the airplane are shown in Fig. 2 for both cases of the landing and take-off.

y

O
x

Z3Z2 Z4 Z5 Z6 Z7 Z8 Z9Z1

L=5000m

1000m

B
=
1
0
0
0
m

       Starting Point
in Landing & Take-off

Fig. 1 Dimensions of VLFS and positions for measuring the elastic deflection

9. Results and Discussion

9.1 Numerical calculation method

The linear system of simultaneous differential equations shown in Eq. 12 is solved in uniform
time steps using the 4-th order Runge-Kutta-Gill scheme.

At each time instant, the acceleration of the j-th mode X ′′
j (t) is obtained by the matrix

inversion, with the convolution integral and restoring-force term transposed to the right-
hand side of Eq. 12. In this process, since the coefficients of the acceleration are constant
and independent of time, the inversion of the matrix is performed only once initially and
saved, which is used at all subsequent time steps.
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Table 1 Numerical input data for simulations

Floating Airport

Length (L) 5000m

Breadth (B) 1000m

Draft (d) 5.0m

Flexural Rigidity (EI/B) 1.764×1011 Nm

Poisson’s Ratio (ν) 0.3

Airplane (Boeing 747-400)

Total Weight (W ) 3867.08 kN

Effective Wing Area (AW ) 511.0m2

Density of Air (ρa) 1.2054Ns2m−4

Effective Radius of Landing (R) 10.0m

Initial Position (ξ0) −1000m

Initial Speed (V0) in Landing 69.35ms−1

in Take-off 0.00ms−1

Acceleration (α0) in Landing −1.263ms−2

in Take-off 1.026ms−2

Parameters in Lift Coefficient: CL(t) = aL ebLt

aL =
{ 2.61 in Landing

1.64× 10−3 in Take-off

bL =
{ −0.212 in Landing

0.125 in Take-off

In actual computations, the number of modes in Eq. 12 must be finite. Since the modal
functions in this paper are given as the product of um(x) and vn(y), the number of modes
in the x- and y-directions are truncated at different finite numbers. That is, 0 ≤ m ≤ MX
and 0 ≤ n ≤MY , and thus (MX + 1) terms in the x-direction and (MY + 1) terms in the
y-direction are used.

As already explained, calculations are carried out with modal functions categorized into
four different types. In the present case, FY and FN types make no contribution, because
the airplane is supposed to run along the longitudinal centerline of a rectangular floating
airport. The number of modes taken for FX and FZ types is equal.

Convergence check for the present problem is not extensively performed, but referring to
the results by Kashiwagi9 for the impulsive weight drop test, MX = 8 and MY = 3 are
adopted. When the same number of modes were used for the weight-drop simulation, the
computed results could account for higher-order variation of the elastic deformation observed
in measured results. In addition, the expected phenomena in the landing and take-off may
be more modest than those in the impulsive weight drop, and thus MX = 8 and MY = 3
are expected to be enough for the present simulations. With these numbers of modes, stable
and accurate results are obtained with the time-step size taken equal to ∆t = 0.025 s. (In
fact, when the number of modes in the y-direction is larger than MY = 3, stable results
were not obtained unless the time-step size was taken equal to impractically very small.)

9.2 Landing

The touch-down onto the runway is assumed to take place at point Z3. Fig. 2 shows the
subsequent time histories of the position, velocity, and loading of the airplane. The resultant
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Fig. 2 Time histories of the airplane posi-
tion, velocity and loading on the run-
way

Fig. 3 Time histories of the elastic deflec-
tions obtained at Z1 ∼ Z9 during
landing

time histories of the vertical elastic deflections at Z1 ∼ Z9 are shown in Fig. 3 with the unit
of centimeter. (In Fig. 3 and subsequent figures, the vertically upward deflection is plotted
as being positive.)

It can be seen that the vertical displacement is of the order of 1.0 cm at maximum in spite
of a jumbo jet with the weight of approximately 4,000 kN. Unlike the impulsive weight drop
onto the runway, the loading by the airplane landing increases smoothly from zero (which is
in fact assumed as shown in Fig. 2). Therefore, no higher-order variation is observed in time
histories of the deflection. Note that Z4, Z5, Z6 and Z7 are located at x = −500m, 0m,
500m, and 1,000m respectively. Looking at time histories of the position in Fig. 2 and the
deflection in Fig. 3, it can be seen that the airplane runs faster than the trough of generated
structural wave in the early stage (at least up to t = 40 s) and then the wave overtakes as
the speed of airplane decreases to stop.

These can be observed more clearly in Fig. 4, showing snapshots of the elastic deflection
along the longitudinal centerline and the position of airplane at various time instants. It
is noted that the airplane completely stops at t =54.9 s and x = 904m. Overtaking waves
impinge upon the stopped airplane, and a part of them are scattered in various directions
and the remainder transmit. This may explain why the amplitude of the deflection along
the centerline is not so large at t = 55 s and retrieves after t = 60 s. This deformation of
progressive waves is a 3-D phenomenon. To see this, bird’s-eye views of the 3-D elastic
deflection are shown in Fig. 6 at t = 10, 20, 30, 40, 50 and 60 s. It can be seen from the



208 Masashi KASHIWAGI

t= 0 s

t= 5 s

t=10 s

t=15 s

t=20 s

t=25 s

t=30 s

t=35 s

t=40 s

t=45 s

t=50 s

t=55 s

t=60 s

t=65 s

t=70 s

V
er

ti
ca

l 
D

ef
le

ct
io

n
 (

c
m

)

Position on the runway (m)

Landing

Fig. 4 Time histories of the spatial elastic deflections along the longitudinal centerline of
the runway during landing. The broken line shows the trajectory of the airplane
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Fig. 5 Additional drag force on a landing airplane (The airplane stops at t =54.9 s)

snapshots at t = 50 and 60 s that the generated wave overtakes the airplane and the wave
is deformed due to the presence of the stopped airplane.

Fig. 5 shows the additional drag force computed from Eq. 36 during landing of the airplane.
The drag force in the landing actually gives no unfavorable difficulties from a viewpoint of
the additional fuel consumption. However, it may be informative to see variation of the
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Fig. 6 Perspective view of the structural deflection during landing of a Boeing 747-400

drag force as a function of the position of a moving airplane relative to generated structural
waves.

The drag force increases without changing the sign and takes the maximum at about
t = 33 s. As can be understood from Fig. 4, the drag force becomes maximum when the
airplane is located at the upslope of the dent (the maximum in slope). When the speed of
airplane approaches zero, the waves pass the airplane and then variation of the drag force
becomes simply oscillatory with the mean value being zero. The magnitude of the additional
drag force is about 0.18 kN at maximum, which may be of negligible order for a jumbo jet.
However, it should be noted that the drag force on an elastic runway varies depending on the
flexural rigidity and thus definitive conclusions should not be made only from the present
example.

9.3 Take-off

In the simulation of take-off, as the initial condition, the airplane (Boeing 747-400) is as-
sumed to be at rest at Z3 (x = −1000m). The initial static deflection is calculated from
Eq. 12, with the velocity and acceleration set equal to zero. The time histories of the vertical
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deflections at Z1 ∼ Z9 are shown in Fig. 7, from which one can see that the static deflection
at Z3 is approximately 5.0mm. The relative position of the airplane and the spatial profiles
of the generated wave along the longitudinal centerline of the runway are shown in Fig. 8 at
various time instants.
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Fig. 7 Time histories of the elastic deflec-
tions obtained at Z1 ∼ Z9 during
take-off

In the take-off, as compared to the land-
ing, it takes much time for the airplane
to move in the early stage, and thus the
disturbance on the VLFS develops slowly.
Looking at the positions of the airplane
and the trough of generated wave (which
may be understood from Figs. 2 and 7 or
directly from Fig. 8), it can be seen that
the airplane is ahead of the trough of gen-
erated wave.

As the time elapses, the speed of air-
plane and the dynamic disturbance in-
crease. After the take-off at t = 60.7 s, no
external force acts on the VLFS, but rela-
tively large waves overtaking the airplane
are still observed at Z6 and Z7 in Fig. 7.
In the present simulations, the wavelength
of the structural wave looks long due to
relatively large value of the flexural rigid-
ity, and thus the phase velocity is also rel-
atively fast. In fact, it can be seen from
Fig. 8 that the airplane overtakes only the
first crest until the take-off at t = 60.7 s.
Related to this fact, the additional drag
force shown in Fig. 9 does not change in
sign, although small variation can be seen
until taking the maximum value at about t = 50 s. The time instant when the drag force
takes its maximum corresponds to the location of the airplane at the maximum upslope
of the dent, which can be confirmed from Fig. 8. Just before the take-off, the drag force
becomes abruptly small. This is not because of the relative position of the airplane to the
generated wave but because of sharply decreasing value of the imparted pressure, F0(t) in
Eq. 36. Concerning the maximum value of the additional drag force during take-off, its mag-
nitude is 0.15 kN, which may be negligible and give no serious problems for considering a
VLFS as a floating airport.

Fig. 10 shows snapshots of the 3-D elastic deflection with time interval of 10.0 s. By
comparison with the landing case, similar deflection pattern can be seen at certain time
instant (e.g. the pattern at t = 40 s in landing is similar to that at t = 60 s in take-off).
However the deflections in the beginning and last stages are different between landing and
take-off, which is natural considering the behavior of an airplane.

10. Conclusions

Numerical simulations were carried out for the transient responses of a floating airport during
landing and take-off by an airplane using realistic numerical data from a Boeing 747-400
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Fig. 8 Time histories of the spatial elastic deflections along the longitudinal centerline of
the runway during take-off. The broken line shows the trajectory of the airplane
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Fig. 9 Additional drag force on a taking-off airplane (The airplane takes off at t =60.7 s)

jumbo jet. The calculation method is based on the time-domain mode-expansion method,
taking account of memory effects in the hydrodynamic forces, which can be applied to any
problem when the external force term on the right-hand side of the differential equation
is modified in accordance with the problem being considered. Special care was paid to
numerical accuracy in evaluating all the terms appearing in the differential equations.
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Fig. 10 Perspective view of the structural deflection during take-off of a Boeing 747-400

The computed results were shown, together with snapshots of the 3-D patterns of struc-
tural waves over the floating airport, the time-histories of the vertical deflection at several
fixed positions, and the spatial deflection profiles along the longitudinal centerline of the
structure at some time intervals. The additional drag forces on a moving load (as a model
of the airplane) during landing and take-off due to the elastic deformation of the runway
were also computed.

It was shown that the airplane moves faster than the generated waves in the early stage
of landing, and that the waves overtake and are deformed due to the presence of the airplane
as the speed of the airplane decreases to zero. In the case of take-off, the structural waves
generated by the airplane develop slowly as the airplane accelerates in the early stages,
and the propagation of generated waves is rather simple because there is no obstacle on
the runway after the take-off of the airplane. It was confirmed that the drag force is at a
maximum when the airplane is located on the up-slope of the dent made by the loading of
airplane on an elastic runway, and that the magnitude of this drag force may be negligible
for the VLFS considered in this study.
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Wave Drift Force and Moment on VLFS Supported
by a Great Number of Floating Columns∗
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ABSTRACT

A calculation method is presented of the wave-induced steady drift force and yaw moment
on a very large floating structure (VLFS) comprising a multitude of floating columns. The
theory is based on the momentum-conservation principle, and all necessary integrations
are analytically implemented. Thus the resultant formulae include only the coefficients of
the incident-wave and disturbance potentials at a large distance from the structure. A
hierarchical interaction theory developed by Kashiwagi (1998) is applied to determine the
disturbance potential due to hydrodynamic interactions among a great number of floating
columns and elastic motions of a thin upper deck. Experiments in head waves were also con-
ducted using 64 truncated vertical cylinders arranged periodically in 4 rows and 16 columns.
Good agreement is found between computed and measured results. Furthermore, through
numerical computations in oblique waves, discussions are made on variation characteristics
of the steady force and yaw moment particularly around frequencies corresponding to the
near-trapping.

Keywords: Drift force and moment, hydrodynamic interactions, momentum-conservation
principle, elastic motion, near-trapped mode.

1. INTRODUCTION

Very large floating structures (VLFSs) are categorized with the configuration under the sea
level into: (1) a pontoon type which looks like a simple plate with very shallow draft, and
(2) a column-supported type in which a thin upper deck is supported by a large number
of floating columns. It is said that the pontoon type is advantageous in low costs for
construction and maintenance, but the wave-induced motions may be relatively large. On
the other hand, the column-supported type has reverse features; that is, the motions in waves
may be small relative to the pontoon type, because incident waves will transmit through a
gap between columns.

The above position may not be the case, however. Recent study, including experiments
(Kashiwagi et al., 2000) on hydrodynamic interactions among many cylinders, reveals that
near-resonant modes occur at some critical frequencies and cause large wave forces on each
element of the array. According to Maniar and Newman (1997), these critical frequencies
are eigen-frequencies in the diffraction problem, at which homogeneous solutions exist, and
their existence depends on the number of cylinders and the ratio of cylinder diameter and
separation distance between adjacent cylinders. Since the waves amplified at these frequen-
cies have characteristics very similar to the trapped modes observed in a long wave channel

∗ Reprinted from International Journal of Offshore and Polar Engineering, Vol. 11, No. 3,
pp. 176–183, 2001 (September)
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containing cylinders along the centerline of the channel (e.g. Evans and Porter, 1997), these
waves are called near-trapping waves.

It is known that the reflection and transmission of incident waves are related closely to
the wave drift force through the momentum-conservation principle. In the limit of very
short wavelength, the drift force will be of the same value irrespective of the pontoon or
column-supported types of structure, because almost all of the wave will be reflected. Around
frequencies of near-trapping, however, no information is given concerning how the wave drift
force varies. Furthermore, few studies have been made on the drift yaw moment acting on
a column-supported type VLFS.

The steady drift force and moment can be computed by either the near-field or far-field
methods. The near-field method based on the direct pressure integration enables us to
evaluate the forces on each column, but it is not effective for a VLFS consisting of a great
number of columns. On the other hand, in the far-field method, it is doubtful that reliable
results are given by a conventional method using numerical integrations with respect to the
azimuth angle of the wave-amplitude function at a large distance from the structure.

Recently as an extension of existing interaction theories (e.g. Kagemoto and Yue, 1986;
and Linton and Evans, 1990), a hierarchical interaction theory (Kashiwagi, 1998) was de-
veloped to compute hydrodynamic interactions among a great number of floating bodies.
With this theory, the disturbance potential valid at a far field may be given in a simpler
form in terms of a cylindrical coordinate system. In this case, all necessary integrations can
be analytically performed, hence accurate results can be expected, provided that enough
numbers of terms are retained in a series expansion.

In the present paper, the diffraction and radiation problems are solved by employing the
hierarchical interaction theory, and an analytical expression is derived for the disturbance
velocity potential valid at a far field. The effects of elastic motions of the upper deck are also
taken into account as the generalized radiation problems. Applying orthogonal relations of
the Fourier series to integrals in the circumferential direction and Wronskian formulae to
some products of Bessel functions, simple calculation formulae are derived for the drift force
in the horizontal plane and the drift yaw moment.

Experiments are also conducted in the present study using 64 truncated circular cylinders
arranged in a rectangular array of 4 rows and 16 columns with equal-separation distance.
Measured results in head waves are compared with corresponding results of the computation.
In particular, cautious measurements and computations are conducted at frequencies around
near-resonant modes, and discussions are made on variation characteristics of the wave drift
force and moment.

2. FORMULATION

We consider a VLFS with a thin deck and a great number of identical and equally spaced
buoyancy columns. As shown in Fig. 1, the deck is rectangular in plan, with length L and
width B. The geometry of an elementary column considered here is a truncated circular
cylinder with horizontal base, with radius a and draft d. The centerlines of adjacent cylinders
are separated by a distance 2s in both x and y axes of a Cartesian coordinate system, where
z = 0 is the plane of the undisturbed free surface and the water depth is constant at z = h.

Under the assumption of incompressible and inviscid flow with irrotational motion, we
introduce the velocity potential satisfying the Laplace equation. The boundary conditions
are linearized and all oscillatory quantities are assumed to be time-harmonic with circular
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frequency ω. Then, we express the velocity potential in the form:

Φ = Re
[
ϕ(x, y, z) eiωt

]
(1)

ϕ =
gA

iω

[
ϕI + ϕS −K

∞∑
k=1

Xk

A

{
ϕk + φk

}]
(2)

where g, A, and K are, respectively, the gravitational acceleration, the amplitude of an
incident wave, and the wavenumber given by ω2/g. ϕI and ϕS are the incident-wave and
scattering potentials, respectively, and the sum ϕI+ϕS ≡ ϕD is referred to as the diffraction
potential.

Incident plane waves propagate in the direction with angle β relative to the positive x-axis
(see Fig. 1), and hence ϕI is given by:

ϕI =
cosh k0(z − h)

cosh k0h
e−ik0(x cos β+y sin β) (3)

where k0 tanh k0h = K.
Xk in (2) denotes the complex amplitude of the k-th mode of motion in the radiation

problem, which includes not only rigid-body motions but also a set of generalized modes to
represent elastic deflections of a deck. ϕk is the velocity potential of a single body oscillating
in the k-th mode (with no interactions) and φk represents the remaining part of the potential
due to hydrodynamic interactions with radiated and scattered waves by the other cylinders.

3. HIERARCHICAL INTERACTION THEORY

The number of columns of a realistic VLFS will be in the order of more than several thou-
sands. Hydrodynamic interactions among columns of this order may be taken into account
by a hierarchical interaction theory developed recently by Kashiwagi (1998). In this hier-
archical interaction theory, a number of actual bodies (labeled as level one) are grouped to
form a fictitious body (level two), and several fictitious bodies are grouped further to form
a bigger fictitious body (level three). This procedure can be repeated theoretically up to
any hierarchical level. Then, the interactions are computed at each level, and information
on interactions can be transmitted upward or downward as required.
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At the highest level, the number of fictitious bodies may be in the order of several tens,
to which existing interaction theories can be applied (e.g. Kagemoto and Yue, 1986, and
Linton and Evans, 1990). Since the present paper is concerned with a general calculation
method which can be applied to arbitrary-shaped columns with footing, the Kagemoto and
Yue theory is adopted. It is a premise in their theory that the diffraction characteristics of
a fictitious body in response to a set of generalized incident waves are known. For details
of the analysis, we refer the reader to Kashiwagi (1998). In the present paper, with the
assumption that the diffraction characteristics of a body at the highest level (denoted as ℓ)
are already obtained, the calculation method of hydrodynamic interactions at the highest
level is summarized.

In the analysis to follow, we will use a local cylindrical coordinate system (rj , θj , z), with
the origin placed at (xj , yj , 0), i.e. the center of the j-th fictitious body. The number of
bodies at level ℓ is denoted as Nℓ, which is, needless to say, identical to NB (the number of
actual columns) in the case of no hierarchical level.

3.1 Diffraction Problem

The incident waves impinging upon a fictitious body i consist not only of the wave expressed
by (3) coming from the outside, but also of scattered waves due to other fictitious bodies.
Thus we can write:

ϕiI,ℓ =
{
ai
}T{

ψi
I,ℓ

}
+

Nℓ∑
j=1
j ̸=i

{
Aj

S,ℓ

}T{
ψj
S,ℓ

}

=
({
ai
}T

+

Nℓ∑
j=1
j ̸=i

{
Aj

S,ℓ

}T [
T ℓ
ji

]){
ψi
I,ℓ

}
(4)

Here {ψi
I,ℓ} and {ψj

S,ℓ} are the vectors of the generalized incident-wave and scattering
potentials, respectively, which are expressed as:

{
ψi
I

}
=

{
Z0(z)Jp(k0ri) e

−ipθi

Zn(z) Ip(knri) e
−ipθi

}
(5)

{
ψj
S

}
=

{
Z0(z)H

(2)
m (k0rj) e

−imθj

Zn(z)Km(knrj) e
−imθj

}
(6)

where:

Z0(z) =
cosh k0(z − h)

cosh k0h
, Zn(z) =

cos kn(z − h)

cos knh
(7)

and kn is a solution of kn tan knh = −K (n = 1, 2, · · · ), giving the wavenumber of evanescent
wave modes. The number of terms in the θ-direction, p and m, must be taken as 0, ±1, ±2,
· · · .

The coefficient vector of the incident wave, { ai }, is known and may be explicitly given by
expressing (3) in terms of a cylindrical coordinate system of the i-th body. Meanwhile, [T ℓ

ji ]

is the coordinate transformation matrix, relating {ψj
S,ℓ} with {ψi

I,ℓ}, a concrete expression
of which can be given by Graf’s addition theorem for Bessel functions.
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Let the diffraction characteristics matrix corresponding to {ψi
I,ℓ} of a fictitious body be

expressed as [Bi,ℓ ]. Then the scattering potential due to (4) can be obtained in the form:

ϕiS,ℓ =
({
ai
}T

+

Nℓ∑
j=1
j ̸=i

{
Aj

S,ℓ

}T [
T ℓ
ji

])[
Bi,ℓ

]T{
ψi
S,ℓ

}
=
{
Ai

S,ℓ

}T{
ψi
S,ℓ

}
(8)

From this relation, the unknown coefficient vector of the scattering potential, {Ai
S,ℓ}, can

be determined. Resulting simultaneous equations for all fictitious bodies are:

{
Ai

S,ℓ

}
−
[
Bi,ℓ

] Nℓ∑
j=1
j ̸=i

[
T ℓ
ji

]T{
Aj

S,ℓ

}
=
[
Bi,ℓ

]{
ai
}
, for i = 1 ∼ Nℓ (9)

Solving (9) completes the flow field at the highest level. By transmitting the information
on hydrodynamic interactions down to lower levels, the flow field around actual bodies may
be determined, hence the wave forces on floating columns of a VLFS can be computed.

3.2 Radiation Problem

The body boundary condition for the j-th actual body is given in the following form:

∂ϕjk
∂n

= njk ,
∂φj

k

∂n
= 0 (10)

where njk denotes the k-th component of normal vector on the j-th body.
As already described, then, ϕk is a solution of the radiation problem for a single body

and φk is a solution of a sort of the diffraction problem due to radiated and scattered waves
by the other bodies.

As a result of forced oscillations of each body and hydrodynamic interactions among other
bodies at the same hierarchical level, the radiation potential of a fictitious body i at level ℓ
can be given in the form:

ϕjk,ℓ =
{
Rj

k,ℓ

}T{
ψj
S,ℓ

}
(11)

where {Rj
k,ℓ} may be explicitly given by transmitting the information on hydrodynamic

interactions upward to a fictitious body at level ℓ.
On the other hand, a solution of φj

k,ℓ can be determined in the same way as the diffraction
problem and given as:

φj
k,ℓ =

{
Aj

k,ℓ

}T{
ψj
S,ℓ

}
(12)

where {Aj
k,ℓ} is the unknown coefficient vector.

When viewed from the i-th body, (11) and (12) may be regarded as incident waves, so
contributions from all other bodies at level ℓ can be written as:

φi
I,ℓ =

Nℓ∑
j=1
j ̸=i

({
Rj

k,ℓ

}T
+
{
Aj

k,ℓ

}T)[
T ℓ
ji

]{
ψi
I,ℓ

}
(13)
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This velocity potential corresponds to (4) in the diffraction problem. Thus in the same
way as in obtaining (9), one can obtain a linear system of simultaneous equations for {Ai

k,ℓ}
in the following form:

{
Ai

k,ℓ

}
−
[
Bi,ℓ

] Nℓ∑
j=1
j ̸=i

[
T ℓ
ji

]T{
Aj

k,ℓ

}
=
[
Bi,ℓ

] Nℓ∑
j=1
j ̸=i

[
T ℓ
ji

]T{Rj
k,ℓ

}
, for i = 1 ∼ Nℓ (14)

It is noteworthy that the left-hand sides of (9) and (14) are exactly the same and can
thus be solved at the same time.

Using the above results for the radiation problem, the added-mass and damping coeffi-
cients for all modes of motion will be computed. Then, by solving the motion equation of a
thin upper deck, the complex amplitude Xk appearing in (2) will be determined.

3.3 Velocity Potential at Far Field

Substituting (8), (11) and (12) into (2), all but ϕI in brackets of (2) (which are denoted as
ϕB) may be expressed in the form:

ϕB =

Nℓ∑
j=1

{
Aj

ℓ

}T{
ψj
S,ℓ

}
{
Aj

ℓ

}
=
{
Aj

S,ℓ

}
−K

∞∑
k=1

Xk

A

({
Rj

k,ℓ

}
+
{
Aj

k,ℓ

})


(15)
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Fig. 2 Symbols in coordinate transforma-
tion

As a next step to obtain the wave
drift force and moment by means of
the momentum-conservation principle,
we need to rewrite the above expression
with the global coordinate system O-xyz
(or equivalently O-rθz).

At a large distance from the structure,
evanescent wave components decay, and
thus we can consider only the progres-
sive wave components (i.e. the Hankel
function of the 2nd kind) in the vector
expressed as {ψj

S,ℓ}.
Equations expressed with a cylindri-

cal coordinate system of the j-th body
must be rewritten in terms of the global
coordinate system O-rθz. For that pur-
pose, using notations shown in Fig. 2 and
noting that r ≫ Lj0 at a far field from a
structure, Graf’s addition theorem gives the following:

H(2)
m (k0rj) e

−imθj =
∞∑

p=−∞
Jm−p(k0Lj0) e

−i(m−p)αj0
{
H(2)

p (k0r) e
−ipθ

}
(16)

This relation can be expressed in a matrix form as follows:{
ψj
S,ℓ

}
=
[
M ℓ

j0

]{
ψS

}
(17)
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Substituting the above into (15), one can obtain an expression for ϕB :

ϕB =

Nℓ∑
j=1

{
Aj

ℓ

}T [
M ℓ

j0

]{
ψS

}
≡
{
Aℓ

}T{
ψS

}
(18)

where: {
Aℓ

}
=

Nℓ∑
j=1

[
Mj0

]T [ {
Aj

S,ℓ

}
−K

∞∑
k=1

Xk

A

({
Rj

k,ℓ

}
+
{
Aj

k,ℓ

}) ]
(19)

Let us express the components of the above vector {Aℓ} as Am (m = 0, ±1, ±2, · · · ).
Then, as is clear from (16), the vector {ψS} comprises only the Hankel function. Hence ϕB
in (18) can be written in a simpler form:

ϕB =

∞∑
m=−∞

Am

{
Z0(z)H

(2)
m (k0r) e

−imθ
}

(20)

On the other hand, with the global cylindrical coordinate system, the incident-wave
potential expressed by (3) may be written as:

ϕI =

∞∑
m=−∞

αm

{
Z0(z) Jm(k0r) e

−imθ
}

(21)

where αm = eim(β−π/2) (22)

Noting that the sum of (20) and (21) gives the total velocity potential in brackets of (2),
we can write ϕ(x, y, z) as valid at a far field in the following form:

ϕ =
gA

iω

∞∑
m=−∞

Z0(z)
{
αmJm(k0r) +AmH

(2)
m (k0r)

}
e−imθ (23)

In a special case of bottom-mounted vertical circular cylinders, Linton and Evans (1990)
showed that (23) can be reduced further to a compact expression by use of Wronskian
relations for Bessel functions.

4. WAVE DRIFT FORCE AND MOMENT

Following Maruo (1960) and Newman (1967), let us derive calculation formulae for the wave
drift forces in the horizontal plane and the drift yaw moment on the basis of the conservation
principle of linear and angular momenta. A notable feature in the present paper is to perform
all necessary integrations analytically using (23).

Firstly, let us consider the time-averaged steady force acting in the x-axis. Retaining
quadratic terms in the velocity potential and taking time average over one period, an ex-
pression for the steady force can be obtained in the form:

F x =−ρ
2

∫ h

0

dz

∫ 2π

0

[
Re
{∂ϕ
∂x

∂ϕ∗

∂r

}
− 1

2
∇ϕ∇ϕ∗ cos θ

]
rdθ

−ρ
4
K

∫ 2π

0

ϕϕ∗
∣∣∣
z=0

r cos θ dθ (24)

where ϕ∗ denotes the complex conjugate of ϕ.
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Since the integrals in (24) are to be evaluated for large values of r, we can discard the
terms decaying as r → ∞. Taking this into account and performing the integral with respect
to z, it follows that:

F x = − ρ

8C0

∫ 2π

0

[ ∂ϕ
∂r

∂ϕ∗

∂r
+ k20 ϕϕ

∗
]
z=0

r cos θ dθ (25)

where
C0 =

k20
K + h(k20 −K2)

(26)

The wave drift force in the y-axis can be analyzed in the same manner, and the expression
corresponding to (25) is given by:

F y = − ρ

8C0

∫ 2π

0

[ ∂ϕ
∂r

∂ϕ∗

∂r
+ k20 ϕϕ

∗
]
z=0

r sin θ dθ (27)

As shown by Newman (1967), the wave drift moment about the z-axis can be evaluated
by applying the conservation principle of angular momentum. This gives the following
expression:

Mz = − ρ

4C0
Re

∫ 2π

0

∂ϕ

∂θ

∂ϕ∗

∂r

∣∣∣
z=0

r dθ (28)

To perform integrations with respect to θ in (25), (27) and (28), we substitute (23) and
use orthogonal relations in trigonometric functions given as:∫ 2π

0

e−imθ einθ dθ = 2π δm,n∫ 2π

0

e−imθ einθ cos θ dθ = π δm,n±1∫ 2π

0

e−imθ einθ sin θ dθ = ∓πi δm,n±1


(29)

Here δm,n is Kroenecker’s delta, equal to 1 when m = n and zero otherwise.
Noting that Z0(z) = 1 at z = 0, the result after applying (29) to (25) takes the form:

F x = −ρgA
2

4

k0
C0K

Re
∞∑

m=−∞
πk0r

×
[{
αmJ

′
m +AmH

(2)′
m

}{
α∗
m+1J

′
m+1 +A∗

m+1H
(1)′
m+1

}
+
{
αmJm +AmH

(2)
m

}{
α∗
m+1Jm+1 +A∗

m+1H
(1)
m+1

}]
(30)

The above equation can be transformed further using the formulae of Wronskians given
by:

J ′
mJ

′
m+1 + JmJm+1 = 0

J ′
mH

(1)′
m+1 + JmH

(1)
m+1 = − 2i

πk0r

H
(2)′
m H

(1)′
m+1 +H

(2)
m H

(1)
m+1 = − 4i

πk0r

H
(2)′
m J ′

m+1 +H
(2)
m Jm+1 = − 2i

πk0r


(31)
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Then the final result for the wave drift force along the x-axis can be obtained in the form:

F x = −ρgA
2

2

k0
C0K

Im
∞∑

m=−∞

[
2AmA

∗
m+1 + αmA

∗
m+1 +Amα

∗
m+1

]
(32)

With almost the same transformation, the calculation formula for the drift force along
the y-axis may be given in the form:

F y = −ρgA
2

2

k0
C0K

Re
∞∑

m=−∞

[
2AmA

∗
m+1 + αmA

∗
m+1 +Amα

∗
m+1

]
(33)

Concerning the steady yaw moment given by (28), substitution of (23) and implementa-
tion of necessary calculations using (29) gives the following:

Mz = −ρgA
2

2

πk0r

C0K

∞∑
m=−∞

m
[
AmA

∗
m +Re

(
αmA

∗
m

)](
JmY

′
m − J ′

mYm
)

(34)

Here Ym denotes the second kind of Bessel function of order m, and the following formula
of Wronskian exists:

JmY
′
m − J ′

mYm =
2

πk0r
(35)

Substituting this formula in (34) gives the final expression for the steady yaw moment in
the form:

Mz = −ρgA2 1

C0K

∞∑
m=−∞

m
[
AmA

∗
m +Re

(
αmA

∗
m

) ]
(36)

It should be noted that (32), (33) and (36) include only the coefficients of the disturbance
potential due to floating columns, Am, and of the incident-wave potential, αm, explicitly
given by (22). These formulae are one of the important results in the present paper. We
can see that the steady drift force and moment consist of quadratic terms in the disturbance
and cross terms between the incident wave and the disturbance.

5. OUTLINE OF EXPERIMENTS

Although the calculation method above is intended for a VLFS supported by a great number
of floating columns, experiments were conducted with 64 equally spaced cylinders because
of limitations in the tank size and other facilities.

As shown in Fig. 3, an elementary body is a circular cylinder with a horizontal base and
its diameter (D = 2a) is 114 mm. This cylinder was placed in a periodic array with 4 rows
times 16 columns. The separation distance between the centerlines of adjacent cylinders is
denoted as 2s, and the experimental setting was such that s = D in both x and y axes and
β = 0◦ (i.e. head waves only).

In this experiment, motions were completely fixed and, as shown in Fig. 3, the x and z
components of the wave force were measured by dynamometers at two different positions.
The draft of the cylinders was set to d = 2D, considering the capacity of the dynamometers
used.

The experiments were carried out at the Ocean Engineering Model Basin (length 65 m,
breadth 5 m, water depth 7 m) of the Research Institute for Applied Mechanics at Kyushu
University. The steepness of regular waves (the ratio of wave height with wave length, H/λ)
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Fig. 3 Arrangement of 64 truncated cylinders fixed in head waves and measurement system

was set approximately equal to 1/50. The circular wave frequency ω (=
√
gK ) was changed

in the range of Ks = 0.2∼1.6, considering that an important parameter in hydrodynamic
interactions is Ks (= 2πs/λ). Measured data were analyzed using an ordinary Fourier-
analysis technique, from which the wave drift force in the x axis was obtained in addition
to the linear wave-exciting forces in the x and z axes oscillating with circular frequency ω.

6. RESULTS AND DISCUSSION

6.1 Outline of Numerical Computations

Computations corresponding to the experiments with 64 columns can be performed without
introducing hierarchical levels. That is, ℓ = 1 and thus Nℓ = NB = 64.

In actual computations, the number of Fourier series in the θ-direction (M) and of evanes-
cent wave modes (N) must be finite. In the present paper, M = 4 and N = 3 are chosen
after convergence checks for Ks = 1.0, β = 0◦ and h = 3d, for which five decimal absolute
accuracy has been achieved.

The number of total unknowns for M = 4, N = 3, and NB = 64 is (2M + 1) × (N +
1) × NB = 2304. Because the computation time in this case may be very long, if detailed
computations must be carried out at many frequencies, double symmetries with respect
to the x and y axes are exploited, which can reduce the number of unknowns to 1/4 (i.e.
2304/4=576).

When computing the coefficients of disturbance potential due to floating cylinders given
by (19), we must compute the transformation matrix [M ℓ

j0 ] defined by (17). As shown
by (16), the elements in this matrix comprise Bessel functions. The convergence rate in
the series expansion of (16) is very slow. It is found by pilot computations that the value
of p (terms on the right-hand side) must be over 6 times the value of m (terms on the
left-hand side) for obtaining sufficiently converged results. For example, in the case of
M = 4 (2M + 1 = 9), the number of terms in {ψS} and thus {Aℓ} will be P = 6M = 24
(2P + 1 = 49). In this paper, all computations have been performed with P = 8M , i.e.
2P + 1 = 65, to ensure accurate results even in high frequencies.



Wave Drift Force and Moment on VLFS Supported by a Great Number of Floating Columns 225

6.2 Linear Wave-Exciting Force

To confirm validity of the present calculation method, the results of linear wave-exciting
forces acting on 64 cylinders are shown in Figs. 4 and 5.

Figure 4 is concerned with the surge exciting force. In the frequency range less than
Ks ≃ 1.2, we can see regular fluctuation due to hydrodynamic interactions. On the other
hand, at frequencies higher than Ks ≃ 1.2, the variation pattern changes, which is also clear
from the phase difference.

In fact, measurements of the wave elevation along the centerline of the present model
reveals that approximately Ks = 1.24 corresponds to the frequency of the near-trapped
mode of the Neumann type, discussed by Maniar and Newman (1997) (although the results
supporting this fact are not shown here). Wave forces on each cylinder also change drastically
near this critical frequency.

Figure 5 shows the heave exciting force. As the frequency increases, the amplitude of the
force becomes very small, because variation in the pressure may be confined to the vicinity
of the free surface, not contributing to the vertical force. However, variation in the phase
tells us that a rapid change occurs near Ks = 1.24, corresponding to a near-trapped mode
frequency.

At any rate, it can be said that the overall agreement is satisfactory between experiments
and computations.
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Fig. 4 Wave-exciting force in surge on 64 cylinders
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Fig. 5 Wave-exciting force in heave on 64 cylinders

6.3 Drift Force in Head Waves

Figure 6 shows the drift force in the x axis in head waves (β = 0◦), which is nondimension-
alized in terms of the wave-energy density of a regular wave (0.5ρgA2) and the projected
length of cylinders along the y axis (the diameter times the number of cylinders in the y-axis
= D ×NBY = 0.456 m).

Measured results scatter somewhat, probably because of difficulty in measuring small
physical quantities with the apparatus shown in Fig. 3. However, repeatability of the results
in the Fourier analysis by changing the analyzing section was fairly good. In determining the
analyzing section from the measured time histories, enough care was paid to the detection
of the effect of reflection waves from the side walls of model basin. We can see from Fig. 6
that, at least in order and qualitatively, the results agree favorably with computed results.

In lower frequencies, measured results are obviously higher than the calculation, which
may be attributed to viscous effects not included in the present theory. In the frequencies
less than Ks ≃ 1.24 corresponding to the near-trapped mode, we can see regular variation
of hump and hollow with increasing amplitude.

In contrast, for frequencies higher than Ks ≃ 1.24, the variation pattern changes and
relatively large drift force can be seen. This is because the drift force is related closely to
the reflection of incident waves, and the reflection in high frequencies becomes large due
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to sheltering effects by a large number of cylinders, especially at frequencies higher than a
trapped mode.

6.4 Drift Force and Moment in Oblique Waves

Although there are no measured results for comparison, numerical computations have been
performed for oblique waves to understand variation tendency of the steady drift force and
yaw moment as a function of incidence angle.

To increase the resolution, computations were made at 270 frequencies in the range of
Ks = 0.2 ∼ 2.0. Computed values are in fact shown by ◦ (open circle) for β = 30◦, and by
× (cross) for β = 60◦ in Figs. 7∼9.

Fig. 7 Surge drift force on 64 cylinders in
oblique waves

Fig. 8 Sway drift force on 64 cylinders in
oblique waves
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First, looking at the surge drift
force (F x) for β = 30◦, we can see
that the amplitude of hump and hol-
low in lower frequencies decreases
compared to the head-wave case,
and a large drift force is predicted
in higher frequencies. For β = 60◦,
occurrence of hump and hollow can-
not be seen and the value itself is
small; this is obviously because the
waves reflected in the x axis are very
small.

Second, looking at the sway drift
force (F y), relatively slow variation
can be seen for β = 60◦ in lower fre-
quencies. This is because the num-
ber of cylinders along the y axis is
1/4 of that along the x axis and thus
the number of peaks due to hydro-
dynamic interactions may be small (approximately equal to 1/4). In higher frequencies, a
large drift force is predicted over a somewhat wide range of the frequency around Ks = 1.6.

Finally, in the steady yaw moment (Mz), we note that the moment becomes positive or
negative for both β = 30◦ and 60◦, depending on the value of Ks. Variation tendency for
β = 30◦ is similar to that of F x, and rapid changes are observed near Ks = 1.47 and 1.85.
Meanwhile, for β = 60◦, rapid variation is not observed, which is of the same feature as that
of F y. These results may be understood by considering that the cylinders are arranged in 4
rows and 16 columns in the present case, hence hydrodynamic interactions along the x axis
are more complicated than those along the y axis.

7. CONCLUDING REMARKS

A calculation method and numerical results have been demonstrated for the wave-induced
steady drift force and moment on a great number of columns. The present theory is based
on the conservation principle of linear and angular momenta. Thus, calculations of the force
and moment can be made using the velocity potential valid at a far field and necessary
integrations are analytically carried out. This greatly contributes to higher accuracy in
numerical results.

A defect in the theory is that no information is given concerning the steady force on each
column; that is, only the total force and moment can be computed. However, no matter
how many columns are used, computation burden does not increase very much, because
a hierarchical interaction theory can be applied and only the coefficients of disturbance
potential at the highest hierarchical level are required in the calculation formulae derived in
this paper.

Experiments were also conducted in head waves, using 64 circular cylinders arranged in
equally separated 4 rows and 16 columns. Although somewhat experimental scatter exists,
the overall agreement with computed results was good. Computations in oblique waves were
performed, and the dependence of the wave incidence angle on the steady force and yaw
moment was discussed.
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Numerical results in this paper were just for the diffraction problem. However, it is
easy to include the effects of motions of a structure, because necessary modification is to
superimpose additional terms due to body motions onto the diffraction terms in evaluating
the coefficient vector of the body disturbance potential.

ACKNOWLEDGMENT

The authors are indebted to Mr. Masaru Inada for his help in preparation of experiments
shown in this paper.

REFERENCES

1 Evans, DV and Porter R (1997). “Trapped Modes about Multiple Cylinders in a Chan-
nel”, Journal of Fluid Mechanics, Vol 339, pp 331–356.

2 Kashiwagi, M (1998). “Hydrodynamic Interactions among a Great Number of Columns
Supporting a Very Large Flexible Structure”, Proc 2nd Intl Conf on Hydroelasticity,
Fukuoka, pp 165–176.

3 Kashiwagi, M and Yoshida, S (2000). “Hydrodynamic Interactions among Multiple
Floating Cylinders in a Regular Arrangement”, Proc 15th Ocean Engineering Symp,
Soc of Nav Archit Japan, pp 231–238.

4 Linton, CM and Evans, DV (1990). “The Interaction of Waves with Arrays of Vertical
Circular Cylinders”, Journal of Fluid Mechanics, Vol 215, pp 549–569.

5 Maniar, HD and Newman, JN (1997). “Wave Diffraction by a Long Array of Cylinders”,
Journal of Fluid Mechanics, Vol 339, pp 309–330.

6 Maruo, H (1960). “The Drift of a Body Floating on Waves”, Journal of Ship Research,
Vol 4, pp 1–10.

7 Kagemoto, H and Yue, DKP (1986). “Interactions among Multiple Three-Dimensional
Bodies in Water Waves: An Exact Algebraic Method”, Journal of Fluid Mechanics,
Vol 166, pp 189–209.

8 Newman, JN (1967). “The Drift Force and Moment on Ships in Waves”, Journal of
Ship Research, Vol 11, No 1, pp 51–60.





231Selected Papers on Wave-Body Hydrodynamic Interactions,
M. Kashiwagi, Osaka University, March 2021 (pp. 231–245)
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ABSTRACT

An accurate numerical calculation method is presented for the wave-induced steady forces
and moments on each of the columns supporting a very large floating structure. The method
is based on the direct integration of the pressure over the wetted surface of each column.
First-order quantities needed in computing the pressure are determined by applying a
higher-order boundary element method combined with the wave-interaction theory, taking
into account the hydrodynamic interactions exactly within the linearized potential theory.
The effects of motions of a structure are incorporated consistently up to the second-order
in the wave amplitude. Experiments in head waves are also conducted using 64 truncated
vertical cylinders arranged in a periodic array of 4 rows and 16 columns. Steady wave
forces are measured at 6 different positions among 64 cylinders, and they are all in good
agreement with computed results. Some characteristics in the variation tendency of the
local steady forces are summarized.

Keywords: Drift force and moment, hydrodynamic interactions, pressure-integration
method, trapped mode.

1. INTRODUCTION

A column-supported structure has been considered a possible type of very large floating
structure (VLFS). This structure consists of a large number of floating columns which sup-
port a thin upper deck. By comparison with an alternative pontoon type which has been
studied recently by many researchers (e.g. Kashiwagi, 1999, for a review), it is said that the
column-supported type is advantageous in small motions in waves, because incident waves
will transmit through a gap between columns. However, this recognition may not be true.
For instance, according to Maniar and Newman (1997), near-trapped modes among many
cylinders occur at some critical frequencies and exert large wave forces on each cylinder of
the array. Their study is based on a simple geometry, where a large number of bottom-
mounted circular cylinders are periodically placed along a single straight line. Hence no
information is given on the near trapped-wave phenomena in a realistic array of columns
and on the second-order wave drift force.

Recently, Kashiwagi (2000) presented a calculation method for the drift forces in the
horizontal plane and the drift yaw moment on the basis of the momentum conservation
principle. This method (referred to as the far-field method hereafter) is effective, because
all necessary integrations over a control surface located far from the structure are analytically

∗ Reprinted from International Journal of Offshore and Polar Engineering, Vol. 12, No. 2, pp.98–
104, 2002 (June)
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performed using Graf’s addition theorem and the Wronskian formulae for Bessel functions
and the orthogonality of trigonometric functions to integrals in the circumferential direction.
However, this method gives only the total force and moment acting on the structure.

Meanwhile, the steady drift forces can also be computed by integrating the pressure over
the wetted surface of a structure and taking time average over a period. (Hereafter this
method will be referred to as the pressure-integration method or the near-field method.)
This pressure-integration method enables us to evaluate the local forces on each column,
which is very useful in the analysis of structural strength and in the design of mooring
systems. This paper is concerned with this pressure-integration method.

The wave drift force is a second-order steady force with respect to the wave amplitude,
which can be obtained from quadratic products of first-order quantities. In this paper, the
boundary-value problems for the first-order velocity potentials are solved using the Kage-
moto and Yue wave-interaction theory (1986) combined with a higher-order boundary ele-
ment method (HOBEM). Thus, hydrodynamic interactions among many columns are taken
into account exactly in the framework of the potential theory. The resulting hydrodynamic
forces and wave-induced motions of a structure are computed, with which the effects of
body motions on the local steady forces are properly evaluated. In the pressure-integration
method, spatial derivatives of the velocity potential and the wave elevation at the waterline
must be computed. This is successfully performed with the 9-point isoparametric represen-
tation for the surface geometry and velocity potential. The validity and numerical accuracy
of the present method are confirmed by comparing the sum of local steady forces with the
drift force computed by the far-field method.

Experiments are also carried out using 64 identical circular cylinders with a horizontal
base, arranged in a periodic array with 4 rows and 16 columns. Results of the steady wave
forces measured at 6 selected positions are compared with corresponding numerical results.
Good agreement is found between computed and measured results. Some characteristics of
the local steady forces are noted, which are markedly different depending on the position of
the cylinder in the array.

2. FORMULATION AND SECOND-ORDER FORCES

We consider the interactions of plane, regular incident waves with a VLFS. As shown in
Fig. 1, the structure considered here comprises a thin upper deck and a large number of
buoyancy columns which are identical and equally spaced. The geometry of an elementary
column is a truncated circular cylinder with radius a and draft d. The centerlines of adjacent
cylinders are separated by a distance 2s in both x- and y-axes of a Cartesian coordinate
system. Here o -xyz is the body-fixed coordinate system with the origin placed at the center
of gravity (G). In steady-state equilibrium, the position of G is supposed to be at (0, 0, zG)
in a space-fixed coordinate system O -XY Z, where Z = 0 is taken as the undisturbed free
surface and the Z-axis is positive vertically downward.

The structure is allowed to move with unsteady motions of 6 degrees of freedom in re-
sponse to the wave excitation. The vectors of the translational and rotational motions are
denoted by ξ(t) and α(t), respectively, and the magnitudes of these motions are assumed to
be small. The vector of local displacement at a point on the body surface can be expressed
as:

Ξ(t) = ξ(t) +α(t)× r, (1)

where r = (x, y, z) represents the position vector in the body-fixed reference frame.
Under the assumption of incompressible and inviscid flow with irrotational motion, we
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introduce the velocity potential, Φ, satisfying the Laplace equation. Assuming weak non-
linearities, the velocity potential and the motion vectors can be written as a perturbation
series with respect to a small parameter ϵ, which is usually taken as the wave slope:

Φ = ϵ Φ(1) + ϵ2Φ(2) +O(ϵ3),

ξ = ϵ ξ(1) + ϵ2ξ(2) +O(ϵ3),

α = ϵα(1) + ϵ2α(2) +O(ϵ3).

 (2)

Given the above quantities, the hydrodynamic pressure will be computed. Then the wave
force on a body can be obtained by integrating the pressure multiplied by unit normal vector
over the instantaneous wetted body surface, say S(t).

Using (2) and Taylor’s expansion for both the pressure and unit normal vector on S(t)
with respect to the mean body surface, SB , the wave forces on a body can be expressed in
a perturbation series. Details of the derivation can be found, for example, in Ogilvie (1983)
and Kim and Yue (1990). The result can be summarized as follows:

F = F (0) + ϵF (1) + ϵ2F (2) +O(ϵ3), (3)

where
F (0) = − ρgV k, (4)

F (1) = ρ

∫∫
SB

∂Φ(1)

∂t
n dS − ρg

∫∫
SB

Ξ
(1)
3 n3k dS, (5)

F (2) = ρ

∫∫
SB

∂Φ(2)

∂t
n dS − ρg

∫∫
SB

Ξ
(2)
3 n3k dS + F (2)

q , (6)

F (2)
q =

1

2
ρ

∫∫
SB

∣∣∣∇Φ(1)
∣∣∣2 n dS − 1

2
ρg

∮
CB

{
ζ
(1)
R

}2
n dℓ

+ ρ

∫∫
SB

Ξ(1) · ∇
(∂Φ(1)

∂t

)
n dS +α(1) × F (1)

− ρg

∫∫
SB

α
(1)
3

(
α
(1)
1 x+ α

(1)
2 y

)
n3k dS. (7)
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Here ζ
(1)
R in (7) denotes the first-order relative wave elevation given by:

ζ
(1)
R =

1

g

∂Φ(1)

∂t

∣∣∣∣
Z=0

− Ξ
(1)
3 , (8)

which must be evaluated along the mean waterline CB ; ρ is the fluid density; g is the
gravitational acceleration; V is the displacement volume; n is the unit normal vector di-
recting into the fluid from the mean body surface SB ; Ξ(1) = ξ(1) + α(1) × r and thus

Ξ
(1)
3 = ξ

(1)
3 + α

(1)
1 y − α

(1)
2 x ; k is the unit vector in the z-direction of the space-fixed

coordinate axes.
The present paper is concerned with time-averaged steady forces, which can be computed

only from F (2)
q containing only quadratic products of first-order quantities.

The corresponding expressions for the moment about the center of gravity can be obtained
in a similar form. The second-order term to be computed from quadratic products of first-
order quantities, which is denoted as M (2)

q , may be computed by:

M (2)
q =

1

2
ρ

∫∫
SB

∣∣∇Φ(1)
∣∣2r × n dS − 1

2
ρg

∮
CB

{
ζ
(1)
R

}2
r × n dℓ

+ ρ

∫∫
SB

Ξ(1) · ∇
(∂Φ(1)

∂t

)
r × n dS +α(1) ×M (1)

− ρg

∫∫
SB

α
(1)
3

(
α
(1)
1 x+ α

(1)
2 y

)
r × n dS. (9)

The first-order motions, ξ(1) and α(1), follow from the equations of motions based on
Newton’s second law, for which the first-order hydrodynamic force and moment must be
computed.

3. SOLUTION OF FIRST-ORDER PROBLEM

The first-order quantities are assumed to be time-harmonic with the circular frequency of
the incident wave, ω, and are expressed as:

Φ(1) = Re
[ gA
iω

ϕ(x, y, z) eiωt
]
, (10)

ξ
(1)
k = Re

[
AXk e

iωt
]
, α

(1)
k = Re

[ A
a
Xk+3 e

iωt
]
, (11)

where A is the amplitude of the incident wave, and a is the radius of an elementary col-
umn which is used as the representative length scale for nondimensionalization. Note that
ϕ(x, y, z) and Xj (j = 1 ∼ 6) are expressed as nondimensional quantities.

When solving the boundary-value problem with the free surface, it is convenient to use
a space-fixed coordinate system. In the mean position of a body oscillating with a constant
circular frequency, the body-fixed coordinate system coincides with one fixed in space except
for the vertical shift of z = zG. In the analysis to follow, then, (x, y, z) will be used as the
space-fixed coordinates.

The spatial part of the velocity potential, ϕ(x, y, z), can be decomposed in the form:

ϕ = ϕI + ϕS −K
6∑

k=1

Xk

{
ϕk + φk

}
, (12)
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where K = ω2a/g is the nondimensional wavenumber.
ϕI and ϕS are the incident-wave and scattering potentials, respectively, and the sum,

ϕI +ϕS ≡ ϕD, is referred to as the diffraction potential. For plane waves propagating in the
direction with angle β relative to the positive x-axis, ϕI is given by:

ϕI =
cosh k0(z − h)

cosh k0h
e−ik0(x cos β+y sin β), (13)

where k0 is the solution of k0 tanh k0h = K, and h denotes the constant water depth,
nondimensionalized in terms of a.

In the radiation problem, ϕk in (12) denotes the velocity potential of a single body
oscillating in the k-th mode (with no interactions among cylinders) and φk represents the
remaining part of the potential due to hydrodynamic interactions with radiated and scattered
waves by the other cylinders.

Thus, the boundary conditions to be satisfied on the mean body surface, SB , are given
as

∂ϕD
∂n

= 0,
∂ϕk
∂n

= nk,
∂φk

∂n
= 0, (14)

where n = (n1, n2, n3) and r × n = (n4, n5, n6).
Solutions satisfying (14) and other free-surface and radiation conditions may be obtained

by using the Kagemoto and Yue interaction theory (1986). To obtain expressions valid near
the j-th cylinder (see Fig. 1) using the interaction theory, we will use a local cylindrical coor-
dinate system (rj , θj , z), with the origin placed at the center of the j-th cylinder, (xj , yj , 0).
Namely, x = xj + rj cos θj and y = yj + rj sin θj will be substituted.

The expressions of the velocity potentials by the interaction theory, appropriate for the
present analyses, may be found in Kashiwagi (1998), and the results are summarized as
follows:

ϕjD =

({
aj
}T

+

NB∑
i=1
i̸=j

{
Ai

S

}T [
Tij
]){

ψj
D

}
, (15)

ϕjk =
{
Rj

k

}T{
ψj
S

}
, (16)

φj
k =

NB∑
i=1
i̸=j

({
Rj

k

}T
+
{
Ai

k

}T )[
Tij
]{
ψj
D

}
, (17)

where: {
ψj
D

}
=
{
ψj
I

}
+
[
Bj

]{
ψj
S

}
. (18)

Here
{
ψj
I

}
and

{
ψj
S

}
in (18) are the vectors of the “generalized” incident-wave and

scattering potentials, respectively, defined as:

{
ψj
I

}
=

{
Z0(z)Jp(k0rj) e

−ipθj

Zn(z) Ip(knrj) e
−ipθj

}
, (19)

{
ψj
S

}
=

{
Z0(z)H

(2)
m (k0rj) e

−imθj

Zn(z)Km(knrj) e
−imθj

}
, (20)
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where:

Z0(z) =
cosh k0(z − h)

cosh k0h
, Zn(z) =

cos kn(z − h)

cos knh
, (21)

and kn (n = 1, 2, · · · ) are solutions of kn tan knh = −K, giving the wavenumbers of evanes-
cent wave modes. The number of terms in the θ-direction, p and m in (19) and (20), must
be taken as 0, ±1, ±2, · · · .

The coefficient vector of the incident wave,
{
aj
}
, can be explicitly given by expressing

(13) in terms of a local cylindrical coordinate system. Meanwhile,
[
Tij
]
is the coordinate

transformation matrix, relating
{
ψi
I

}
with

{
ψj
S

}
, which can be given by Graf’s addition

theorem for Bessel functions. NB denotes the number of total cylinders.
The vector

{
Rj

k

}
in (16) can be numerically obtained by solving the radiation problem for

a single body. Likewise, the matrix
[
Bj

]
in (18) can be obtained by solving the diffraction

problem for a single body, with each component of (19) regarded as an incident-wave velocity
potential. For these numerical computations, a higher-order boundary element method using
9-point isoparametric elements is adopted in the present paper.

Other unknown vectors representing wave interactions,
{
Ai

S

}
in (15) and

{
Ai

k

}
in (17),

are determined by the Kagemoto and Yue interaction theory.
Once the velocity potentials are determined, it is straightforward to compute the first-

order forces acting in the k-th direction; those are expressed in a nondimensional form as
follows:

F
(1)
k = Re

[
ρgAa2 Fk e

iωt
]
,

M
(1)
k = Re

[
ρgAa3 Fk+3 e

iωt
]
,

 (22)

where:

F j
k = Ej

k +
6∑

ℓ=1

Xℓ

{
KF j

kℓ − Cj
kℓ

}
, (23)

Ej
k =

({
aj
}T NB∑

i=1
i ̸=j

{
Ai

S

}T [
Tij
] ){

ejk
}
, (24)

F j
kℓ = f jkℓ −

NB∑
i=1
i ̸=j

({
Ri

k

}T
+
{
Ai

k

}T)[
Tij
]{
ejk
}
. (25)

Here f jkℓ in the radiation force and
{
ejk
}

in the diffraction and interaction forces are
fundamental hydrodynamic forces of a single body, which can be computed by:

f jkℓ = −
∫∫

SB

ϕjℓ n
j
k dS,

{
ejk
}
=

∫∫
SB

{
ψj
D

}
njk dS,

 (26)

with njk being the k-th component of unit normal vector on the j-th cylinder.

Cj
kℓ appearing in (23) denotes the restoring force coefficients; nonzero values among these
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coefficients for a vertical circular cylinder are summarized as follows:

Cj
33 = π,

Cj
44 = π

{
y2j +

1

4
− d

(d
2
− zG

)}
,

Cj
55 = π

{
x2j +

1

4
− d

(d
2
− zG

)}
,

Cj
34 = Cj

43 = πyj , Cj
35 = Cj

53 = −πxj ,

Cj
45 = Cj

54 = −πxjyj .


(27)

Having determined the hydrodynamic and hydrostatic forces, the complex amplitude Xk

defined in (11) will be determined by solving the motion equations of a structure with NB

buoyancy cylinders.
The steady wave forces and moments can be obtained by taking time average over one

period of F (2)
q given as (7) and M (2)

q given as (9), respectively.
As shown in (10), (11) and (22), the time-dependent part of all first-order quantities are

expressed as eiωt. Thus, the time average can easily be computed by means of the following
formula:

Re
[
Aeiωt

]
Re
[
B eiωt

]
=

1

2
Re
[
AB∗ ], (28)

where the overbar means the time average to be taken and the asterisk denotes the complex
conjugate.

As a special case of (7) and (9), when the body motions are completely restrained, cal-
culation formulae for the time-averaged steady forces and moments become much simpler,
including only the diffraction components. For instance, the nondimensional expression for
the steady force, F , can be given by:

F
1
2 ρgA

2a
=

1

2

[
1

K

∫∫
SB

∣∣∣∇ϕD ∣∣∣2n dS −
∮
CB

|ϕD |2 n dℓ
]
. (29)

4. OUTLINE OF EXPERIMENTS

With the calculation method described above, the effects of body motions on the steady
forces can be taken into account. However, to check the validity and performance of the

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Line 1

Line 2

Line 3

Line 4

x

y

228 228 228

2
2

8
2

2
8

Dynamometer
Dynamometer

114

Unit: mm

Wave (β=0)

y=  6a

y=  2a

Fig. 2 Experimental model: arrangement of 64 truncated circular cylinders fixed in head
waves



238 Masashi KASHIWAGI

calculation method for the diffraction problem first, motions were completely fixed in ex-
periments.

As shown in Fig. 2, experiments were conducted in head waves (β = 0◦), using 64 equally
spaced, truncated circular cylinders. The diameter (D = 2a) of an elementary cylinder is
114mm. The separation distance between centerlines of adjacent cylinders, 2s, was set equal
to 2D in both x- and y-axes; that is, s = D. To see effects of the draft of cylinders on the
wave interactions, 2 cases of d = D and d = 2D were tested, but only the results of d = 2D
will be presented in this paper, because there were no essential differences between them.

The wave forces were measured by dynamometers at 6 different positions. As shown in
Fig. 2, 16 columns are numbered from the upwave side. By symmetry, the lines of y = ±2a
are called the inside and those of y = ±6a are called the outside. Then the positions of
measured cylinders are distinguished with the column number and the inside or outside line.

The steepness of regular waves (the ratio of wave height with wave length, H/λ) was set
approximately equal to 1/50. The circular frequency ω of incident waves was varied in the
range of Ks = ω2s/g = 0.2 ∼ 1.6. Measured data were analyzed using an ordinary Fourier
analysis, from which the steady force in the x-axis was obtained.

5. RESULTS AND DISCUSSION

5.1 Outline of Numerical Computations

As the first step of numerical computations, the boundary-value problems for a single cylin-
der were solved by the boundary element method using 9-point quadratic representations
for both the surface geometry and velocity potential. The number of panels over 1/4 of
the submerged surface was 40, and in this case the number of total unknowns (velocity
potentials at nodes) was 177.
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Fig. 3 Total wave drift force on 64 circular cylinders, computed by far-field method based
on the momentum-conservation principle
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In computing the wave interactions, the number of Fourier series in the θ-direction (M)
and of evanescent wave mode (N) must be finite. In the present paper, M = 5 and N = 3
are chosen after a convergence check for Ks = 1.0, β = 0◦, and h = 3d, for which 5 decimals’
absolute accuracy has been achieved.

The number of total unknowns for M = 5, N = 3, and NB = 64 is (2M + 1) × (N +
1)×NB = 2816. The computation time in this case will be very long, if computations must
be carried out at many frequencies for higher resolution. Thus, double symmetries with
respect to x- and y-axes are exploited, which can reduce the number of unknowns to 1/4
(i.e. 2816/4=704).

The spatial derivatives of the velocity potential over the submerged surface, SB, which are
needed in computing the second-order steady forces by the present method, are evaluated
using 2-D quadratic isoparametric representations for the velocity potential and coordinates
(x, y, z). The line integral along the waterline, CB , which is also needed in the pressure-
integration method, is evaluated using 1-D quadratic isoparametric representations for the
velocity potential at z = 0 and coordinates (x, y).

5.2 Total Drift Force on 64 Cylinders

Based on the momentum-conservation principle, Kashiwagi (2000) developed a calculation
method (the so-called far-field method) for computing the drift forces in the horizontal
plane and the drift yaw moment. Although this far-field method gives only the total force
on the structure, accurate results can be expected, because all necessary integrations on a
control surface located far from the structure are analytically performed. Hence, to check
the numerical accuracy of the present method, the summation of the local steady forces on
64 cylinders was compared with independent results by the far-field method.

Figure 3 is taken from Kashiwagi (2000), showing the results computed by the
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Fig. 4 Total wave drift force on 64 circular cylinders, computed by pressure-integration
method
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Table 1 Steady forces in surge, sway, and yaw on a structure with 64 circular cylinders
arranged periodically in the array of 4 rows and 16 columns, computed by the far-
field method and the pressure integration method. (d = 2D, s = D, h = 7.5 d,
β = 30◦)

By Far-Field Method (Momentum-Conservation Principle)

Diffraction Problem Including Motion Effects

Ks FX FY MZ FX FY MZ

0.50 0.05413 0.00876 0.00412 0.14638 0.01407 −0.10189

1.00 0.08821 0.04253 0.02977 0.08946 0.04258 0.03098

1.50 1.6217 0.08032 −0.00668 1.6218 0.08030 −0.00606

1.75 3.9364 0.27782 0.40703 3.9369 0.27766 0.40795

2.00 3.2052 0.70410 −0.26574 3.2048 0.70387 −0.26517

2.50 0.98615 0.50644 −0.37112 0.98633 0.50677 −0.37146

By Near-Field Method (Direct Pressure Integration)

Diffraction Problem Including Motion Effects

Ks FX FY MZ FX FY MZ

0.50 0.05576 0.00874 0.00343 0.17035 0.01336 −0.10203

1.00 0.08868 0.04209 0.02975 0.08997 0.04213 0.03099

1.50 1.6222 0.08027 −0.00664 1.6223 0.08025 −0.00602

1.75 3.9368 0.27791 0.40708 3.9373 0.27775 0.40799

2.00 3.2056 0.70419 −0.26571 3.2052 0.70396 −0.26513

2.50 0.98646 0.50627 −0.37130 0.98664 0.50661 −0.37164

far-field method for the surge drift force in head waves. Fig. 4, which shows corre-
sponding results computed by the present method, is in virtually perfect agreement
with Fig. 3 except for a very small difference near Ks = 1.24.

For the case of free oscillation in response to wave excitation, Table 1 shows a
comparison of the results at some wavenumbers. To show the results of the steady
sway force (FY ) and yaw moment (MZ), computations were performed for β = 30◦,
and other geometrical parameters are the same as Figs. 3 and 4. The center of gravity
was assumed to be on the water plane, and the radii of gyration in roll, pitch, and
yaw modes were set to 0.25B, 0.25L, and 0.25L, respectively, with B and L being
the breadth and length, respectively, of the structure composed of 64 cylinders.

We can see from Table 1 that very good agreement exists between the far-field
method and the present method based on the direct pressure integration. For higher
frequencies, the steady forces and moment become large, and the yaw moment
changes the sign abruptly around Ks = 1.7, but major contributions stem from
the diffraction component. This is because the structure considered here is large
compared to the wavelength of the incident wave, and thus the wave-induced mo-
tions are relatively small for higher frequencies. Despite small values of motions,
we can see that the effects of body motions are properly computed by the present
method.
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Fig. 5 Steady surge force on cylinder at Column No. 1 along inside line
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Fig. 6 Steady surge force on cylinder at Column No. 1 along outside line

5.3 Comparison with Experiments

Having confirmed the validity and accuracy of the present method, let us investigate
the local steady forces on elementary cylinders by comparing with experimental
measurements.

Figure 5 shows the steady surge force on the cylinder located at Column No. 1
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Fig. 7 Steady surge force on cylinder at Column No. 9 along inside line
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Fig. 8 Steady surge force on cylinder at Column No. 9 along outside line

along the inside line (see Fig. 2). Likewise, Fig. 6 shows the results on the cylinder at
Column No. 1 along the outside line. In the frequency range less than Ks ≃ 1.24, we
can see regular fluctuation with increasing amplitude, which may be due to the effects
of wave reflection from downwave cylinders. On the other hand, at frequencies higher
thanKs ≃ 1.24, the variation pattern changes and the steady force becomes positive.
This implies that a large part of the incident wave is reflected by the cylinders placed
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Fig. 9 Steady surge force on cylinder at Column No. 15 along inside line
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Fig. 10 Steady surge force on cylinder at Column No. 15 along outside line

near the upwave end, and that the total drift force (shown in Figs. 3 and 4) is
determined almost by the local steady forces acting on upwave cylinders. (The latter
conjecture will be endorsed by observing the results on downwave cylinders, shown
in Figs. 7–10.) According to Maniar and Newman (1997), Ks = 1.24 corresponds
approximately to a near trapped-mode frequency of Neumann type, around which
linear wave forces become large and change drastically.
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Comparison between Fig. 5 and Fig. 6 reveals that the amplitude of fluctuation
at lower frequencies is larger at the inside than that at the outside. Although the
fluctuation amplitude just below the near trapped-mode frequency is not so large in
measured results, the overall agreement between computed and measured results is
satisfactory.

Figures 7 and 8 are the results of the steady surge force on the cylinders at Column
No. 9. It is clearly shown that the steady force at the inside (Fig. 7) is much larger in
amplitude than that at the outside (Fig. 8). This implies that the wave interactions
are intensified inside the array of a large number of cylinders. By comparison with
Figs. 5 and 6, we can see that variation of the steady force with respect to Ks
becomes mild for lower frequencies. On the other hand, at frequencies higher than
Ks ≃ 1.24, the steady forces at Column No. 9 are almost zero. Including these
characteristics, computed results are in good agreement with measured results.

Figures 9 and 10 show the steady surge force on cylinders at Column No. 15 (the
second column from the most downwave side). We can see again that the steady
force at the inside is larger than that at the outside, and the variation with respect
to Ks becomes further milder. The present computations predict a spike-like rapid
change just below the near trapped-mode frequency, but that is not clear in measured
results; which may be attributed to a decay due to viscous effects.

6. CONCLUDING REMARKS

A calculation method based on the direct pressure integration was presented for com-
puting the steady force and moment on a column-supported large floating structure.
This method enables us to compute the local steady forces on each of a large number
of columns. Although the steady forces are dominated by the diffraction component
for practical frequencies because of the large scale of the structure, the effects of the
structure’s wave-induced motions are also taken into account. The pressure on the
wetted surface of each column was computed by the wave-interaction theory, which
is exact in the framework of the linear potential theory.

The validity and numerical accuracy of the present method were confirmed by
comparing the sum of local steady forces on 64 vertical cylinders with the wave
drift force computed by the far-field method based on the momentum-conservation
principle.

Concerning the characteristics of the local steady forces on each cylinder, com-
puted results were compared with measured ones using 64 vertical cylinders arranged
in 4 rows and 16 columns, through which we observed the followings:

1) The overall agreement is very good, considering that the steady forces are
second-order small quantities in the wave amplitude.

2) The steady force on each column can be negative, though the total force sum-
ming up the local forces of all columns is definitely positive.

3) At the upwave side, the variation of the steady force is rapid in the range of
frequencies lower than the near trapped-mode frequency, but this variation
becomes mild as the position of a cylinder goes downstream.

4) For frequencies higher than the near trapped-mode frequency, the local steady
forces on upwave cylinders become positive and large, dominating the total
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drift force on the whole structure.

5) The steady force on a cylinder along the inside line in the array is larger than
that on a cylinder along the outside line in the variation amplitude with respect
to the frequency.
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Abstract

When a large number of identical cylinders are placed in an array with equal separation
distance, near-resonant phenomena may occur between cylinders at critical frequencies, and
cause large wave forces on each element of the array. In this paper, 64 truncated circular
cylinders arranged in 4 rows and 16 columns are considered to check the occurrence of
near-resonant phenomena and performance of theoretical predictions based on the potential
flow. Experiments are conducted in head waves to measure the wave elevation along the
longitudinal centerline of the model, and measured results are compared with numerical
ones. Attention is focused on the spatial variation of the wave amplitude around the first
near-trapped-mode frequency.

Keywords: Hydrodynamic interaction, trapped mode, wave transmission, spatial distri-
bution, truncated circular cylinders.

1. Introduction

For the development of column-supported very large floating structures to be used as a
floating airport or an artificial island, wave interactions among a great number of cylinders
must be understood and predicted accurately. With the linear potential-flow assumption,
several versions of the wave interaction theory are available at the present time (for a recent
review, the reader is referred to Newman, 2001).

The author has developed a computer code that combines a quadratic isoparametric
boundary-element method for computing the diffraction characteristics of an elementary
body of general geometry and the Kagemoto and Yue (1986) theory of wave interactions
among many bodies. This code has also been extended to the hierarchical scheme (Kashi-
wagi, 2000), which enables us to treat the wave interactions among a great number of columns
with the order of several thousands. Using these calculation methods, we can predict the
wave field around and resulting wave forces on individual floating bodies. A number of
papers have been published (e. g. Kagemoto et al., 1998), showing comparisons of the wave
amplitude between measured and computed results. However those comparisons are made
at certain limited points of a simple arrangement of bodies, and thus it is rather difficult to
imagine the overall spatial distribution of a complicated wave field.

Another topic related to the present paper is the phenomena of near-trapped waves to be
observed for periodically-arranged many cylinders, discussed by Maniar and Newman (1997).

∗ Reprinted from Journal of Structural Engineering and Mechanics, Vol. 21, No. 1, pp. 53–66,
2005 (September)
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It is pointed out that the wave amplitude will be very large at near-trapped-mode frequencies
and the linear potential-flow predictions are rather poor around these frequencies (Kagemoto
et al., 2002). However, this should be checked more thoroughly through comparison between
reliable measurements and accurate numerical computations.

In this paper, experiments are conducted using a model consisting of 64 equally-spaced
vertical circular cylinders (an array of 4 rows times 16 columns), and waves are measured at
a large number of frequencies including the first near-trapped-mode frequency of Neumann
type and at 32 positions separated equally along the centerline of the tested model. Then the
measured results are compared with corresponding numerical results by the wave interaction
theory. It is shown that the overall quantitative agreement is very good, However, when the
wave amplitude becomes large due to wave resonant phenomena, numerical results obviously
tend to be larger than measured ones.

2. Calculation Method

2.1 Formulation

As shown in Fig. 1, a structure supported by a large number of columns is considered. The
geometry of an elementary column considered here is a truncated circular cylinder with
radius a (diameter D = 2a) and draft d. The centerlines of adjacent cylinders are separated
by a distance 2s in both x- and y-axes of a Cartesian coordinate system, where z = 0 is the
plane of the undisturbed free surface and the water depth is constant at z = h.

z

y

2s
O

rj

x

β

j

(x ,y )j j

θ

radius: a
draft  : d

 incident wave
(amplitude: A)

B/2

L/2

Fig. 1 Coordinate system and notations

Under the assumption of incompressible and inviscid flow with irrotational motion, the
velocity potential is introduced, satisfying Laplace’s equation. The boundary conditions
are linearized and all oscillatory quantities are assumed to be time-harmonic with circu-
lar frequency ω. In accordance with the experiment which will be explained later, only
the diffraction problem is considered in this paper. For the radiation problem including
generalized elastic motions, the reader is referred to Kashiwagi (2000).

The velocity potential for the diffraction problem is expressed in the form

Φ = Re

[
gA

iω

{
ϕI(x, y, z) + ϕS(x, y, z)

}
eiωt

]
, (1)
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where g and A are the gravitational acceleration and the amplitude of an incident wave,
respectively. ϕI and ϕS are the incident-wave and scattering potentials, respectively, and
the sum ϕI + ϕS ≡ ϕD is referred to as the diffraction potential.

2.2 Diffraction characteristics of elementary body

In the wave interaction theory for a large number of bodies, ϕI is not necessarily a plane
progressive wave but the vector comprising a set of “generalized” incident waves defined in
terms of a local cylindrical coordinate system (rj , θj , z) of the j-th body (see Fig. 1):

{
ψj
I

}
=

{
Z0(z) Jp(k0rj) e

−ipθj

Zn(z) Ip(knrj) e
−ipθj

}
, (2)

where p = 0, ±1, ±2, · · · , ±∞, n = 1, 2, · · · , ∞, and

Z0(z) =
cosh k0(z − h)

cosh k0h
, Zn(z) =

cos kn(z − h)

cos knh
,

ω2

g
≡ K = k0 tanh k0h = −kn tan knh .

 (3)

Jp and Ip in Eq.(2) denote the first kind of Bessel function and modified Bessel function,
respectively.

Let the velocity potential of an elementary wave in Eq.(2) and the corresponding scatter-
ing potential be denoted by ψj

I(x, y, z) and φ
j
S(x, y, z), respectively. These potentials satisfy

Laplace’s equation and the free-surface and sea-bottom conditions. In addition, φj
S(x, y, z)

satisfies the radiation condition at infinity. In this case, Green’s theorem gives an integral
equation for the diffraction potential, φj

D = ψj
I + φj

S , of the form

C(P)φj
D(P) +

∫∫
Sj

φj
D(Q)

∂

∂nQ
G(P;Q) dS = ψj

I(P), (4)

where C(P) is the solid angle, P = (x, y, z) is the field point, Q = (x′, y′, z′) is the integration
point on the wetted surface of the j-th body Sj , and ∂/∂nQ denotes the normal derivative
with the normal vector defined as positive when directing out of the body. G(P;Q) is the
free-surface Green function, which can be expressed as

G(P;Q) =
i

2
C0Z0(z)Z0(z

′)H
(2)
0

(
k0R

)
+

1

π

∞∑
n=1

CnZn(z)Zn(z
′)K0

(
knR

)
, (5)

where
R =

√
(x− x′)2 + (y − y′)2, (6)

C0 =
k20

K + h(k20 −K2)
, Cn =

k2n
K − h(k2n +K2)

. (7)

H
(2)
0 and K0 in Eq.(5) are the second kind of Hankel function and modified Bessel function,

respectively. These functions can be recast in the series-expansion form by expressing x +
iy = r exp(iθ) and x′+iy′ = r′ exp(iθ′) and by using the addition theorem of Bessel functions.
Considering the case of field point P in a fluid, C(P) = 1 and r > r′. In this case, from
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Eq.(4) and Eq.(5), the following expression of the scattering potential may be obtained:

φj
S(P) =

∞∑
m=−∞

[
Bj

m0

{
Z0(z)H

(2)
m (k0r) e

−imθ
}

+

∞∑
n=1

Bj
mn

{
Zn(z)Km(knr) e

−imθ
}]

, (8)

where
Bj

m0 = − i

2
C0

∫∫
Sj

φj
D(Q)

∂

∂nQ
Z0(z

′)Jm(k0r
′)eimθ′

dS,

Bj
mn = − 1

π
Cn

∫∫
Sj

φj
D(Q)

∂

∂nQ
Zn(z

′)Im(knr
′)eimθ′

dS.

 (9)

These coefficients {Bj
m0, B

j
mn} represent the diffraction characteristics corresponding to each

component in the elementary-wave vector, ψj
I(P). By considering the diffraction problems

for all elementary waves in {ψj
I } defined by Eq.(2) in the same manner, we can construct

the matrix of the diffraction characteristics, the transpose of which is denoted as [Bj ]
T .

Then, the scattering potentials of the j-th elementary body corresponding to the generalized
incident waves {ψj

I } can be written in the vector form{
φj
S

}
=
[
Bj

]T{
ψj
S

}
, (10)

where {
ψj
S

}
=

{
Z0(z)H

(2)
m (k0rj) e

−imθj

Zn(z)Km(knrj) e
−imθj

}
(11)

with m = 0, ±1, ±2, · · · , ±∞, and n = 1, 2, · · · , ∞.

2.3 Wave-body interaction theory

When the number of columns is in the order more than several hundreds, the hierarchical
interaction theory developed by Kashiwagi (2000) must be applied. However, for a compari-
son with the experiments of 64 vertical cylinders conducted in this paper, using the ordinary
wave interaction theory (Kagemoto and Yue, 1986) is sufficient.

Let us consider the flow around the i-th body among NB elementary columns. First the
incident-wave potential incoming from the outside is expressed with a cylindrical coordinate
system of the i-th body as follows:

ϕI = Z0(z) e
−ik0(x cos β+y sin β) (12)

= αi(k0, β)
∞∑

p=−∞
eip(β−π/2)

{
Z0(z)Jp(k0ri)e

−ipθi
}

≡
{
ai
}T{

ψi
I

}
, (13)

where
αi(k0, β) = e−ik0(xi cos β+yi sin β), (14)

with β the angle of incident wave relative to the positive x-axis and (xi, yi) the center of
the i-th body in the global coordinate system. Note that the coefficient vector

{
ai
}
can be

explicitly given from Eq.(13).
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Incident waves impinging upon the i-th body consist not only of the incident wave given
by Eq.(13) but also of the scattered waves from other bodies. Thus it can be written as

ϕiI =
{
ai
}T{

ψi
I

}
+

NB∑
j=1
j=/ i

{
Aj

S

}T{
ψj
S

}

=

({
ai
}T

+

NB∑
j=1
j=/ i

{
Aj

S

}T [
Tji
]){

ψi
I

}
. (15)

Here {Aj
S} is the vector of unknown coefficients of the scattering potential due to the j-th

body. [Tji ] is the coordinate transformation matrix, relating {ψj
S} with {ψi

I }; a concrete
expression of which can be given by Graf’s addition theorem for Bessel functions.

The quantity in parentheses in Eq.(15) can be regarded as the amplitude vector and {ψi
I }

is, as defined in Eq.(2), the vector of generalized incident waves. The scattering potentials
in response to {ψi

I } are already obtained in the form of Eq.(10). Therefore, the scattering
potential of the i-th body due to the incident wave of Eq.(15) can be expressed as

ϕiS =

({
ai
}T

+

NB∑
j=1
j=/ i

{
Aj

S

}T [
Tji
])[

Bi

]T{
ψi
S

}
=
{
Ai

S

}T{
ψi
S

}
. (16)

One can therefore obtain a linear set of equations for determining the vector of unknown
coefficients, {Ai

S}, in the form

{
Ai

S

}
−
[
Bi

] NB∑
j=1
j=/ i

[
Tji
]T{

Aj
S

}
=
[
Bi

]{
ai
}
, i = 1 ∼ NB . (17)

Solving Eq.(17) completes the flow field, and then the wave elevation on the free surface
(z = 0) can be computed from Eq.(12) and Eq.(16) as follows:

ζ(x, y)

A
= ϕI(x, y, 0) +

NB∑
j=1

{
Aj

S

}T{
ψj
S(rj , θj , 0)

}
. (18)

2.4 Numerical computations

First we need to solve the integral equation Eq.(4) for an elementary body (which is a vertical
circular cylinder in the present case) and to determine the diffraction characteristics matrix[
Bi

]
. For this purpose, a higher-order boundary-element method using isoparametric 9-

point quadratic elements is utilized. Since a vertical circular cylinder has double symmetries
with respect to the x- and y-axes, only the first quadrant of a body is discretized into panels,
and symmetry relations for the geometry and velocity potential are exploited. To assure
high numerical accuracy, 320 panels over one quadrant were used, which was found to give
completely converged results.

In computations of the interaction part, the numbers of Fourier series in the θ-direction
(M) and of evanescent wave modes (N) must be finite, which depend on the arrangement
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Fig. 2 Experimental model: arrangement of 64 truncated circular cylinders fixed in head
waves

of columns, the frequency, and the water depth. In the present paper, computations are
performed for a model used in the experiments; that is, as shown in Fig. 2, 64 circular
cylinders arranged in 4 rows and 16 columns. For this model, M = 4 and N = 3 are
chosen after convergence check for Ks = 1.0, β = 0◦ and h = 3d, which achieved five
decimals absolute accuracy. Even in this case, the number of total unknowns for NB = 64
is (2M + 1) × (N + 1) × NB = 2304. To reduce the number of unknowns and thus the
computation time, double symmetry relations with respect to the x- and y-axes for the
whole structure were exploited.

3. Outline of Experiments

Figure 2 shows a model used in the experiments, consisting of 64 equally-spaced truncated
circular cylinders. The diameter of an elementary cylinder is D = 114 mm. The separation
distance between centerlines of adjacent cylinders, 2s, was set equal to 2D in both x- and y-
axes. To see effects of the draft of cylinders on the wave interactions, two cases of d = D and
d = 2D were tested. The wave elevation inside the structure was measured at 32 positions
along the longitudinal centerline (x-axis) using wave probes of capacitance type. In reality,
as shown in Fig. 2, an apparatus with 16 wave probes with equal separation distance of 2s
was used and the measurement was performed twice by shifting the positions of wave probes
by half of the separation distance, s.

The experiments were conducted in head waves generated in the Ocean Engineering
Model Basin (length 65 m, breadth 5 m, water depth 7 m) of the Research Institute for
Applied Mechanics at Kyushu University. The steepness of regular waves (the ratio of wave
height with wave length, H/λ) was set approximately equal to 1/50. The circular frequency
ω of incident wave was varied in the range of Ks = ω2s/g = 0.2 ∼ 1.6. Measured data
were analyzed using an ordinary Fourier-analysis technique, from which the first-order term
oscillating with circular frequency ω was extracted and stored as the complex amplitude,
including both amplitude and phase difference. The phase lead is defined as positive and
measured from the time instant when the trough of incident wave comes at x = 0.

4. Results and Discussion

4.1 Frequency dependence on wave elevation

To see the variation tendency of the wave elevation due to hydrodynamic interactions, mea-
surements have been made for many different values of Ks. Because of shortage of space,
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ζ ζ

Fig. 3 Wave elevation along the centerline of the model shown in Fig. 2 at x/a = −30 (left
figure) and at x/a = −28 (right figure), for the case of d/D = 1

ζ ζ

Fig. 4 Wave elevation along the centerline of the model shown in Fig. 2 at x/a = −2 (left
figure) and at x/a = 0 (right figure), for the case of d/D = 1
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Fig. 5 Wave elevation along the centerline of the model shown in Fig. 2 at x/a = 26 (left
figure) and at x/a = 28 (right figure), for the case of d/D = 1

ζ ζ

Fig. 6 Wave elevation along the centerline of the model shown in Fig. 2 at x/a = −30 (left
figure) and at x/a = −28 (right figure), for the case of d/D = 2
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ζ ζ

Fig. 7 Wave elevation along the centerline of the model shown in Fig. 2 at x/a = −2 (left
figure) and at x/a = 0 (right figure), for the case of d/D = 2

ζ ζ

Fig. 8 Wave elevation along the centerline of the model shown in Fig. 2 at x/a = 26 (left
figure) and at x/a = 28 (right figure), for the case of d/D = 2
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only the results at 6 representative points are shown in Figs. 3–5, with Ks taken as the
abscissa, for the case of d = D. The first two positions (just beside Column No. 1 and
exactly between No. 1 and No. 2) shown as Fig. 3 are on the upwave side. Rapid and regular
variation can be seen in the frequency range lower than Ks ≃ 1.26, which are due to hydro-
dynamic interactions with the waves diffracted from downstream cylinders. Although the
separation distance between the first two positions is just s, the wave amplitude becomes
much different as the frequency increases.

The second two positions shown as Fig. 4 are just beside Column No. 8 and exactly be-
tween No. 8 and No. 9; these are near the midst of the structure (the real midst is exactly
between No. 8 and No. 9). Compared to the variation pattern at upwave positions, the am-
plitude variation with respect to Ks becomes mild for lower frequencies. However, at the
midst ( i. e. exactly between No. 8 and No. 9), the amplitude becomes very large especially
when the frequency approaches Ks ≃ 1.26 from lower frequencies. According to Maniar and
Newman (1997), Ks = 1.26 corresponds approximately to a near-trapped mode of Neumann
type. Computed results are generally in good agreement with measured values. However, at
frequencies slightly lower than the near-trapped-mode frequency, computations apparently
overpredict, which may be attributed to the potential-flow assumption in the theory. It can
be seen that nondimensional values of the measured wave amplitude are all less than 3.0.
Considering that the wave steepness of incident wave was H/λ ≃ 1/50, we can envisage that
the wave steepness of scattered wave is H/λ ≃ 3/50 = 1/16.7, which is close to the limit of
wave breaking.

The last two positions shown as Fig. 5 are just beside Column No. 15 and exactly be-
tween No. 15 and No. 16, which are on the downwave side. The variation in amplitude with
respect to Ks becomes further mild. In the frequency range slightly lower than the near-
trapped-mode frequency, computations predict spike-like variation, but this is not clear in
the measured results. Furthermore, in this frequency range, measured values are obviously
lower than the computations, which may be due to effects of viscosity originating from the
boundary layers of upwave cylinders. It can also be observed that the wave amplitude is
much different between the two positions shown in Fig. 5, although the separation distance
between these two positions is just s.

Figures 6–8 show the results for the case of deeper draft, d = 2D, at the same 6 repre-
sentative positions along the centerline. By comparison with Figs. 3–5, variation tendency
and the degree of agreement between experiments and computations are almost the same.
One noticeable and important difference is that the value of Ks corresponding to the near-
trapped-mode frequency is slightly lower than that for d = D; that is, Ks ≃ 1.24 for the
case of d = 2D whereas Ks ≃ 1.26 for the case of d = D.

4.2 Spatial variation at some fixed frequencies

It has been shown that the wave amplitude varies depending on the measurement position
and the wave frequency. To see the spatial variation in the wave elevation, the wave ampli-
tudes along the centerline are shown in Figs. 9 and 10, with positions along the centerline
taken as the abscissa. Fig. 9 is the case of d = D and includes the results for eight cases of
Ks = 0.8, 1.0, 1.1, 1.15, 1.2, 1.3, 1.4 and 1.5. On the other hand, Fig. 10 is for the case of
d = 2D and the results are shown at Ks = 0.8, 1.0, 1.05, 1.1, 1.15, 1.2, 1.25 and 1.3.

First it can be seen that variation characteristics for two cases of d = D and d = 2D are
very similar except that the near-trapped-mode frequency is slightly different. Computations
have been performed at regular intervals of 201 points along the centerline and shown by a
continuous solid line. The results in the first measurements are shown with closed circles (•),
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Fig. 9 Spatial variation of the wave amplitude along the centerline of the model shown in
Fig. 2, for the case of d/D = 1
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Fig. 10 Spatial variation of the wave amplitude along the centerline of the model shown in
Fig. 2, for the case of d/D = 2
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which correspond to the values measured at middle positions between the cylinders shown
in Fig. 2. Shown by open circles (◦) are the results in the second measurements at positions
just beside the cylinders.

As the position goes downstream, the maximum of wave amplitude increases at lower
frequencies, e. g. Ks = 0.8 to 1.1. Furthermore, the envelope of wave amplitude begins to
fluctuate, as the frequency increases up to the near-trapped-mode frequency (Ks ≃ 1.26
for d = D and Ks ≃ 1.24 for d = 2D). In fact, the number of crests in the envelope of
amplitude variation decreases as the frequency approaches the near-trapped-mode frequency.
The variation tendency changes drastically when the frequency becomes higher than the
near-trapped-mode frequency. When the amplitude variation is large, the wave amplitudes
at points just beside cylinders are relatively small, and on the contrary the values at middle
points between cylinders are large. This is actually a typical wave pattern at near-trapped
modes.

Regarding the degree of agreement between experiments and numerical computations,
the overall agreement is good and variation tendency is well predicted by the present com-
putations. However, when the amplitude variation is large due to strong hydrodynamic
interactions, numerical results obviously overpredict, which may be attributed, as already
discussed regarding Figs. 3 to 8, to viscous effects, not included in the present computations.

5. Conclusions

To have clear understanding on the wave interactions among a great number of columns,
wave measurements have been conducted at a large number of frequencies and at 32 posi-
tions along the longitudinal centerline of a model composed of 64 vertical circular cylinders
periodically placed in 4 rows and 16 columns. The results were compared with numerical
computations made by a combination of the quadratic boundary-element method for eval-
uating the diffraction characteristics of an elementary body and the Kagemoto and Yue
wave-interaction theory for multiple bodies.

The occurrence of the near-trapped mode was confirmed for the 64-column model used in
the present study, and the near-trapped-mode frequency was found to be slightly different
depending on the draft of columns. Around this near-trapped-mode frequency, the variation
in wave amplitude is very large, and the amplitude tends to be maximal at positions exactly
between adjacent cylinders and minimal at positions just beside cylinders; which is a typical
wave pattern at near-trapped modes of Neumann type.

The overall quantitative agreement was favorable between measured and computed re-
sults, and the variation tendency in the wave amplitude with respect to the frequency and
the spatial position was also well predicted by the present calculation method. However,
when the wave amplitude becomes large due to near-trapped-wave phenomena, numerical
results were obviously larger than measured ones.
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Abstract

A linearized two-dimensional diffraction problem in a two-layer fluid of finite depth was
solved for a general floating body and relevant wave-induced motions were studied. In a
two-layer fluid, for a prescribed frequency, incident waves propagate with two different wave
modes. Thus the wave-exciting forces and resulting motions must be computed separately
for each mode of the incident wave. The boundary integral equation method developed
by the authors in the Part-1 article was applied to directly obtain the diffraction potential
(pressure) on the body surface. With the computed results, an investigation was carried out
on the effects of the fluid density ratio and the interface position on the wave-exciting forces
on the body and the motions of the body, including the case in which the body intersects the
interface. By a systematic derivation using Green’s theorem, all the possible reciprocity
relations were derived theoretically in explicit forms for a system of finite depth; these
relations were confirmed to be satisfied numerically with very good accuracy. Experiments
were also carried out using water and isoparaffin oil as the two fluids and a Lewis-form
body. Measured results for the sway- and heave-exciting forces and the heave motion were
compared with the computed results, and a favorable agreement was found.

Keywords: Two-layer fluid, surface-wave mode, internal wave mode, diffraction problem,
wave-induced motions, finite water depth.

1. Introduction

This article is a sequel to the previous work by the authors [1] and is concerned with the wave
diffraction and wave-induced motions of a general body floating in a two-layer fluid of finite
depth. In the previous article (Part 1), the radiation problem was considered and a boundary
integral equation method was developed to accommodate any shape of floating body, which
may penetrate the interface between the upper and lower layers. It was shown that, for
a given frequency of forced oscillation, two different waves with different wavenumbers are
generated and these waves are referred to as the surface-wave mode (with longer wavelength)
and the internal-wave mode (with shorter wavelength). Irrespective of the body shape and
the mode of motion, a simple relation for the amplitude ratio between the waves on the
free surface and on the interface holds for each wave mode. However, the amplitude ratio
between the waves of surface- and internal-wave modes on the free surface or the interface
is dependent on the shape of the floating body, and the wave elevation at a fixed position

∗ Reprinted from Journal of Marine Science and Technology, Vol. 11, No. 3, pp. 150–164, 2006
(September)
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varies depending on the phase difference between the waves of surface- and internal-wave
modes.

This wave radiation from a body can be regarded as wave generation by a wavemaker,
and thus it is obvious that the incident wave to be considered in the diffraction problem
has the same characteristics in the two different wave modes. Thus, in a two-layer fluid,
the diffraction problem must be solved for two different incident waves at a given frequency.
What makes the problem more complicated is that each incident wave will be diffracted
by the body into two different wave modes, and hence some of the energy of the incident
wave may be transferred from one mode to the other. This kind of somewhat complicated
diffraction problem is solved in this article using the calculation method developed in Part 1,
and the diffraction potential (which is the sum of the incident-wave and scattering potentials
and is equivalent to the diffraction pressure) on the wetted surface of a general body is
directly obtained.

In linear water wave theory, particularly in a single-layer fluid, a number of reciprocity
relations are known and a systematic derivation of these relations was established by New-
man [2] using Green’s theorem. The same idea was applied in the previous article to derive
some hydrodynamic relations satisfied in the radiation problem, and again is applied to
the diffraction problem in this article. As a result, the Haskind-Hanaoka-Newman relation,
which relates the wave-exciting force to the radiation wave by forced oscillation of a body,
is derived in an explicit form and all the possible relations among transmitted and reflected
waves observed in a two-layer fluid are derived. Yeung and Nguyen [3] described the idea
of the far-field method for deriving the Haskind-Hanaoka-Newman relation in a two-layer
fluid of finite depth, but no explicit expression was presented. Linton and McIver [4] and
Cadby and Linton [5] also derived various reciprocity relations for the diffraction problem in
a two-layer fluid, but in their work, the lower layer was of infinite depth.

Besides the works cited above, some studies have been done on the solution method for
radiation and diffraction problems, for instance the work of Sturova [6]. However, no results
have been presented for the wave-induced motions of a floating body in two-layer fluids. In
this article, using hydrodynamic radiation and diffraction forces and hydrostatic restoring
forces, the wave-induced motions of a body in various two-layer fluids of finite depth are
computed. In addition, the ways in which differences in the ratio of the fluid density and
the vertical position of the interface may influence the motions of a body are discussed.

Experiments were also conducted to measure the wave-exciting forces and the motions
of a body in regular waves with a 2-D Lewis-form body. As in the previous article, the
two-layer fluid was realized using Isozole 300 (a type of isoparaffin oil, manufactured by
Nisseki Mitsubishi, Tokyo) as the upper-layer fluid and water as the lower-layer fluid, and
two different conditions were tested for the depth ratio between the upper layer and lower
layer. The measured results for the sway- and heave-exciting forces and the heave-motion
in waves were compared with corresponding numerical computations, and the reasons for
discrepancies and the effects of two-layer flow on the results are discussed.

2. Mathematical Formulation

We consider a 2-D floating body of general shape in a two-layer fluid with finite depth. The
body may intersect the interface and is assumed to oscillate harmonically in response to an
incident wave with circular frequency ω. The Cartesian coordinate system and notations
used in the analyses below are shown in Fig. 1, with the origin on the undisturbed free
surface and the z-axis positive in the downward direction. The free surface, the interface,
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Fig. 1 Coordinate system and notations

and the flat rigid bottom of the water are located at z = 0, z = h1, and z = h (= h1 + h2),
respectively.

With the linearized potential flow assumption, the velocity potential is introduced and
written in the form:

Φ(m)(x, z, t) = Re
[
ϕ(m)(x, z) eiωt

]
, m = 1, 2 (1)

ϕ(m)(x, z) = ϕ
(m)
D (x, z) +

3∑
j=1

iωXjϕ
(m)
j (x, z) (2)

ϕ
(m)
D (x, z) = ϕ

(m)
0 (x, z) + ϕ

(m)
4 (x, z) (3)

Here the superscript (m) denotes the fluid layer, with m = 1 and 2 corresponding to the

upper and lower layers, respectively. ϕ
(m)
0 denotes the velocity potential of the incident wave

(details of which will be described later), ϕ
(m)
4 denotes the velocity potential associated with

the scattering the incident wave, and the sum of these, ϕ
(m)
D , is referred to as the diffraction

potential. The second term on the right-hand side of Eq. 2 is, as described in the Part-1
article, associated with the radiation problem and Xj denotes the complex amplitude of the
j-th mode of motion (j = 1 for sway, j = 2 for heave, and j = 3 for roll), which may be
determined by solving the motion equations of a body in waves.

The governing equation for the diffraction and radiation velocity potentials (j = D and
1∼3) is the Laplace equation:

∇2ϕ
(m)
j = 0 (4)

The linearized boundary conditions to be satisfied are expressed as follows:

∂ϕ
(1)
j

∂z
+Kϕ

(1)
j = 0 on z = 0 (5)

∂ϕ
(1)
j

∂z
=
∂ϕ

(2)
j

∂z

γ

(
∂ϕ

(1)
j

∂z
+Kϕ

(1)
j

)
=
∂ϕ

(2)
j

∂z
+Kϕ

(2)
j

 on z = h1 (6)
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∂ϕ
(2)
j

∂z
= 0 on z = h (= h1 + h2) (7)

∂ϕ
(m)
D

∂n
= 0

∂ϕ
(m)
j

∂n
= nj (j = 1 ∼ 3)

 on S
(m)
H (8)

where K = ω2/g, with g being the gravitational acceleration; γ = ρ1/ρ2 ≤ 1, with ρm
being the density of the upper (m = 1) and lower (m = 2) fluids; and nj denotes the
j-th component (n1 = nx, n2 = nz, and n3 = xnz − znx) of the normal vector, which is
defined as positive when directed into the fluid domain from the boundaries (see Fig. 1). The
parameter ε = 1− γ, which is associated with the density ratio, will also be used hereafter.

The boundary-value problem may be completed by imposing the radiation condition of
generated waves radiating away from the body, which is the case for the velocity potentials
of the wave scattering and radiation, but is not the case for the velocity potential of the
incident wave.

3. Incident Wave Potential

Let the incident wave propagate from the positive x-axis. The velocity potential of this
incident wave can be determined from Eqs. 4–7 irrespective of the presence of a body, and
is expressed in the form:

ϕ
(m)
0 (x, z) =

gA

iω
Z(m)(k; z) eikx (9)

where

Z(1)(k; z) =
k chkz −K shkz

k

Z(2)(k; z) =
K chkh1 − k shkh1

k shkh2
chk(z − h)

 (10)

and A in Eq. 9 is unknown at this stage. For brevity, the hyperbolic functions of cosh(x)
and sinh(x) will be written as ch(x) and sh(x), respectively, throughout this article.

The variable k in Eqs. 9 and 10 satisfies the dispersion relation, given by the boundary
conditions in Eq. 6 on the interface, which can be expressed as:

D(k) = K(k shkh−K chkh) + ε(K2 − k2) shkh1 shkh2 = 0 (11)

For a given frequency, K = ω2/g, there exist two different solutions satisfying Eq. 11. These
solutions are denoted as k1 and k2, which are the wavenumbers of progressive waves present
on both the free surface and the interface. The smaller wavenumber k1 is referred to as the
surface-wave mode and the larger wavenumber k2 is referred to as the internal-wave mode.
In view of these two wave modes, we write the velocity potential of the incident wave as
follows:

ϕ
(m)
0 (x, z) =

2∑
p=1

gAp

iω
ϕ
(m)
0p (x, z) (12)

ϕ
(m)
0p (x, z) = Z(m)(kp; z) e

ikpx (13)
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The unknown coefficient Ap in Eq. 12 may be determined by specifying the amplitude
of the incident wave on the free surface (z = 0) or the interface (z = h1). The relations

between the velocity potential ϕ
(m)
0p and the associated wave elevation are given by the

kinematic boundary condition as follows:

∂ϕ
(1)
0p

∂z
= iω a(1)p eikpx on z = 0 (14)

∂ϕ
(1)
0p

∂z
=
∂ϕ

(2)
0p

∂z
= iω a(2)p eikpx on z = h1 (15)

where a
(1)
p and a

(2)
p (p = 1, 2) denote the amplitudes of the kp-wave mode on the free surface

and the interface, respectively.

Substituting Eq. 13 in Eq. 14, it follows that Ap = a
(1)
p . Likewise it follows from Eq. 15

that Ap = α(kp)a
(2)
p with:

α(kp) =
a
(1)
p

a
(2)
p

=
K

K chkph1 − kp shkph1
(16)

Given that Ap = a
(1)
p = α(kp)a

(2)
p , amplitude a

(1)
p or a

(2)
p may be taken at each wave mode

(p = 1, 2) as the incident-wave amplitude for normalizing ϕ
(m)
0 . In the theory, using a

(1)
p may

be simpler for both wave modes. However, in the numerical computations for the incident

wave of internal-wave mode (p = 2), using a
(2)
2 for normalization may be better for numerical

accuracy because | a(2)2 | > | a(1)2 | as was shown on Fig. 4 of the previous article. We note that

no general relation exists between a
(1)
1 and a

(2)
2 and hence two different diffraction problems

corresponding to the incident waves in surface-wave and internal-wave modes must be solved
separately at a given frequency.

The scattering potential associated with ϕ
(m)
0p is represented by ϕ

(m)
4p and their sum,

ϕ
(m)
Dp = ϕ

(m)
0p + ϕ

(m)
4p , is defined as the diffraction potential for each wave mode. It should be

noted that, even when the incident wave contains only one wave mode, the incident wave
will be diffracted in two different wave modes with wavenumbers k1 and k2.

4. Boundary Integral Equation

As in the radiation problem, the integral equation for the diffraction potential on the wetted
surface of a body will be derived for a general case in where the body penetrates the interface
of a two-layer fluid.

With the notations shown in Fig. 1 for the boundaries, we invoke Green’s theorem for the

velocity potential ϕ(m)(Q) to be obtained and an appropriate Green’s function G
(m)
n (Q;P)

over the closed surfaces S(1) = S
(1)
H + S

(1)
C + S

(1)
I + SF and S(2) = S

(2)
H + S

(2)
C + S

(2)
I + SB.

(Here Q = (ξ, ζ) is the integration point on the boundaries and P = (x, z) is the field point
under consideration; for the definition of the Green function in a two-layer fluid, the reader
is referred to the previous article [1].)

We note that both ϕ(m)(Q) and G
(m)
n (Q;P) satisfy the same boundary conditions on SF ,

SB and SI , but the diffraction potential does not satisfy the radiation condition at S
(1)
C and

S
(2)
C . With these facts taken into consideration, the same analysis as that in the previous
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article gives the following result:

C(P)ϕ(m)(P) =
2∑

n=1

∫
S

(n)
H

{
∂ϕ(n)

∂n
G(m)

n (P;Q)− ϕ(n)
∂G

(m)
n (P;Q)

∂n

}
dℓ

+
2∑

n=1

∫
S

(n)
C

{
∂ϕ(n)

∂n
G(m)

n (P;Q)− ϕ(n)
∂G

(m)
n (P;Q)

∂n

}
dℓ (17)

where C(P) is the solid angle which is taken as equal to 0.5 when P is on the boundary
surface and 1.0 when P is in the fluid. The integrals and normal derivatives in Eq. 17 are to
be performed with respect to Q(ξ, ζ), but for brevity, the argument of the velocity potential
is not displayed.

Let us consider ϕ
(m)
Dp = ϕ

(m)
0p + ϕ

(m)
4p for ϕ(m) in Eq. 17. Then, taking account of the

condition of zero normal velocity on S
(n)
H , shown in Eq. 8, and the fact that ϕ

(m)
4p satisfies

the radiation condition but ϕ
(m)
0p does not, Eq. 17 can be reduced to the following:

C(P)ϕ
(m)
Dp (P) =−

2∑
n=1

∫
S

(n)
H

ϕ
(n)
Dp

∂G
(m)
n (P;Q)

∂n
dℓ

+
2∑

n=1

∫
S

(n)
C

{
∂ϕ

(n)
0p

∂n
G(m)

n (P;Q)− ϕ
(n)
0p

∂G
(m)
n (P;Q)

∂n

}
dℓ (18)

To understand the second line of Eq. 18, let us apply Green’s theorem to ϕ
(n)
0p (Q) and

G
(n)
m (Q;P). In this case, we need not consider the presence of a floating body, and hence the

second line of Eq. 18 turns out to be ϕ
(m)
0p itself. Therefore, as a conclusion of the analysis,

the integral equation for the diffraction potential on the body surface takes the form:

C(P)ϕ
(m)
Dp (P) +

2∑
n=1

∫
S

(n)
H

ϕ
(n)
Dp(Q)

∂ G
(m)
n (P;Q)

∂nQ
dℓ = ϕ

(m)
0p (P) (p = 1, 2) (19)

The numerical solution method for Eq. 19 is the same as that employed for the radiation
problem. In fact, the left-hand side of Eq. 19 is the same form of the integral equation as
that for the radiation problem. Thus, simultaneous equations obtained from Eq. 19 using
the constant-panel and collocation method can be solved at the same time with the radiation
problem. We note again that the cases of p = 1 and 2 in Eq. 19 are to be solved as different
problems and the term on the right-hand side for each case can directly be given by Eq. 13.

For a body with port-and-starboard symmetry, the unknowns can be limited to half of the

body surface by considering the symmetry relation; that is, ϕ
(m)
0p in Eq. 13 can be separated

into even and odd functions in x, and correspondingly ϕ
(m)
Dp can be decomposed into the

symmetric and antisymmetric components.

5. Wave-Exciting Forces

Once the velocity potential on the wetted surface of the body is determined, the wave-
exciting forces in sway and heave and the moment in roll can be readily calculated. The
calculation formula for the nondimensional form of these quantities is given by:

E ′
jp =

Ejp

ρ1gapbϵj
=

∫
S

(1)
H

ϕ
(1)
Dp nj dℓ+

1

γ

∫
S

(2)
H

ϕ
(2)
Dp nj dℓ (20)
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where Ejp is the wave-exciting force in the j-th direction caused by the incident wave of
kp-wave mode. In the nondimensional form, ap denotes the amplitude of the incident wave,
b = B/2 denotes half the breadth at z = 0, and ϵj is defined as ϵ1 = ϵ2 = 1 and ϵ3 = b.

For nondimension in Eq. 20, the density of the upper fluid ρ1 is used, but if the density
of the lower fluid ρ2 is used instead (this is the case in the experiments shown later), Eq. 20

must be multiplied by γ = ρ1/ρ2. In numerical computations, ap = a
(p)
p is adopted as the

normalizing factor; that is, the amplitude on the free surface is used for the surface-wave
mode (p = 1) and the amplitude on the interface is used for the internal-wave mode (p = 2).
Therefore, the numerical solution for the internal-wave mode is multiplied by α(k2), as
defined by Eq. 16.

6. Asymptotic Expression in the Far Field

Let us consider the asymptotic form of the velocity potential as |x− ξ| → ∞ and define the
Kochin function, which will be used subsequently.

The asymptotic form of Green’s function is shown in the previous article and is written
as:

G(m)
n (P;Q) ∼ i

2∑
q=1

Wn(kq; ζ)

D ′(kq)
Z(m)(kq; z) e

−ikq|x−ξ| (21)

where W1(k; ζ) = γ α(k) k shkh2 Z
(1)(k; ζ)

W2(k; ζ) = α(k) k shkh2 Z
(2)(k; ζ)

}
(22)

and D ′(k) denotes the derivative of D(k), as defined by Eq. 11, which can be given as

D ′(k) =K
(
shkh+ kh chkh−Kh shkh

)
+ε
{
−2k shkh1 shkh2 + (K2 − k2)(h1 chkh1 shkh2 + h2 shkh1 chkh2)

}
(23)

Substituting Eq. 21 into Eq. 19 with C(P) = 1, the desired result for the diffraction
potential valid in the far field can be expressed in the form:

ϕ
(m)
Dp (P) ∼ ϕ

(m)
0p + i

2∑
q=1

H±
4p(kq)Z

(m)(kq; z) e
∓ikqx (24)

as x→ ±∞, where

H±
4p(k) = −

2∑
n=1

∫
S

(n)
H

ϕ
(m)
Dp

∂

∂n

Wn(k; ζ)

D ′(k)
e±ikξ dℓ (25)

In the diffraction problem, the wave elevations on the free surface η
(1)
Dp and on the interface

η
(2)
Dp, nondimensionalized in terms of the incident-wave amplitude, may be obtained as:

η
(1)
Dp = ϕ

(1)
Dp(x, 0) ∼ eikpx + i

2∑
q=1

H±
4p(kq) e

∓ikqx (26)

η
(2)
Dp =

1

1− γ

{
ϕ
(2)
Dp − γϕ

(1)
Dp

}
z=h1

∼ eikpx + i

2∑
q=1

H±
4p(kq)

1

α(kq)
e∓ikqx (27)
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We can see from these equations that the amplitude ratio between the scattered waves on
the free surface and the interface for surface-wave (q = 1) and internal-wave (q = 2) modes
can be given in the same form as Eq. 16.

For later convenience, let us define the coefficients of the transmitted and reflected waves.
From Eq. 26, the diffraction wave on the free surface caused by the incident wave of kp-wave
mode incoming from the positive x-axis may be written as:

η
(1)
Dp ∼


eikpx +

2∑
q=1

Rpq e
−ikqx as x→ +∞

2∑
q=1

Tpq e
ikqx as x→ −∞

(28)

where
Tpq = δpq + iH−

4p(kq)

Rpq = iH+
4p(kq)

}
(29)

with δpq being Kronecker’s delta.
Tpq and Rpq in Eq. 29 are defined respectively as the coefficients of transmitted and

reflected waves of the kq-wave mode when the incident wave is of the kp-wave mode.

7. Hydrodynamic Relations

In an analogous manner to that for the radiation problem, some reciprocity relations may be
derived also for the diffraction problem, which can deepen our understanding of associated
phenomena and may be used to check the accuracy in numerical computations.

Let us assume that ϕ(m) and ψ(m) are two different solutions, both satisfying Eqs. 4–7
but not necessarily satisfying the same boundary conditions on the body surface (SH) and
the radiation surface (SC) far from the body. Then, the use of Green’s theorem and some
mathematical transformations provide the following equation:∫

SH

w(z)

{
∂ϕ(m)

∂n
ψ(m) − ϕ(m) ∂ψ

(m)

∂n

}
dℓ

=

[ ∫ h

0

w(z)

{
∂ϕ(m)

∂x
ψ(m) − ϕ(m) ∂ψ

(m)

∂x

}
dz

]x=+∞

x=−∞
(30)

where

w(z) =

{
1 0 ≤ z ≤ h1

1/γ h1 ≤ z ≤ h = h1 + h2
(31)

and the square brackets on the right-hand side of Eq. 30 means the difference between the
quantities in brackets evaluated at x = +∞ and x = −∞.

First, we take the radiation potential of the j-th mode ϕ
(m)
j for ϕ(m) and the diffraction

potential ϕ
(m)
Dp for ψ(m). Note that these potentials satisfy the body boundary condition

given by Eq. 8 and ϕ
(m)
j is expressed as:

ϕ
(m)
j ∼ i

2∑
q=1

H±
j (kq)Z

(m)(kq; z) e
∓ikqx (32)
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at x = ±∞, with the Kochin function in the radiation problem defined by:

H±
j (k) =

2∑
n=1

∫
S

(n)
H

{
∂ϕ

(n)
j

∂n
− ϕ

(n)
j

∂

∂n

}
Wn(k; ζ)

D ′(k)
e±ikξ dℓ (33)

In this case, the left-hand side of Eq. 30 gives the wave-exciting force E ′
jp from Eq. 20,

and in terms of Eqs. 24 and 32 the right-hand side of Eq. 30 can be evaluated explicitly. The
result takes the following form:

E ′
jp = F(kp)H

+
j (kp) (34)

where

F(k) =
2k

γ

[
γ

∫ h1

0

{
Z(1)(k; z)

}2

dz +

∫ h2

h1

{
Z(2)(k; z)

}2

dz

]

=
K

k
+ kh

(K chkh1 − k shkh1)
2

γk2 sh2kh2
+
ε

γ

h1
k

×
[(

1− k2

K2
+

1

Kh1

)(
K chkh1 − k shkh1

)2
+ γ

(K2 − k2)2

K2
sh2kh1

]
(35)

Eq. 34 is the so-called Haskind-Hanaoka-Newman relation for the two-layer fluid, connect-
ing the wave-exciting force with the wave-amplitude function in the radiation problem. F(k)
given by Eq. 35 may be regarded as an influence coefficient associated with the two-layer
and finite-depth effects.

Concerning this influence coefficient, let us transform directly the left-hand side of Eq. 30
by using Green’s theorem and the body boundary condition. The result may be expressed
as:

E ′
jp =

∫
S

(1)
H

{
∂ϕ

(1)
j

∂n
− ϕ

(1)
j

∂

∂n

}
ϕ
(1)
0p dℓ+

1

γ

∫
S

(2)
H

{
∂ϕ

(2)
j

∂n
− ϕ

(2)
j

∂

∂n

}
ϕ
(2)
0p dℓ (36)

Here, from Eqs. 13 and 22, ϕ
(m)
0p can be written as:

ϕ
(m)
0p = Z(m)(kp; z) e

ikpx

Z(1)(k; z) =
D ′(k)

γα(k)k shkh2

W1(k; z)

D ′(k)

Z(2)(k; z) =
D ′(k)

γα(k)k shkh2
γ
W2(k; z)

D ′(k)


(37)

Therefore, substituting Eq. 37 in Eq. 36 and referring to Eq. 33, we can obtain an alternative
expression for the Haskind-Hanaoka-Newman relation in the form

E ′
jp = D(kp)H

+
j (kp) (38)

where
D(k) ≡ D ′(k)

γα(k)k shkh2
(39)

F(k) must be identical to D(k) defined by Eq. 39. In fact this is the case, which can be proven
analytically in terms of the dispersion relation Eq. 11, although necessary mathematical
transformation is rather lengthy.
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Next, as possible candidates for ϕ(m) and ψ(m) in Eq. 30, we consider ϕ
(m)
D1 and ϕ

(m)
D2 , their

complex conjugates ϕ
(m)

D1 and ϕ
(m)

D2 , or corresponding expressions for the case in where the
direction of the incoming wave is opposite. In all of these cases, the left-hand side of Eq. 30 is
zero from the body boundary condition, and several relations between the transmitted-wave
and reflected-wave coefficients defined in Eq. 28 will be obtained. All possible relations to
be obtained are of the form:

|R11|2 + |T11|2 − 1 + J
{
|R12|2 + |T12|2

}
= 0 (40)

|R21|2 + |T21|2 + J
{
|R22|2 + |T22|2 − 1

}
= 0 (41)

Re
{
R11T 11

}
+ JRe

{
R12T 12

}
= 0 (42)

Re
{
R21T 21

}
+ JRe

{
R22T 22

}
= 0 (43)

R21 = J R12 (44)

T21 = J T12 (45)

R11R21 + T11T 21 + J
{
R12R22 + T12T 22

}
= 0 (46)

R11T 21 + T11R21 + J
{
R12T 22 + T12R22

}
= 0 (47)

where J ≡ F(k2)/F(k1) (48)

The corresponding relations for a case where the lower layer is of infinite depth are shown
by Linton and McIver [4]. The present results are an extension of their results to the case
of finite water depth.

All of the above relations were found to be satisfied with excellent accuracy (the error
was in the order of 0.01% with 60 segments on the body surface) by the present numerical
computation.

8. Hydrostatic Restoring Forces

The static restoring forces are unrelated to the velocity potentials described above, but they
are critical in computing the motions of a body in waves. In the coordinate system fixed
to a body that is oscillating with amplitude Xj (j = 1 ∼ 3), the hydrostatic pressure in a
two-layer fluid can be written as:

pS =

{
ρ1gz

′ + ρ1g (X2 + x′X3) for 0 ≤ z ≤ h1

ρ2gz
′ + (ρ1 − ρ2)gh1 + ρ2g (X2 + x′X3) for h1 ≤ z ≤ h

(49)

where the body-fixed coordinates are denoted as (x′, z ′).
The hydrostatic force in the j-th direction, Fj , can be obtained by integrating Eq. 49 over

the wetted surface of a body. Namely

Fj = −
2∑

n=1

∫
S

(n)
H

pS(x
′, z ′)nj dℓ (50)

Noting that the hydrostatic force acts only in the vertical direction, it is sufficient to
consider only for j = 2 and 3, and n3 = x′nz − (z ′ −OG)nx must be substituted for j = 3,
because the body motions will be considered with respect to the center of gravity G.
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Fig. 2 Notations for computing restoring forces

It may be easier to apply Gauss’ theorem to both the upper and lower layers of the mean
submerged portion (see Fig. 2). In this way, the vertical force for j = 2 can be evaluated as
follows:

F2 = −ρ1gV1 − ρ1g(B −B1)X2 − ρ2gV2 − ρ2gB1X2

≡ −ρ1gV − C22X2 (51)

where

V = V1

(
1 +

1

γ

V2
V1

)
(52)

C22 = ρ1gB

(
1 +

ε

γ

B1

B

)
≡ ρ1gbC

′
22 (53)

with V1 and V2 being the submerged areas of the body in the upper and lower layers,
respectively, and B (= 2b) and B1 being the breadths at z = 0 and z = h1, respectively.
It is obvious from Eq. 51 that the coefficient of the restoring force in heave, C22, can be
computed from Eq. 53.

In the same way by applying Gauss’ theorem, the roll moment for j = 3 can be evaluated
and the result is expressed as

F3 = ρ1gX3(V1z1 − V1OG)− ρ1gX3

[ ∫
SF

−
∫
SI

]
x2 dx

+ρ2gX3(V2z2 − V2OG)− ρ2gX3

∫
SI

x2 dx

≡ −C33X3 (54)

where
C33 = ρ1gV (−OB+OG+ BM)

= ρ1gV GM ≡ ρ1gb
3 C ′

33 (55)

and V OB = V1z1 +
1

γ
V2z2 , V BM =

B3

12

(
1 +

ε

γ

B3
1

B3

)
(56)
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Here, as shown in Fig. 2, z1 and z2 denote the centers of submerged areas in the upper and
lower layers, respectively. Thus OB is the distance between the origin and the center of
buoyancy, and BM is the metacentric height in a two-layer fluid. As a consequence, the
coefficient of the restoring moment in roll, C33, can be computed from Eqs. 55 and 56.

9. Motion Equations in Waves

Since the motions of the body are considered with respect to the center of gravity G, the
complex motion amplitude Xj and hydrodynamic radiation and diffraction forces must be
transformed into corresponding quantities evaluated with respect to G. (Those are expressed
with superscript G.) Their relationships for a symmetrical body are given as follows:

X1 = XG
1 +OGXG

3 , X2 = XG
2 , X3 = XG

3 (57)

EG
3p = E3p +OGE1p

TG
13 = T13 +OGT11, T

G
31 = T31 +OGT11

TG
33 = T33 +OG(T13 + T31) + OG

2
T11

 (58)

where Tij = Aij +
Bij

iω
(59)

and Aij and Bij represent the added mass and the damping coefficient, respectively, studied
in the previous article.

With the hydrodynamic forces in Eq. 58 and the hydrostatic restoring forces considered
in the preceding section, the equations of heave, sway, and roll of a symmetrical body may
be written as follows:

Heave : [
−K (m′ + T ′

22) + C ′
22

]X2

ap
= E ′

2p (p = 1, 2) (60)

Sway and Roll :

[
−K (m′ + T ′

11)
]XG

1

ap
+
[
−K TG′

13

]X3b

ap
= E ′

1p (p = 1, 2) (61)

[
−K TG′

31

]XG
1

ap
+
[
−K(m′κ2xx + TG′

33 ) + C ′
33

]X3b

ap
= EG′

3p (p = 1, 2) (62)

Here K = ω2b/g, m′ is the mass of the body nondimensionalized with ρ1b
2, κxx is the

gyrational radius in roll nondimensionalized with b, and all other quantities with prime are
supposed to be nondimensional.

It should be noted that these motion equations are solved separately for the incident
waves in surface-wave (p = 1) and in internal-wave (p = 2) modes.

10. Experiments

The experiments for measuring the wave-exciting forces and the wave-induced motions were
conducted with a 2-D Lewis-form body, which has a half-breadth to draft ratio H0 = b/d =
0.833 and a sectional area ratio σ = A/Bd = 0.9 (where half the breadth b = B/2 = 0.1m
and the draft d = 0.12m). As in the experiment for the radiation problem, the two-
layer fluid was realized using isozole 300 for the lighter upper-layer fluid and water for the
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denser lower-layer fluid. Although the density of isozole 300 is written in the catalogue as
ρ1 = 0.764 g/cm3 at 15◦C, we concluded from the check of the static buoyancy and restoring
force that ρ1 = 0.750 g/cm3 would be more plausible. Thus, this corrected value for ρ1 has
been used in our study.

The size of the wave channel used in the experiments was 10m in length and 0.3m in
breadth, and the depth of fluid was set at h = 0.40m. The depth ratios between the upper
and lower fluids were set in two different conditions as follows:

— Measurement of wave-exciting forces
(a) h1 = 0.075m, h2 = 0.325m
(b) h1 = 0.155m, h2 = 0.245m

— Measurement of wave-induced motions
(a) h1 = 0.060m, h2 = 0.340m
(b) h1 = 0.150m, h2 = 0.250m

Given that the draft of the body is d = 0.12m, (a) corresponds to the case in which the
body intersects the interface, and (b) corresponds to the case in which the body floats in the
upper-layer fluid only. For consistency, the setting of the depth of the upper and lower fluid
layers should have been the same for the two different measurements, but each measurement
was performed at very different times and there was no special reason to change the setting.

x

d D
θh

h

h

z

o

1

X0

X0

2

incident wave

Upper layer = Isozole 300

Lower layer = Water

dynamometer plunger-type
wavemaker

free surface

interface

Wavemaker : D=0.225 m, θ=40 deg.=6.100 m, d=0.120 m, h=0.400 m,

Fig. 3 Experimental setup for measuring wave-exciting forces

The section shape of the wavemaker installed in the wave channel is a triangle with a
bottom angle equal to 40 degrees. The wave-exciting forces were measured directly with
a dynamometer. A schematic view of the setup in the diffraction experiment is shown in
Fig. 3, in which the distance from the wavemaker to the center line of the body was set
to X0 = 6.1 m. The wave elevation on the free surface (between air and isozole 300) was
measured with a capacitance-type wave probe, the sensitivity of which was increased by
using four sensors connected as a sequential string. The body motions were measured with
potentiometers.

In the experiments with these measuring instruments, the amplitude of the incident wave
generated by a wavemaker was measured first without the body at the position where the
body was supposed to be set. Then the measurements of forces acting on the body and
the motions of the body were performed, and the measured data were Fourier-analyzed. In
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the measurement of the body motions in waves, the sway motion was fixed to avoid wave
drifting, and only the heave and roll motions were free to oscillate. Fig. 4 is a snap shot
at the measurement of wave-induced motions of the Lewis-form body. The incident wave
is incoming from the left and shorter waves seen at the interface are those scattered by the
body.

In a two-layer fluid, a wavemaker generates two different waves simultaneously at a pre-
scribed frequency: a longer wave of surface-wave mode and a shorter wave of internal-wave
mode. However, it should be noted that the shorter wave tends to attenuate as it propagates,
and in fact it does not reach the position of the body for high frequencies (approximately
Kb > 1.0). On the other hand, in the low frequency region, the shorter wave may reach the
position of the body, but before it does so, the longer wave reflects many times between the
wavemaker and the body because of its faster celerity, and thus measured data is largely
scatted. From the calculated celerity of a wave and the distance between the wavemaker
and the body, the time in which there may be no effects caused by reflected waves can be
estimated. With this estimation and from the time history of measured data displayed on
the monitor screen of a computer, the length of the data to be used for the Fourier analysis
was determined. In the process of this data analysis, the effects of the incident wave of
internal-wave mode may not be included in Fourier-analyzed results.

We calibrated the measuring instruments frequently and confirmed that the possible error
originating from variation in the calibration factor was much smaller than the order of the
scatter in obtained results due to reflected waves. Measurements were repeated several
times at the same frequency, particularly for measuring the wave-exciting forces, and all the
results will be shown later; the scatter in the results may indicate the range of the error in
the experiments.

Free surface Free surface

Interface

Heaving rod

Lewis-form body

Fig. 4 A snap shot at the measurement of wave-induced motions in wave; the wave period
is 0.7 sec and the sway motion is fixed
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11. Results and Discussion

Numerical computations were performed for the Lewis-form body used in the experiment.
Because this body is symmetrical with respect to the z-axis, only half the body surface
was discretized into 30 segments for all computations in this article. With this number of
segments, the error in the Haskind-Hanaoka-Newman relation was very small at less than
0.1% for all computed cases.
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Fig. 5 Effects of the density ratio on the heave exciting force on a Lewis-form body of
H0 = 0.833 and σ = 0.9
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Fig. 6 Effects of the density ratio on the wave-induced heave motion of a Lewis-form body
of H0 = 0.833 and σ = 0.9

11.1 Effects of the density ratio

To see the effects of the density ratio on the wave-exciting forces on the body and resultant
motions of the body, computations were implemented for γ = 1.0, 0.9, 0.7 and 0.2. For
these runs, the depths of the fluid layers were fixed at h1 = 1.2d and h = 2.0d. As γ → 1,
the fluid reduces to a single layer of h = 2.0d. Conversely as γ → 0, the lower fluid behaves
more like a rigid block, and the results are expected to approach those for a single-layer fluid
with a depth equal to that of upper layer. To illustrate this behavior, computations were
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also carried out for single-layer fluids of h = 1.2d and 2.0d.
Figure 5 shows the amplitude of heave exciting force, in which the left-hand and right-

hand sides are for the surface-wave and internal-wave modes of the incident wave, respec-
tively. In the surface-wave mode, as expected, the results for γ = 0.2 approach those for a
single-layer fluid of h = 1.2d, and the results for γ = 0.9 are close to those for a single-layer
fluid of h = 2.0d. At high frequencies, the results for γ = 0.7 are almost the same as
those for γ = 0.9, which indicates that the presence of the interface at a deeper position is
unimportant as long as the density difference is not so large.

When the incident wave is of internal-wave mode, the exciting forces for γ = 0.7 and
0.9 are negligibly small except at low frequencies. For γ = 0.2, however, the wavelength of
the k2 wave becomes comparable to that of the k1 wave, and thus the heave exciting force
becomes large and its nondimensional amplitude is larger than that for the surface-wave
mode over a wide range of frequencies.

Computed amplitudes of the heave motion are shown in Fig. 6 in the same fashion as
those for the heave exciting force. For the incident wave in surface-wave mode, the results
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Fig. 7 Effects of the interface position on the heave exciting force on a Lewis-form body
of H0 = 0.833 and σ = 0.9
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H0 = 0.833 and σ = 0.9
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Fig. 9 Effects of the interface position on the roll exciting moment on a Lewis-form body
of H0 = 0.833 and σ = 0.9

for γ = 0.9 are almost the same as those in a single-layer fluid, and even the results for
γ = 0.7 are almost the same at frequencies of Kb > 0.65. The reason of the smaller
amplitude when Kb < 0.65 at γ = 0.7 is that, as was shown on Fig. 9 in the previous article,
the damping force at γ = 0.7 is large compared to that at γ = 0.9 in Kb < 0.65. For
γ = 0.2 or for a single-layer fluid of h = 1.2d, the heave resonant frequency moves to a lower
frequency, which can be attributed to the fact that the heave added mass becomes large in
shallow water. When the incident wave is of internal-wave mode, the relative magnitude of
the heave motion for three different values of γ is consistent with that of the heave exciting
force shown in Fig. 5, and the motion amplitude at γ = 0.9 is very small.

11.2 Effects of the interface position

Hydrodynamic characteristics may change significantly depending on whether the body in-
tersects the interface. To see this, for the same Lewis-form body and fixed values of h = 0.4m
and γ = 0.75, only the vertical position of the interface was changed from h1 = 0.06m to
0.20m, including the case where the body intersects the interface.
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Fig. 10 Effects of the interface position on the wave-induced heave motion of a Lewis-form
body of H0 = 0.833 and σ = 0.9
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Fig. 11 Effects of the interface position on the wave-induced sway motion of a Lewis-form
body of H0 = 0.833 and σ = 0.9
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Fig. 12 Effects of the interface position on the wave-induced roll motion of a Lewis-form
body of H0 = 0.833 and σ = 0.9

Figures 7, 8 and 9 show computed results of the wave-exciting forces in heave, sway, and
roll, respectively. For incident waves in surface-wave mode, no prominent difference exist
in the heave exciting force among the results for different interface positions, except that
undulatory variation can be seen at Kb < 0.2 when h1 = 0.13m and the interface is located
just below the bottom of the body (d = 0.12m). For incident waves in internal-wave mode,
the heave exciting force is very small, particularly when the body intersects the interface,
whereas when the interface is just below the bottom of the body, the wave-exciting force
becomes large at low frequencies.

On the other hand, for the sway exciting force, there is no distinctive difference depending
on whether the body intersects the interface. It is noteworthy that a waveless frequency
(where the wave-exciting force becomes zero) exists around Kb = 0.3 for the case of h1 =
0.13m.

Variation of the roll exciting moment shown in Fig. 9 is similar to that of the sway exciting
force shown in Fig. 8; this similarity is because both modes of motion are antisymmetric
and the hydrodynamic pressure on the side wall of the body contributes mainly to these
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antisymmetric modes.
Computed motions of the body are shown in Figs. 10, 11 and 12 for heave, sway, and roll,

respectively. For heave with incident waves in surface-wave mode, no distinctive difference
exists depending on the position of the interface, a feature that conforms to the heave
exciting force shown in Fig. 6. For incident waves in internal-wave mode, the heave motions
for all computed cases are negligibly small, which is also consistent with the results for the
heave exciting force.

The effects of the vertical position of the interface appear more clearly as a shift of the
roll resonant frequency, as seen in Fig. 12. (In the present computations, κxx = 0.6b and
OG = 0.45b.) Because the sway motion is coupled with the roll motion, the sway amplitude
changes abruptly near the corresponding resonant frequency for roll, as seen in Fig. 11. We
can see that the roll resonant frequency for the case of a body intersecting the interface
(h1 = 0.06m and 0.11m) is higher than that for the non-intersecting case (h1 = 0.13m and
0.20m). This tendency may be explained by a fact that the value of GM increases when a
body intersects the interface, as can be understood from Eq. 56. The roll amplitude near
the resonant frequency is very large, particularly for incident waves of surface-wave mode,
which is unrealistic because the fluid viscosity is neglected in the present computations.

11.3 Comparison with experiments

Figure 13 shows a comparison of the wave-exciting forces in sway and heave for h1 = 0.075m,
and likewise Fig. 14 shows the same kind of comparison for h1 = 0.155m. The abscissa is
Kb, the nondimensional oscillation frequency of the wavemaker installed at the end of the
wave channel.

The wave-exciting forces are nondimensionalized using ρ2, the density of the lower-layer
fluid (i.e. water), in the form:

E ′
j =

Ej

ρ2ga
(1)
1 b

(j = 1, 2) (63)

where a
(1)
1 denotes the amplitude of the incident wave with longer wavelength measured on

the free surface. The incident wave was generated with a target wave steepness (ratio of

the wave height to the wavelength) of 1/25, which means that the amplitude a
(1)
1 is about

1.25 cm at Kb = 1.0. For lower frequencies, the amplitude was made smaller than the target
because of limitation in the performance of the wavemaker.

We should note that computed results are the results for just the incident wave in surface-
wave mode, because as already explained, the measured results may not include the effects
from the internal-wave-mode incident wave. (In fact, there is no information on the am-
plitude ratio and the phase difference between the waves in surface-wave and internal-wave
modes.) For reference, computed results for a single-layer fluid (h = 0.40m) are also shown
as thin solid lines.

The overall agreement between the measured and computed results seems to be good,
although the measured values of the sway force tend to be smaller than the computed ones.
The sway force is dominated by the pressure near the free surface, which easily scatters
because of the effect of reflected waves from the longitudinal ends of the wave channel. On
the other hand, the heave force is dominated by the pressure near the bottom of the body,
which is stabler than the pressure near the free surface. Looking at Fig. 13, the heave force
is more or less the same as that in a single-layer fluid; this is because the bottom part of the
body is in the lower-layer fluid and the effects of the waves of internal-wave mode are small.
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Fig. 13 Wave-exciting sway and heave forces on a Lewis-form body of H0 = 0.833 and
σ = 0.9, for the case of h1 = 0.075m and h = 0.40m
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Fig. 14 Wave-exciting sway and heave forces on a Lewis-form body of H0 = 0.833 and
σ = 0.9, for the case of h1 = 0.155m and h = 0.40m

For the case of a deeper upper layer, shown in Fig. 14, at first glance the differences from
the single-layer case look large in both sway and heave. However, if the density of the upper-
layer fluid, ρ1, is used for the nondimensional form (i.e., ρ2/ρ1 = 1/γ ≃ 1.33 is multiplied),
it turns out that both sway and heave forces are very close to the results for a single-layer
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Fig. 16 Wave-induced heave motion of a Lewis-form body of H0 = 0.833 and σ = 0.9, for
the case of h1 = 0.15m and h = 0.40m

fluid. This is natural, considering that the body is floating only in the upper-layer fluid for
the case of h1 = 0.155m.

Figures 15 and 16 show the amplitude of the wave-induced heave motion for h1 = 0.06m
and 0.15m, respectively. The experiments were performed also in a single layer of water
to confirm the validity of the potential-flow calculation; these results are plotted with open
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circles and corresponding results from the numerical computation are shown by a thick solid
line. We can see that the agreement in the single-layer fluid is very good, except for the
peak value near the resonance.

In Fig. 15, computed results for the two-layer fluid shown by the broken line (in which the
incident wave in surface-wave mode only is taken into account) are obviously different from
the measured results, particularly for Kb < 0.7. When the upper layer is shallow and the
frequency is relatively low, the incident wave in internal-wave mode may become prominent
and affect the measured results. To support this conjecture, artificial computations were
performed by assuming that the amplitude of the incident wave in internal-wave mode on

the interface a
(2)
2 is equal to 3 a

(1)
1 and the phase is the same between the incident waves

in surface-wave mode and internal-wave mode. (Note that these were not measured in
the experiments.) Computed results are shown by a thin solid line, and obviously the
heave amplitude tends to decrease for Kb < 0.7 and slightly increase at frequencies around
Kb = 1.0 as compared to the broken line. This tendency agrees with measured results and
thus we may conclude that measured results in Fig. 15 are affected by the incident wave in
internal-wave mode.

For a deeper upper layer (shown in Fig. 16), the difference between the results in the single-
layer and two-layer fluids is small, and computed results for the two-layer fluid are also in
good agreement with the measured values, except near the resonant frequency. Therefore
in this case, the effect of the incident wave in internal-wave mode is negligibly small.

12. Conclusions

In this second article, we have studied the diffraction problem of a body of general shape
floating in a two-layer fluid of finite depth, including the case in which the body intersects
the interface between the upper and lower fluids.

Some important hydrodynamic relations were also studied theoretically, and a reasonable
extension from the single-layer case was derived for the Haskind-Hanaoka-Newman rela-
tion and for the energy-conservation relations to be satisfied between the transmitted and
reflected waves. In addition, the boundary integral-equation method developed in the previ-
ous article was applied to compute directly the diffraction potential (pressure) on the body
surface.

Computed results were presented for the wave-exciting forces on the body and for the
resultant motions of the body in regular incident waves. In two-layer fluids, for a prescribed
frequency, the incident wave has two different wave modes with different wavenumbers.
Therefore numerical computations were implemented for each mode of the incident wave
for a Lewis-form body. The effects of the density ratio and the interface position on the
wave-exciting forces and wave-induced motions were discussed.

Furthermore, experiments were conducted to measure the wave-exciting forces in sway
and heave and the wave-induced motions of heave and roll using a Lewis-form body in a two-
layer fluid with water for the lower layer and isozole 300 (isoparaffin oil) for the upper layer.
Measured results were compared with corresponding results from the numerical computation.

The results obtained through the present study may be summarized as follows:

1. As the density ratio γ becomes small (lower layer becomes more rigid), the resonant
frequency for heave moves to a lower frequency as a result of the large added mass in
shallow water.

2. The body motions are generally small in incident waves in internal-wave mode, but for
γ = 0.2, the effect of the internal wave becomes large and the nondimensional amplitude
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is of the same order as that for incident waves in surface-wave mode.
3. The position of the interface has no marked effect on the heave response; however, the

roll resonant frequency clearly changes, depending on whether the body intersects the
interface, which is mainly a result of the change in the restoring moment.

4. The degree of agreement between the measured and computed results is generally good.
However, the measured values of the sway exciting force tend to be smaller than the
computed values. The agreement for the heave motion is also generally good, but a
noticeable difference exists for lower frequencies for the case where the body intersects
the interface, and this difference may be a result of the effect of incident waves in
internal-wave mode, which are not included in the numerical computations.
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Abstract

Based on the momentum and energy conservation principles, a compact calculation formula
is analytically derived for the wave-drift force on a 2-D body floating in a two-layer fluid
of finite depth. In a two-layer fluid, two different wave modes (the surface-wave mode with
longer wavelength and the internal-wave mode with shorter wavelength) exist not only
in the incident wave but also in the body-scattered wave, and these wave characteristics
are properly incorporated in the obtained formula. It is noted that, unlike the single-
layer case, the wave-drift force can be negative in the incident wave of surface-wave mode,
if the transmitted wave with internal-wave mode is large. Numerical computations are
implemented for a Lewis-form body by means of the boundary-integral-equation method
with Green’s function for the two-layer fluid problem. The effects of density ratio, interface
position, and body motions on the wave-drift force are studied, and some important features
are found for two-layer fluids.

Keywords: Two-layer fluid, wave drift force, surface-wave mode, internal-wave mode,
finite water depth.

1. Introduction

Hydrodynamic studies of a body floating in a two-layer fluid of finite depth have been
conducted for the radiation and diffraction problems which are of first order with respect
to the incident-wave amplitude ( [1, 2] and the references therein). However, to the author’s
knowledge, no study has been made on the second-order wave-drift force in a two-layer fluid.
For the case of a single-layer fluid, it is well known that the coefficient of the reflection wave
is directly connected with the wave-drift force and its calculation formula is established by
the far-field method based on the momentum and energy-conservation principles.

For a two-layer fluid, however, the analyses look complicated, even for first-order prob-
lems. For example, in the diffraction problem, two different incident waves of surface-wave
mode (with longer wavelength) and internal-wave mode (with shorter wavelength) must be
considered separately for a prescribed frequency, and each incident wave will be scattered by
a body into two different wave modes. Thus, the energy of the incident wave may be trans-
ferred from one mode to the other. Furthermore, when the body is oscillating in response
to the incident wave, the body motion may change the reflected and transmitted waves. For
this complicated wave field in a two-layer fluid, it is crucial to understand analytically what
is the correct form of the calculation formula for the wave drift force, in what way two-layer

∗ Reprinted from Journal of Engineering Mathematics, Vol. 58, pp. 51–66, 2007 (August)
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effects are incorporated in the formula, and what are distinctive differences with respect to
the single-layer case.

In this article, after the definition and formulation of the problem, the asymptotic ex-
pression of the velocity potential valid in the far field is obtained, in which the coefficients
of reflected and transmitted waves are defined in terms of the Kochin functions for the radi-
ation and diffraction problems in a two-layer fluid. Then on the basis of the momentum and
energy conservation principles, analytical integrations in the far field and some mathematical
transformations are performed to derive the desired calculation formula for the wave-drift
force. The key to success in this procedure is to apply the orthogonality properties to the
eigenfunctions in the two-layer fluid of finite depth.

Numerical computations are performed for a Lewis-form body, using the boundary-
integral-equation method developed by Ten and Kashiwagi [1]. The density ratio and the
interface position between the upper and lower layers are varied and those effects on the
wave-drift force are studied. Furthermore, by showing the results for three cases where the
body is completely fixed, only the heave motion is free, and all modes of body motion are
free in response to incident waves, the effects of body motions on the wave drift force are also
discussed. Lastly, some findings from the theoretical and numerical studies in this article
are discussed in the Conclusions.

2. Mathematical Formulation

We consider a 2-D floating body of general shape in a two-layer fluid with finite depth.
The body may intersect the interface between the upper and lower layers and is assumed
to oscillate sinusoidally in response to an incident wave with circular frequency ω. Figure 1
shows a Cartesian coordinate system and notations used in the analyses below, with the
origin on the undisturbed free surface and the z-axis positive in the downward direction.
The free surface, the interface, and the flat rigid bottom of the water are located at z = 0,
z = h1, and z = h, respectively.

Assuming both of the upper and lower fluids to be incompressible and inviscid with
irrotational motion, we introduce the velocity potential in the form

Φ(m)(x, z, t) = Re
[
ϕ(m)(x, z) eiωt

]
, m = 1, 2 (1)
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Fig. 1 Coordinate system and notations
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ϕ(m)(x, z) =

2∑
p=1

gAp

iω
ϕ
(m)
Dp (x, z) +

3∑
j=1

iωXj ϕ
(m)
Rj (x, z) ≡

2∑
p=1

gAp

iω
φ(m)
p (x, z), (2)

where
φ(m)
p (x, z) = ϕ

(m)
Dp (x, z)−K

3∑
j=1

Xj

Ap
ϕ
(m)
Rj (x, z), (3)

ϕ
(m)
Dp (x, z) = ϕ

(m)
Ip (x, z) + ϕ

(m)
Sp (x, z), (4)

with K = ω2/g, and g being the gravitational acceleration.
Here the superscript (m) denotes the fluid layer, with m = 1 and 2 corresponding to the

upper and lower layers, respectively. As described in Yeung and Nguyen [3], there can be
two different wave modes in the incident wave in two-layer fluids for a prescribed frequency.
Those modes are differentiated with subscript (p), and specifically p = 1 is referred to as
the surface-wave mode and p = 2 as the internal-wave mode.
Ap is (2) denotes the amplitude of incident wave at each mode. It is known that a simple

relation holds at each mode on the amplitude ratio between the waves on the free surface and
on the interface. However, the ratio between the waves of surface-wave and internal-wave
modes on the free surface or the interface is not known a priori. Therefore, the diffraction
problem must be solved for two different incident waves at a given frequency. In this article,
Ap at each mode is defined in the theory as the incident wave on the free surface, whereas
in numerical computations a larger amplitude is adopted as Ap at each wave mode (i.e., A1

is the amplitude on the free surface and A2 is the amplitude on the interface).

ϕ
(m)
Dp denotes the diffraction potential, which includes the incident-wave potential ϕ

(m)
Ip to

be given as the input (explicit expressions of which will be shown below) and the scattering

potential ϕ
(m)
Sp . ϕ

(m)
Rj in (3) is the radiation potential with unit velocity in the jth direction

(j = 1 for sway, j = 2 for heave, and j = 3 for roll) and the amplitude of the jth mode of
motion, Xj/Ap, must be obtained by solving the equations of motions of a body, for which
hydrodynamic forces must be computed with the solution of the boundary-value problem.

The governing equation for the velocity potentials is the 2-D Laplace equation

∂2ϕ(m)

∂x2
+
∂2ϕ(m)

∂z2
= 0 (5)

and the linearized boundary conditions to be satisfied on the free surface, the interface, and
the rigid bottom of the lower layer are expressed as follows:

∂ϕ(1)

∂z
+Kϕ(1) = 0 on z = 0, (6)

∂ϕ(1)

∂z
=
∂ϕ(2)

∂z

γ

(
∂ϕ(1)

∂z
+Kϕ(1)

)
=
∂ϕ(2)

∂z
+Kϕ(2)

 on z = h1, (7)

∂ϕ(2)

∂z
= 0 on z = h (= h1 + h2). (8)

Here, by linearity, ϕ(m) in the above can be any of the velocity potentials appearing in
(1)–(4), and γ = ρ1/ρ2 ≤ 1 is the density ratio, with ρm being the density of the upper
(m = 1) and lower (m = 2) fluids.
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Since the incident wave is independent of the presence of a body, the velocity potential of

the incident wave, ϕ
(m)
Ip , can be obtained from (5)–(8) and by specifying the amplitude of the

incident wave on the free surface (z = 0) or the interface (z = h1). As shown in Fig. 1, the
incident wave is assumed to propagate from the positive x-axis. Then the velocity potential
of the incident wave is expressed in the form

ϕ
(m)
Ip (x, z) = Z(m)(kp; z) e

ikpx (9)

where
Z(1)(k; z) =

k chkz −K shkz

k

Z(2)(k; z) =
K chkh1 − k shkh1

k shkh2
chk(z − h)

 (10)

and the variable k in (9) and (10) is the wavenumber satisfying the dispersion relation for a
two-layer fluid given by

D(k) = K
(
k shkh−K chkh

)
+ ε
(
K2 − k2

)
shkh1 shkh2 = 0. (11)

For brevity, cosh(x) and sinh(x) have been written as ch(x) and sh(x), respectively, and
ε = 1− γ in (11); these notations will be used throughout this article.

To determine the other velocity potentials associated with the disturbance by a body, the
boundary condition on the body surface must be imposed, which can be given in the form

∂ϕ
(m)
Dp

∂n
= 0 (p = 1, 2)

∂ϕ
(m)
Rj

∂n
= nj (j = 1 ∼ 3)

 on S
(m)
H (12)

where nj denotes the jth component (n1 = nx, n2 = nz, n3 = xnz − znx) of the normal
vector, which is defined as positive when directed into the fluid domain from boundaries
(see Fig. 1).

The boundary-value problems for the disturbance velocity potentials may be completed
by imposing the radiation condition of generated waves radiating from the body.

3. Numerical Solution Method

The diffraction and radiation potentials formulated above are determined directly by the
integral-equation method in terms of the Green function satisfying all homogeneous bound-
ary conditions. This solution method can be applied to a general case where an arbitrary
body intersects the interface between the upper and lower layers, and the derivation of
the integral equation based on Green’s theorem is shown in [1, 2]. The results may be
summarized in the form

C(P)ϕ
(m)
ℓ (P)+

2∑
n=1

∫
S

(n)
H

ϕ
(m)
ℓ (Q)

∂

∂nQ
G(m)

n (P;Q) ds

=


ϕ
(m)
Ip (P) ( ℓ = Dp; p = 1, 2 )

2∑
n=1

∫
S

(n)
H

nj(Q)G(m)
n (P;Q) ds ( ℓ = Rj; j = 1 ∼ 3 )

(13)
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where P = (x, z) and Q = (ξ, ζ) denote the field and integration points, respectively, located

on the body surface and C(P) denotes the solid angle. G
(m)
n (P;Q) represents the Green

function, which has different forms depending on whether P and Q are in the upper or lower
layer; details are shown in [1].

The so-called constant-panel collocation method is adopted for solving (13); that is, the
body surface of z > 0 is divided into N segments and on each segment the unknown velocity
potential is assumed to be constant. Then, considering N different points for P(x, z), we
can recast (13) in a linear system of simultaneous equations for N unknowns.

In actual numerical computations, some additional field points are considered on both
z = 0 and z = h1 inside the body to remove the irregular frequencies. The resultant
over-constrained simultaneous equations are solved using the least-squares method.

Once the velocity potentials on the body surface have been determined, it is straightfor-
ward to compute the hydrodynamic forces that must be used in solving the motion equations
of a body in each of the incident waves of surface-wave mode (p = 1) and internal-wave mode
(p = 2). The calculation method for the motions of a body in waves is described in [2].

4. Velocity Potentials in the Far Field

The analyses necessary for obtaining asymptotic expressions of the velocity potentials for
x→ ±∞ may also be found also in [1], and the results are summarized as follows:

ϕ
(m)
Dp ∼ ϕ

(m)
Ip + i

2∑
q=1

H±
Sp(kq)Z

(m)(kq; z) e
∓ikqx, (14)

ϕ
(m)
Rj ∼ i

2∑
q=1

H±
Rj(kq)Z

(m)(kq; z) e
∓ikqx, (15)

where

H±
Sp(k) = −

2∑
n=1

∫
S

(n)
H

ϕ
(n)
Dp

∂

∂n

Wn(k; ζ)

D ′(k)
e±ikξ ds, (16)

H±
Rj(k) =

2∑
n=1

∫
S

(n)
H

{
∂ϕ

(n)
Rj

∂n
− ϕ

(n)
Rj

∂

∂n

}
Wn(k; ζ)

D ′(k)
e±ikξ ds, (17)

W1(k; ζ) = γ α(k)k shkh2 Z
(1)(k; ζ)

W2(k; ζ) = α(k)k shkh2 Z
(2)(k; ζ)

}
(18)

α(k) =
K

K chkh1 − k shkh1
, (19)

D′(k) =K
(
shkh+ kh chkh−Kh shkh

)
+ε
{
−2k shkh1 shkh2 + (K2 − k2)(h1 chkh1 shkh2 + h2 shkh1 chkh2)

}
. (20)

Eqs. (16) and (17) are the Kochin functions (complex amplitude functions of the body-
disturbance waves) computed from canonical velocity potentials in the diffraction and radi-
ation problems. In terms of these Kochin functions and the complex amplitude of the jth
mode of motion, Xj/Ap, to be obtained by solving the equations of motion of a body in the
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incident wave of the kp-wave mode, the Kochin function representing the whole disturbance
wave with wavenumber kq can be obtained by linear superposition as follows:

H±
p (kq) ≡ H±

Sp(kq)−K
3∑

j=1

Xj

Ap
H±

Rj(kq). (21)

With this definition and taking the summation of both components of the surface-wave
(q = 1) and internal-wave (q = 2) modes, the asymptotic expression of the velocity potential
defined by (3) can be expressed in the following form:

φ(m)
p (x, z) ∼ Z(m)(kp; z) e

ikpx +
2∑

q=1

Rpq Z
(m)(kq; z) e

−ikqx as x→ +∞, (22)

φ(m)
p (x, z) ∼

2∑
q=1

Tpq Z
(m)(kq; z) e

ikqx as x→ −∞, (23)

where Rpq = iH+
p (kq)

Tpq = δpq + iH−
p (kq)

}
(24)

with δpq being Kroenecker’s delta.
Rpq and Tpq defined in (24) can be understood as the coefficients of reflected and trans-

mitted waves, respectively, of the kq-wave mode when the incident wave is of the kp-wave
mode.

5. Momentum-Conservation Principle

Following Maruo [4], a calculation formula for the wave drift force in the horizontal direction
can be derived on the basis of the momentum- and energy-conservation principles. Let us
consider first the momentum-conservation principle in the x-axis in a two-layer fluid. With
the same transformation as that for a single layer fluid, the following equation may be
obtained as a basis:

2∑
m=1

∫
S(m)

{
p(m)nx + ρm

∂Φ(m)

∂x

(
∂Φ(m)

∂n
− Un

)}
ds = 0, (25)

where
S(1) = S

(1)
H + S

(1)
C + S

(1)
I + SF

S(2) = S
(2)
H + S

(2)
C + S

(2)
I + SB

}
(26)

p(m) = −ρm
{∂Φ(m)

∂t
+

1

2
∇Φ(m) · ∇Φ(m)

}
+ p

(m)
S , (27)

Φ(m) = Re

[
gAp

iω
φ(m)
p (x, z) eiωt

]
. (28)

The overbar in (25) means the time average over one period and Un in (25) represents the

normal velocity of the boundaries surrounding the fluid under consideration. p
(m)
S in (27)

denotes the static pressure independent of the disturbance velocity potential. As explicitly
written in (28), only the incident wave of the kp-wave mode (p = 1 or 2) is considered here.
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As shown in Fig. 1, the control surface S
(m)
C in the present study is parallel to the z-axis

and in the linear theory the free surface SF , the interface S
(m)
I , and the bottom of fluid SB

are parallel to the x-axis; these are fixed in space and thus Un = 0 on these boundaries.
On the other hand, the normal velocity of the body boundary must be equal to the normal
velocity of the fluid and thus

Un =
∂Φ(m)

∂n
on S

(m)
H . (29)

Taking these into consideration and retaining only quadratic terms in the velocity poten-
tial, we may write an expression for the wave drift force acting in the negative direction of
the x-axis as follows:

FD ≡
2∑

m=1

∫
S

(m)
H

p(m)nx ds

=
1

2
ρ1

[∫ h1

0

{
∂Φ(1)

∂x

∂Φ(1)

∂x
− ∂Φ(1)

∂z

∂Φ(1)

∂z

}
dz

]+∞

−∞

+
1

2
ρ2

[∫ h

h1

{
∂Φ(2)

∂x

∂Φ(2)

∂x
− ∂Φ(2)

∂z

∂Φ(2)

∂z

}
dz

]+∞

−∞

−ρ1
∫
SF

∂Φ(1)

∂x

∂Φ(1)

∂z
dx+ ρ1

∫
S

(1)
I

∂Φ(1)

∂x

∂Φ(1)

∂z
dx− ρ2

∫
S

(2)
I

∂Φ(2)

∂x

∂Φ(2)

∂z
dx. (30)

Here the square brackets with superscript +∞ and subscript−∞ in (30) means the difference
between the quantities in the brackets evaluated at x = +∞ and x = −∞. The integrand in
the integrals on SF and SI may be transformed in terms of the boundary conditions given
by (6) and (7) as follows:

on SF
∂Φ(1)

∂x

∂Φ(1)

∂z
= −KΦ(1) ∂Φ

(1)

∂x
= − 1

2
K

∂

∂x

{
Φ(1)Φ(1)

}
, (31)

on SI

ρ1
∂Φ(1)

∂x

∂Φ(1)

∂z
− ρ2

∂Φ(2)

∂x

∂Φ(2)

∂z
=
ρ1
γ

∂Φ(1)

∂z

∂

∂x

{
γ Φ(1) − Φ(2)

}
=
ρ1
γ

∂Φ(1)

∂z

1− γ

K

∂

∂x

∂Φ(1)

∂z
=

1

2
ρ1

1− γ

γK

∂

∂x

{
∂Φ(1)

∂z

∂Φ(1)

∂z

}
. (32)

For taking time average, the following formula may be useful

Re
[
Aeiωt

]
Re
[
B eiωt

]
=

1

2
Re
[
AB∗ ], (33)

where A and B are complex in general and the asterisk means the complex conjugate.
Substituting (31) and (32) in (30) and applying (33) with (28) gives the following result:
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F ′
Dp ≡ FD

1
2 ρ1gA

2
p

=
1

2K

[ ∫ h1

0

{∣∣∣∣∂φ(1)
p

∂x

∣∣∣∣2 − ∣∣∣∣∂φ(1)
p

∂z

∣∣∣∣2} dz + 1

γ

∫ h

h1

{∣∣∣∣∂φ(2)
p

∂x

∣∣∣∣2 − ∣∣∣∣∂φ(2)
p

∂z

∣∣∣∣2} dz
]+∞

−∞

+
1

2

[ ∣∣∣φ(1)
p

∣∣∣2
z=0

]+∞

−∞
+

1− γ

2γK2

[ ∣∣∣∣∂φ(1)
p

∂z

∣∣∣∣2
z=h1

]+∞

−∞
(34)

This may be regarded as an extension of the expression for a single-layer fluid to the case
of a two-layer fluid, and in fact the last line in (34) can be understood as contributions from
the square of wave height at the free surface (z = 0) and the interface (z = h1). However, this
form is not convenient for analytical integration with respect to z, because the derivatives
with respect to z are included. Thus it is not straightforward to utilize the orthogonality
properties of the eigenfunctions for a two-layer fluid summarized in the Appendix.

To overcome this inconvenience, we consider further transformation for the integrals in-
cluding the derivatives with respect to z using the Laplace equation and the boundary
conditions on z = 0, z = h1, and z = h. Performing partial integrations and substituting
(5)–(8), the following result can be justified:

I ≡
∫ h1

0

∂φ(1)

∂z

∂φ(1)∗

∂z
dz +

1

γ

∫ h

h1

∂φ(2)

∂z

∂φ(2)∗

∂z
dz

= K

{ ∣∣∣φ(1)
∣∣∣2
z=0

+
1− γ

γK2

∣∣∣∣∂φ(1)

∂z

∣∣∣∣2
z=h1

}
+

∫ h1

0

∂2φ(1)

∂x2
φ(1)∗ dz +

1

γ

∫ h

h1

∂2φ(2)

∂x2
φ(2)∗ dz. (35)

Substituting this result in (34), we can see that the first line on the right-hand side of
(35) cancels exactly the last terms in (34) to be evaluated at z = 0 and z = h1.

Therefore, as a final result convenient for analytical integrations with respect to z, the
following expression can be obtained:

F ′
Dp =

1

2γK

[ ∫ h

0

w(z)

{ ∣∣∣∣∂φp

∂x

∣∣∣∣2 − ∂2φp

∂x2
φ∗
p

}
dz

]+∞

−∞

(36)

where w(z) and φp are defined as{
w(z) = γ, φp = φ

(1)
p for 0 ≤ z ≤ h1 ,

w(z) = 1, φp = φ
(2)
p for h1 ≤ z ≤ h.

(37)

6. Energy-Conservation Principle

A relation to be obtained from the energy conservation principle is usually used to derive a
compact formula for the wave drift force and also to check the accuracy of computed results.
With the same notations as for (25)–(28), a basis equation for the two-layer fluid may be
given in the form

2∑
m=1

∫
S(m)

{
ρm

∂Φ(m)

∂t

∂Φ(m)

∂n
−
(
p(m) + ρm

∂Φ(m)

∂t

)
Un

}
ds = 0. (38)



Wave Drift Force in a Two-Layer Fluid of Finite Depth 293

With this equation, considering the normal velocity Un of the boundaries, the work done
by a body onto the fluid may be evaluated as follows:

W ≡
2∑

m=1

∫
S

(m)
H

p(m)Un ds

=−ρ1

[∫ h1

0

∂Φ(1)

∂t

∂Φ(1)

∂x
dz

]+∞

−∞

− ρ2

[∫ h

h1

∂Φ(2)

∂t

∂Φ(2)

∂x
dz

]+∞

−∞

+ ρ1

∫
SF

∂Φ(1)

∂t

∂Φ(1)

∂z
dx− ρ1

∫
S

(1)
I

∂Φ(1)

∂t

∂Φ(1)

∂z
dx+ ρ2

∫
S

(2)
I

∂Φ(2)

∂t

∂Φ(2)

∂z
dx. (39)

Substituting (28) and taking the time-average over one period using the formula (33), we
may obtain the following result:

W ′
p ≡ W

1
2 ρ1gA

2
p

(
ω
K

)
= − Im

[ ∫ h1

0

∂φ
(1)
p

∂x
φ(1)∗
p dz +

1

γ

∫ h

h1

∂φ
(2)
p

∂x
φ(2)∗
p dz

]+∞

−∞

+Im

∫
SF

∂φ
(1)
p

∂z
φ(1)∗
p dx+

1

γ
Im

∫
SI

{
∂φ

(2)
p

∂z
φ(2)∗
p − γ

∂φ
(1)
p

∂z
φ(1)∗
p

}
dx (40)

In the above ‘Im’ means that only the imaginary part is to be taken.
Taking account of the boundary conditions on SF and SI as we did in deriving (31) and

(32), one can easily prove that the integrals on SF and SI have no contributions because
the integrands are real quantities. Therefore, with the notations in (37), the result can be
written in the form

W ′
p = − 1

γ
Im

[ ∫ h

0

w(z)
∂φp

∂x
φ∗
p dz

]+∞

−∞

(41)

Here it is noteworthy that the work done by a body must be zero when the body is fixed
(as in the diffraction problem) or freely oscillating in waves without external oscillation
devices supplying the energy.

7. Wave Drift Force

Having prepared all necessary equations, let us derive the formula for the wave drift in a two-

layer fluid. The asymptotic expressions of φ
(m)
p , given by (22) and (23), must be substituted

in (36). To perform this procedure in general, Eq. (22) for instance can be written as

φ(m)
p (x, z) = Z(m)(kp; z)

{
eikpx +Rpp e

−ikpx
}
+ Z(m)(kq; z)Rpq e

−ikqx, (42)

with convention of p =/ q; that is, when p = 1 (the incident wave is of the surface-wave
mode) then q = 2, and when p = 2 (the incident wave is of the internal-wave mode) we have
q = 1.

It should also be noted that, owing to the orthogonality in the Appendix, there is no need
to consider cross terms between kp-wave and kq-wave in evaluating the integrals with respect
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to z. Therefore, using (42), we may write the integrand at x = +∞ in (36) as follows:∣∣∣∣∣∂φ(m)
p

∂x

∣∣∣∣∣
2

− ∂2φ
(m)
p

∂x2
φ(m)∗
p

= 2
{
Z(m)(kp; z)

}2
k2p

(
1 +

∣∣Rpp

∣∣2)+ 2
{
Z(m)(kq; z)

}2
k2q
∣∣Rpq

∣∣2. (43)

Here the integrals with respect to z can be identified with the normalization integral, whose
explicit form is provided in the Appendix as follows:

F(k) ≡ 2k

γ

∫ h

0

w(z)
{
Z(k; z)

}2
dz

=
K

k
+ kh

(K chkh1 − k shkh1)
2

γ k2 sh2kh2

+
ε

γ

h1
k

[(
1− k2

K2
+

1

Kh1

)(
K chkh1 − k shkh1

)2
+ γ

(K2 − k2)2

K2
sh2kh1

]
. (44)

With these results, the integral at x = +∞ in (36) takes the following form:

[
F ′
Dp

]
+∞ =

1

2K

{
kp

(
1 +

∣∣Rpp

∣∣2)F(kp) + kq
∣∣Rpq

∣∣2F(kq)
}
. (45)

In the same manner, the integral at x = −∞ can be performed analytically. Namely,
with convention of p =/ q, (23) is written as

φ(m)
p (x, z) = Tpp Z

(m)(kp; z) e
ikpx + Tpq Z

(m)(kq; z) e
ikqx (46)

and then it follows that∣∣∣∣∣∂φ(m)
p

∂x

∣∣∣∣∣
2

− ∂2φ
(m)
p

∂x2
φ(m)∗
p = 2

{
Z(m)(kp; z)

}2
k2p
∣∣Tpp∣∣2 + 2

{
Z(m)(kq; z)

}2
k2q
∣∣Tpq∣∣2. (47)

Therefore, in terms of (44), the result of the integral at x = −∞ takes the form

[
F ′
Dp

]
−∞ =

1

2K

{
kp
∣∣Tpp∣∣2F(kp) + kq

∣∣Tpq∣∣2F(kq)
}
. (48)

The wave drift force must be given by the difference between (45) and (48). Therefore,
the result from (36) is expressed as

F ′
Dp =

1

2K

[
kp

(
1 +

∣∣Rpp

∣∣2 − ∣∣Tpp∣∣2)F(kp) + kq

(∣∣Rpq

∣∣2 − ∣∣Tpq∣∣2)F(kq)

]
. (49)

As the next step, let us consider a relation to be obtained from the energy-conservation

principle given by (41). With the same convention for φ
(m)
p and the orthogonal properties

for the integrals with respect to z, the final result of (41) can be expressed as follows:

W ′
p = − 1

2

{(
1−

∣∣Rpp

∣∣2 − ∣∣Tpp∣∣2)F(kp)−
(∣∣Rpq

∣∣2 + ∣∣Tpq∣∣2)F(kq)

}
. (50)
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As noted at the end of the preceding section, we have W ′
p = 0 for the case where a body is

fixed or freely oscillating in the incident wave. Therefore, the energy conservation principle
takes the form (

1−
∣∣Rpp

∣∣2 − ∣∣Tpp∣∣2)F(kp) =
(∣∣Rpq

∣∣2 + ∣∣Tpq∣∣2)F(kq). (51)

Substitution of this in (49) gives the final form of the calculation formula for the wave drift
force in a two-layer fluid:

F ′
Dp =

1

K

[
kp
∣∣Rpp

∣∣2F(kp) +
{kp + kq

2

∣∣Rpq

∣∣2 + kp − kq
2

∣∣Tpq∣∣2}F(kq)

]
. (52)

By considering the limiting case of γ → 1, let us confirm the corresponding formula for a
single-layer fluid. For γ = 1, k2 → ∞ and the internal wave no longer exists, and hence

p = 1, F(k2) = 0, k1 = k, K = k tanh kh. (53)

In this limiting case, ε = 0 in (44); thus, the coefficient associated with the normalization
integral can be transformed into

J ≡ k

K
F(k) = 1 +

h

K

(K chkh1 − k shkh1)
2

sh2kh2

= 1 +
h

K
(K shkh− k chkh)2 = 1 +

2kh

sh2kh
. (54)

Therefore, it follows from (52) that

F ′
D =

FD
1
2 ρgA

2
=
∣∣R∣∣2{1 + 2kh

sh2kh

}
, (55)

with R being the coefficient of the reflected wave in a single-layer fluid. This result is well
known as a formula for the wave drift force in water of finite depth.

Another thing noteworthy aspect of (52) is a possibility that the the wave drift force in a
two-layer fluid be negative. The wave drift force to be computed from (52) is mostly positive.
In particular for the case of p = 2 (i.e., for the incident wave of internal-wave mode), the
value of (52) is definitely positive because k2 > k1. However, for the case of p = 1, the value
of (52) can be negative if the value of |T12 | (the transmitted wave with wavenumber k2 in
the incident wave of the surface-wave mode) is relatively large.

When the energy is not conserved owing to viscous effects such as viscous damping in
roll, relation (51) obtained from the energy-conservation principle cannot be used. However,
even in this case, the momentum-conservation principle holds and thus the wave-drift force
can be computed with (49).

8. Numerical Results and Discussions

Numerical computations were performed for a Lewis-form body as used in the previous
study of first-order radiation [1] and diffraction [2] problems. This Lewis-form body can
be represented by a conformal mapping with two nondimensional parameters; those are the
half-breadth to draft ratio H0 = b/d = 0.833 and the sectional area ratio σ = A/Bd = 0.9
(in real dimensions, the breadth B = 2b = 0.2m and the draft d = 0.12m). Since this
body is symmetrical with respect to x, only half of the body surface was discretized into 40
segments for all computations in this article. With this number of segments, satisfaction of
the energy-conservation principle given by (51) was virtually perfect with the order of error
being 10−4 for both cases of body motions fixed and free to oscillate in waves.
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8.1 Effects of the density ratio

To see the effects of the density ratio on the second-order wave-drift force, computations
were implemented for the same parameters as those in the study of the first-order radiation
and diffraction problems; that is, γ = 1.0, 0.9, 0.7, and 0.2 with the depths of the fluid
layers fixed at h1 = 1.2d and h = 2.0d. As γ → 1, the fluid reduces to a single-layer fluid
of h = 2.0d. Conversely as γ → 0, the lower fluid behaves more like a rigid block, and
the results are expected to approach those for a single-layer fluid with upper-layer depth
h1 = 1.2d. To illustrate this behavior, computations were also carried out for single-layer
fluids of h = 1.2d and 2.0d.

Figure 2 shows the nondimensional value of the wave-drift force for the case where all
body motions are fixed, in which the left-hand and right-hand sides are for the surface-wave
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Fig. 2 Wave-drift force on a Lewis-form body (H0 = 0.833, σ = 0.9) in two-layer fluids:
effect of the difference in the fluid density for the case where all body motions are
fixed
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Fig. 4 Wave-drift force on a Lewis-form body (H0 = 0.833, σ = 0.9) in two-layer fluids:
effect of the difference in the fluid density for the case where all body motions are
free to oscillate

and internal-wave modes, respectively, of the incident wave.
It should be noted first that the wave drift force shown in Fig. 2 is always positive over

the whole range of frequency, although theoretically there is a possibility of negative value
in the incident wave of surface-wave mode. The results for γ = 0.9 are close to those for a
single-layer fluid of h = 2.0d, except for very low frequencies, and the results for γ = 0.7
are also almost the same as those for γ = 0.9 in the frequency range of Kb > 0.4. On
the other hand, for γ = 0.2, the results in the incident wave of surface-wave mode tend to
approach the results for a single-layer fluid of h = 1.2d, and the nondimensional value of the
drift force in the incident wave of the internal-wave mode also becomes large. (Note that
the amplitude A2 of the incident wave of the internal-wave mode is taken as that on the
interface.)

Figure 3 shows computed results for the same parameters but for the case where only the
heave motion is free to oscillate. Compared to Fig. 2, a big difference can be seen in lower
frequencies, where the drift force in two-layer fluids becomes negative in the incident wave
of the surface-wave mode over a certain frequency range; which can be attributed to a larger
value of T12 in the calculation formula of (52). It can be said that the results for γ = 0.7 are
almost the same as those for γ = 0.9 and for a single-layer fluid of h = 2.0d at frequencies
of Kb > 0.6 which is higher than the resonant frequency in heave. The wave-drift force
in the incident wave of the internal-wave mode is always positive but very small for larger
values of γ. However, for γ = 0.2, the nondimensional value becomes larger than double the
corresponding value in the diffraction case, owing to the effect of heave motion.

Figure 4 shows the results when all modes (heave, sway, and roll) of body motion are free
to oscillate. In the present computations, the gyrational radius in roll is set to κxx = 0.6b and
the vertical distance between the center of gravity and the free surface is set to OG = 0.45b.
A rapid change can be seen around Kb ≃ 0.5 both for the surface-wave and internal-wave
modes, which is obviously due to the resonance in roll. (It should be noted that the roll
amplitude near resonance is unrealistically very large because the viscous damping is not
considered in the present theory.) When the incident wave is of surface-wave mode, the wave-
drift forces for γ = 0.2 and 0.7 become negative at frequencies lower than the roll resonant
frequency. However, a marked difference when compared to Fig. 3 is that the wave-drift
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force is almost zero at very low frequencies. Another thing to be noted is that the results
for γ = 0.9 are very close to those for a single-layer fluid over the whole frequency range ,
including the heave and roll resonant frequencies; which implies that a small difference in
the fluid density between the upper and lower layers gives no prominent difference in the
wave drift force and motion characteristics.

The results shown above are for the case where a body floats in the upper fluid only and
the interface is located at a relatively deeper position. The horizontal force (like the wave
drift force) may be affected by the presence of internal waves near a body, which is the case
particularly when a body intersects the interface and this will be studied next.

8.2 Effects of the interface position

For the same Lewis-form body (b = B/2 = 0.1m and d = 0.12m) and fixed values of
h = 0.4m and γ = 0.75, only the vertical position of the interface was changed from
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Fig. 5 Wave-drift force on a Lewis-form body (H0 = 0.833, σ = 0.9) in two-layer fluids:
effect of the interface position for the case where all body motions are fixed.
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effect of the interface position for the case where all body motions are free to
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h1 = 0.06m to 0.20m, including the case where the body intersects the interface.
Figure 5 shows computed results of the wave-drift force for the case where all body

motions are fixed, and like before the left-hand and right-hand sides are for the surface-wave
and internal-wave modes, respectively, of the incident wave. In the incident wave of the
surface-wave mode, the drift force is always positive, and no prominent difference exists
among the results for different interface positions, except that undulatory variation can be
seen at Kb < 0.25 for the case of h1 = 0.13m where the interface is located just below the
bottom of the body (d = 0.12m). On the other hand, in the incident wave of the internal-
wave mode, a remarkable change can be seen depending on whether a body intersects the
interface. When the interface position is deeper than the draft of a body, the wave-drift
force is negligibly small. However, once a body intersects the interface, the wave-drift force
becomes large and increases almost linearly with respect to Kb, for which we may envisage
that the internal incident wave will be blocked by a body and almost all waves may be
reflected; that is, the coefficient of R22 in the calculation formula (52) is largely different
depending on whether the body intersects the interface.

Figure 6 shows the results when only the heave motion is free to oscillate. Obviously,
owing to the heave motion, the wave-drift force becomes small in frequencies lower than the
heave resonant frequency, which implies that longer incident waves transmit because the
heave is free to oscillate. It should be noted, however, that the drift force at h1 = 0.13m
fluctuates in lower frequencies and becomes negative in a certain range of frequency, which
is due to the effect of waves with internal-wave mode, as can be conjectured from (52).

On the other hand, in the incident wave of the internal-wave mode, no marked difference
can be seen as compared to Fig. 5, which implies that the reflection-wave coefficient R22

(especially when a body intersects the interface) is not much influenced by the heave motion
and the hydrodynamic situation near the cross-point between body and interface may be
viewed locally as a diffraction problem regardless of the heave motion.

Lastly, Fig. 7 shows the results for various vertical positions of the interface when all modes
of body motion are free to oscillate. As shown [2], the resonant frequency in roll changes
slightly depending on the position of the interface, which is due mainly to the change in the
roll restoring moment. Therefore, the frequency where rapid variation in the wave-drift force
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appears is slightly different depending on the vertical position of the interface. It can be
seen that the wave-drift force is almost zero at lower frequencies, irrespective of the interface
position. Another point to be emphasized is that the wave-drift force looks always positive
when a body intersects the interface (at h1 = 0.11m and 0.06m), which means that the
transmitted wave with internal-wave mode T12 in the calculation formula of (52) is relatively
small. When the incident wave is of the internal-wave mode, as compared to Figs. 5 and 6,
a slight difference can be seen around the roll resonance, but we should note that the roll
amplitude near the resonance becomes unrealistically very large for lack of viscous damping
in the present study.

9. Conclusions

The wave-drift force in a 2-D two-layer fluid of finite depth has been studied with the
potential-flow assumption. Based on the momentum and energy conservation principles, a
compact calculation formula for the wave drift force was obtained; the key to success was to
use effectively the orthogonality relations for the eigenfunctions in a two-layer fluid. Owing
to the presence of the interface, for a prescribed frequency, there can exist two different
incident waves with surface-wave mode (longer wavelength) and internal-wave mode (shorter
wavelength), and each incident wave will be diffracted by a body into two different wave
modes and hence the energy of the incident wave may be transferred from one mode to the
other. The wave-drift force in this rather complicated situation was described with only one
equation, which includes the coefficients of reflected and transmitted waves in a two-layer
fluid. An important feature to be seen from this calculation formula is that the possibility of
negative drift force exists in the incident wave of the surface-wave mode; this can be exerted
by a large value of the transmitted wave with internal-wave mode.

Numerical computations were performed with the boundary-integral-equation method
using the Green function for the two-layer fluid problem. Computed results of the wave-
drift force were shown for both incident waves with surface-wave and internal-wave modes
and also for three cases where all body motions are completely fixed, only the heave motion
being free, and all body motions being free to oscillate. Furthermore, by changing the density
ratio and the interface position including the case where a body intersects the interface, those
effects on the wave-drift force were discussed.

The main results obtained from the present numerical study may be summarized as
follows:

(1) When the body motions are fixed, the wave-drift force seems to be positive for all
frequencies, regardless of the density ratio and the interface position. However, when
the position of the interface is slightly deeper than the bottom of a body and the body
motions are free to respond to the incident wave of a surface-wave mode, the wave-drift
force becomes negative at frequencies lower than the resonant frequency of body motion.

(2) When the difference in the fluid density between the upper and lower layers is large (say
γ = 0.2), the wave-drift force becomes large, even in the incident wave of an internal-
wave mode. On the other hand, when the difference in the fluid density is small (say
γ = 0.9), the results are very close to those for a single-layer fluid over the whole
frequency range, except at very low frequencies when all or some of the body motions
are fixed.

(3) When a body intersects the interface, the body reflects most of the incident wave of
internal-wave mode, particularly at higher frequencies, and hence the wave-drift force
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nondimensionalized in terms of the square of the wave amplitude on the interface, seems
to increase linearly in proportional to the square of the frequency.
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Appendix

The orthogonality properties of the eigenfunctions with respect to z in the two-layer fluid
problem are explained in [1], a summary of which is given below.

As explicitly given by (10), the z-dependent functions in the upper and lower layers are
denoted by Z(1)(k; z) and Z(2)(k; z), respectively. If necessary, the eigenfunctions corre-

sponding to the eigenvalues k = kp (p = 1, 2) are represented by a subscript; e.g., Z
(1)
p (kp; z)

and Z
(2)
p (kp; z).

The orthogonality can be proven in the same way as that in the Sturm-Liouville eigenvalue
problem, and the basic equation is given as

L ≡ γ

∫ h1

0

{
d2Z

(1)
1

dz2
Z

(1)
2 − Z

(1)
1

d2Z
(1)
2

dz2

}
dz +

∫ h

h1

{
d2Z

(2)
1

dz2
Z

(2)
2 − Z

(2)
1

d2Z
(2)
2

dz2

}
dz

= (k21 − k22)

[
γ

∫ h1

0

Z(1)(k1; z)Z
(1)(k2; z) dz +

∫ h

h1

Z(2)(k1; z)Z
(2)(k2; z) dz

]
≡ (k21 − k22)

∫ h

0

w(z)Z(k1; z)Z(k2; z) dz, (56)

where {
w(z) = γ, Z(kp; z) = Z(1)(kp; z) 0 ≤ z ≤ h1

w(z) = 1, Z(kp; z) = Z(2)(kp; z) h1 ≤ z ≤ h
(57)
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Integrating by parts for the first line of (56) and substituting the boundary conditions on
z = 0, z = h1, and z = h (these are the same in form as (6)–(8)), one can easily prove that
L = 0 for the case of k1 =/ k2; that is,∫ h

0

w(z)Z(k1; z)Z(k2; z) dz = 0 for k1 =/ k2 . (58)

This means that there is no need to consider the integrals of cross-terms between the k1-wave
and k2-wave modes.

Next, the normalization integral for the case of k1 = k2 ≡ k can be obtained by taking
the limit of k1 → k2 in (56). Substituting k1 = k2 + δk in (56), considering the Taylor
expansion with respect to k, and retaining only the term of O(δk), the desired result for the
normalization integral can be derived and expressed in the form

F ≡ 2k

γ

∫ h

0

w(z)
{
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}2
dz
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K

k

[{
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+
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}2]
z=h
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}2
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1
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(
1 +

1
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=
K
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Abstract

Hydrodynamic interactions are studied between two floating bodies situated side by side
and closely as a model of LNG-FPSO system. Main interest is placed on the wave drift
forces and moments which are of second order in the wave amplitude and can be computed
from quadratic products of the first-order quantities. To solve the first-order radiation and
diffraction problems with hydrodynamic interactions taken into account, a higher-order
boundary-element method is applied directly to the whole wetted surface of two ships. The
second-order wave drift forces on each ship are computed by the near-field method based
on the pressure integration, and validity is confirmed by comparing the sum of the forces on
each ship with the corresponding value computed by the far-field method. Experiments are
also conducted in beam waves for the side-by-side arrangement of a modified Wigley model
and a rectangular barge model. Measured results are in favorable agreement with computed
results not only for the first-order hydrodynamic forces but also for the second-order steady
forces in sway and heave.

Keywords: Hydrodynamic interaction, wave drift force, side-by-side mooring, FPSO,
higher-order boundary element method, near-field method, far-field method.

1. Introduction

Since the energy problem is becoming more and more important in a global scale, devel-
opment of the natural gas in remote offshore locations is drawing attention and put into
practice. For transportation, the natural gas must be converted into Liquefied Natural Gas
(LNG) at an offshore or onshore plant and shipped by a LNG carrier to customers.

To economically produce and process gas in remote offshore locations, an exploitation
system of Floating Production Storage and Offloading (LNG-FPSO) is considered and its
performance in a severe natural environment has been studied (e.g. Huijsmans et al., 2001;
Buchner et al., 2001; Choi and Hong, 2002). When LNG in storage tanks is offloaded to a
LNG carrier, the LNG carrier is usually moored side by side to the FPSO due to relatively
easy operation of offloading. However, when two floating bodies are situated side by side with
relatively small gap, hydrodynamic interactions between two bodies are expected to be large
and complex, which must be taken into account in the design of a mooring system. Owing
to hydrodynamic interactions, two ships may collide and large repulsion and drift forces

∗ Reprinted from Journal of Ocean Engineering, Vol. 32, pp. 529–555, 2005 (January)
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may be exerted, resulting in damage of the mooring system. To evaluate hydrodynamic-
interaction effects on oscillatory and steady forces, accurate numerical computations must
be performed not only for hydrodynamic forces and wave-induced motions of the first order
in the incident-wave amplitude but also for time-averaged steady forces of the second order.
The latter steady forces are called the wave drift forces and can be computed only from
quadratic products of the first-order quantities.

It is well known that two different methods are available for computing the wave
drift forces: the near-field method based on the direct pressure integration and the far-
field method based on the momentum-conservation principle. The near-field method (e.g.
Ogilvie, 1983) gives individual forces on each ship but computations are rather complicated
because various components must be evaluated, such as the flow velocity on the wetted sur-
face of a ship and the relative wave height along the waterline of a ship. On the other hand,
the far-field method (Maruo, 1960; Newman, 1967) is relatively easy to compute but gives
only the total force on all ships that are included by a fictitious vertical circular cylinder lo-
cated far from the ships. Since the prediction of the steady forces on each ship is prerequisite
in the present study, the near-field method must be used. To keep good numerical accuracy,
the present study adopts a higher-order boundary element method (HOBEM), by which the
velocity potential (pressure) on the ship’s wetted surface can be obtained directly and spatial
derivatives of the velocity potential can be evaluated without numerical differentiation.

Recently, Fang and Chen (2002) proposed a practical far-field method for computing the
wave drift forces on each ship separately by considering a control surface surrounding only
either ship. However, their analysis is not correct mathematically, as demonstrated in the
present paper, and a corrected ‘new’ method is described. It is shown that the new method
gives the same results as those by the near-field method and by the conventional far-field
method, if no overlap region exists between fictitious vertical circular cylinders taken as a
control surface for the principle of momentum conservation.

Validation of the results is confirmed not only by numerical computations but also by
experiments conducted using a modified Wigley model and a rectangular barge model ar-
ranged side by side. Measured are the added-mass and damping coefficients by the forced
heave oscillation of either of the two models, the first-order wave-exciting forces, and the
second-order steady forces on each model when both models are completely fixed in beam
waves. Among these, attention is mainly placed on the second-order steady forces in the
present paper. Relatively good agreement is found between computed and measured re-
sults, and thus the calculation method developed may be applied to actual ships of general
geometry.

2. Formulation and Solution Method

We consider two ships which are located in close proximity and oscillate sinusoidally in a
plane progressive wave. The geometries of two ships can be arbitrary. The position and bow
direction of each ship may also be arbitrary, but for simplicity and engineering importance,
it is assumed that two ships are arranged side by side and the bow direction of each ship is
the same.

To linearize the boundary-value problem, the incident wave and resultant ship motions
are assumed to be of small amplitude. For the analysis of this problem, as shown in Fig. 1, we
use not only the global coordinate system o-xyz fixed in space but also the local coordinate
system ok -xkykzk (where k = A or B) fixed with respect to the mean position of each ship.
The origin of each coordinate system is placed on the undisturbed free surface, the x-axis is
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positive in the direction of ship’s bow, and the z-axis is positive vertically downward. Since
the ships are considered symmetric with respect to their longitudinal centerplane, the center
of gravity is assumed to be at xG = (xGk, 0, zGk ). Not only the Cartesian coordinate system
o-xyz but also the cylindrical coordinate system o-rθz will be used, the relations of which
are x = r cos θ and y = r sin θ.
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Fig. 1 Coordinate systems and notations

Assuming the incompressible and inviscid flow with irrotational motion, the velocity
potential is introduced. Based on the perturbation method, the linearized boundary-value
problem (which is of first order in the wave amplitude) must be solved first, and then the
wave drift forces and moments (which are of second order in the wave amplitude) can be
computed only from quadratic products of the first-order quantities.

In the first-order problem, all unsteady motions are assumed to be sinusoidal in time with
circular frequency ω, and by linear decomposition the velocity potential is expressed in the
form

Φ(x, y, z; t) = Re

[
gζw
iω

φ(P ) eiωt

]
, (1)

φ(P ) = φD(P )− ω2

g
a

6∑
j=1

B∑
ℓ=A

ξjℓϵj
ζw

φjℓ(P ), (2)

where
φD(P ) = φI(P ) + φS(P ), (3)

φI(P ) = Z0(z)e
−ik0(x cos β+y sin β) , (4)

Z0(z) =
cosh k0(z − h)

cosh k0h
,

ω2

g
= k0 tanh k0h . (5)

Here Re in (1) means the real part to be taken; g is the gravitational acceleration; ζw
is the amplitude of incident wave; P = (x, y, z) denotes a field point in the fluid; a is the
characteristic length scale for nondimension (which is taken as half of the ship’s length); j
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is the mode number of six degrees of freedom in the radiation problem and the suffix ℓ = A
or B denotes the number of ships; ϵj = 1 for j = 1 ∼ 3 (translational motions) and ϵj = a
for j = 4 ∼ 6 (rotational motions); ξjℓ is the complex amplitude of the jth mode of motion
of the ℓth ship; h is the water depth which is assumed finite and constant.

The diffraction potential φD is defined as the sum of the incident-wave potential φI plus
the scattering potential φS . β is the angle of incidence of a plane progressive wave relative
to the positive x-axis, with β = 180◦ defined as the head wave.

In what follows, unless otherwise explicitly specified, it should be understood that all
physical quantities are written in nondimension. As an example, the total velocity potential
φ(P ) defined by (2) can be written as follows:

φ(P ) = φI(P ) + ψ(P ), (6)

ψ(P ) = φS(P )−K

6∑
j=1

B∑
ℓ=A

Xjℓ φjℓ(P ), (7)

where
Xjℓ =

ξjℓ ϵj
ζw

(8)

is the nondimensional amplitude of the jth mode of ship motion, and K is also made
nondimensional, equal to ω2a/g. It is noteworthy that ψ(P ) defined by (7) stands for the
disturbance potential due to the presence of ships in an incident wave.

The governing equation and linearized boundary conditions to be satisfied by the diffrac-
tion and radiation potentials, φm(P ) (m = D or jℓ ), are summarized as follows:

[L] ∇2φm = 0 for z ≤ 0, (9)

[F ]
∂φm

∂z
+K φm = 0 at z = 0, (10)

[B]
∂φm

∂z
= 0 at z = h, (11)

[H]


∂φD

∂n
= 0

∂φjℓ

∂n
= njk δkℓ

(
j = 1 ∼ 6

k, ℓ = A orB

)
.

(12)

Here njk is the jth component of the normal vector on the kth ship and δkℓ denotes Kro-
necker’s delta. The normal vector n is defined as positive when directing into the fluid from
the boundary surface, nj for j = 1 ∼ 3 denotes the components of n, and nj for j = 4 ∼ 6 is
defined as the components of (x− xG)× n. The incident-wave potential is explicitly given
by (4), but the other disturbance potentials must be sought to satisfy the above equations
and the radiation condition of generated waves radiating away from a ship.

To solve the above first-order boundary-value problem, the present study adopts the direct
boundary element method using the free-surface Green function G(P ;Q). This method
solves the integral equations for the diffraction and radiation velocity potentials on the
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wetted surface of two ships directly, which are written as

C(P )φm(P ) +
B∑

k=A

∫∫
Sk

φm(Q)
∂

∂nQ
G(P ;Q) dS

=


φI(P ) for m = D

B∑
k=A

∫∫
Sk

∂φm(Q)

∂nQ
G(P ;Q) dS for m = jℓ

(13)

where P = (x, y, z) is the field point, Q = (x′, y′, z′) is the source point on the body surface,
and C(P ) is the solid angle which can be computed numerically by considering the case of
zero normal velocity (equi-potential) on all boundary surfaces.

The free-surface Green function G(P ;Q), satisfying all of the linearized homogeneous
boundary conditions, has been well studied and various expressions are known. In the
present study, Seto’s calculation method (Seto, 1993) for the case of finite water depth is
employed, which combines both expressions of the contour integral and the power series.
For a subsequent purpose, only the power-series expression is given below:

G(P ;Q) =
1

π

∞∑
n=1

Cn Zn(z)Zn(z
′)K0(knR) +

i

2
C0 Z0(z)Z0(z

′)H
(2)
0 (k0R), (14)

where
C0 =

k20
K + (k20 −K2)h

, Cn =
k2n

K − (k2n +K2)h
, (15)

Zn(z) =
cos kn(z − h)

cos knh
, K = −kn tan knh, (16)

R =
√

(x− x′)2 + (y − y′)2 =
√
r2 + r ′2 − 2rr′ cos(θ − θ ′)

x+ iy = r eiθ , x′ + iy′ = r′ eiθ
′

}
(17)

Here K0(knR) and H
(2)
0 (k0R) in (14) denote the second kind of modified Bessel function and

the second kind of Hankel function, respectively, which are associated with the evanescent
and progressive waves respectively.

It should be noted that, within the framework of linear potential theory, hydrodynamic
interactions are taken into account exactly in the numerical solutions to be obtained from
(13).

3. Linear Pressure Forces and Ship Motions

Once the velocity potentials on the body surface are obtained, it is straightforward to com-
pute the first-order hydrodynamic forces. The linearized unsteady pressure on the body
surface can be computed directly from the velocity potentials obtained. Integrating this
pressure multiplied by the ith component of the normal vector over the kth ship, the hy-
drodynamic forces acting in the ith direction of the kth ship can be computed. Likewise
the restoring forces can be computed from the change of hydrostatic pressure due to the
displacement of a ship from its equilibrium position. These results may be expressed in the
form

F k
i = Ek

i +K

6∑
j=1

B∑
ℓ=A

Xjℓ Fkℓ
ij −

6∑
j=1

Xjℓ C
k
ij , (18)
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where

Ek
i =

∫∫
Sk

φD nik dS, (19)

Fkℓ
ij = Akℓ

ij − i Bkℓ
ij = −

∫∫
Sk

φjℓ nik dS. (20)

Here Ek
i is the wave-exciting force in the ith mode of motion of the kth ship, and Akℓ

ij and

Bkℓ
ij are the added-mass and damping coefficients respectively in the ith direction of the

kth ship due to the jth mode of motion of the ℓth ship. Ck
ij in (18) denotes the restoring-

force coefficients, which are free from hydrodynamic interactions between two ships and thus
almost zero except for Ck

jj (j = 3, 4, 5) and Ck
35 = −Ck

53.

Denoting the generalized mass matrix of the kth ship with Mk
ij and using (18) for the

hydrodynamic and hydrostatic forces on the kth ship, the coupled motion equations of two
ships are written in the form

6∑
j=1

[
Xjk

{
−KMk

ij δij + Ck
ij

}
−K

B∑
ℓ=A

Xjℓ Fkℓ
ij

]
= Ek

i (21)

for k = A, B; i = 1 ∼ 6. The complex motion amplitude Xjk can be determined by solving
these coupled equations; thereby the first-order solution will be completed.

4. Velocity Potentials at Far Field
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Fig. 2 Field and source points in
the local coordinate system

For computing the wave drift forces by the far-
field method, we must obtain the asymptotic ex-
pression of the disturbance potential in an ana-
lytic form, which is valid at large distances from
each ship or both ships.

For this analysis, in addition to the local
Cartesian coordinates (xk, yk, z), the local cylin-
drical coordinates (rk, θk, z) are used. The ori-
gin of the local coordinate system with respect
to the kth ship is located at (xok, yok, 0) in the
global coordinate system, and thus the relation
between the local and global coordinates is given
by (xk, yk, z) = (x − xok, y − yok, z). There-
fore, with Graf’s addition theorem for Bessel
functions, the Hankel function appearing in (14)
as the progressive wave term of the free-surface
Green function can be written as

H
(2)
0 (k0R) =

∞∑
m=−∞

Jm(k0r
′
k)H

(2)
m (k0rk) e

−im(θk−θ ′
k) , (22)

where (r ′k, θ
′
k, z

′) is the source point on the surface of the kth ship, and rk > r ′k is required
for (22) being valid (see Fig. 2).

When P = (rk, θk, z) is located in the fluid region, the solid angle in (13) must be taken
equal to C(P ) = 1. At a distance from the source of disturbance, the evanescent-wave term,
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K0(knR) in (14), will be negligibly small. Taking these into account, substituting (22) in
the Green function, and considering the body boundary condition (12) for the diffraction
problem, the asymptotic expression of the disturbance potential ψ(P ) may be obtained in
the form

ψ(P ) = φ(P )− φI(P ) =

B∑
k=A

ψk(P ), (23)

ψk(P ) =

∫∫
Sk

{
∂φ(Q)

∂nQ
− φ(Q)

∂

∂nQ

}
G(P ;Q) dS

≃
∞∑

m=−∞
Ak

m Z0(z)H
(2)
m (k0rk) e

−imθk as rk → ∞, (24)

where the coefficient Ak
m is related to the amplitude of progressive waves generated by the

disturbance of the kth ship, which is given by

Ak
m =

i

2
C0

∫∫
Sk

{
∂φ

∂n
− φ

∂

∂n

}
Z0(z)Jm(k0rk) e

imθk dS. (25)

We note that k is taken as A or B and that (24) is valid outside of a fictitious vertical
circular cylinder encompassing only the kth ship.

Furthermore, with Graf’s addition theorem, the Hankel functionH
(2)
m (k0rk) in (24) can be

expressed with the global cylindrical coordinates (r, θ, z). Referring to Fig. 3 and considering
the case of r > Lko, the following relation holds:

H(2)
m (k0rk) e

−imθk =
∞∑

n=−∞
Jm−n(k0Lko) e

−i(m−n)αko

{
H(2)

n (k0r) e
−inθ

}
, (26)

where Lko and αko are defined in Fig. 3.
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Fig. 3 Relation between the global and local coordinate systems
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Substituting (26) in (24) and interchanging the symbols m and n for the order of Bessel
functions, the disturbance potential ψ(P ) can be expressed in the global coordinate system
as follows:

ψ(P ) = ψA(P ) + ψB(P ) ≃
∞∑

m=−∞
Am Z0(z)H

(2)
m (k0r) e

−imθ as r → ∞, (27)

where
Am =

B∑
ℓ=A

∞∑
n=−∞

Aℓ
n Jn−m(k0Lℓo) e

−i(n−m)αℓo . (28)

This asymptotic expression (27) is valid at a far field outside of a fictitious vertical circular
cylinder encompassing both ships A and B.

Let us rewrite the incident-wave potential (4) with the cylindrical coordinate system. In
the global coordinate system, the result can be expressed as

φI(P ) =
∞∑

m=−∞
αm Z0(z)Jm(k0r) e

−imθ , (29)

where αm = eim(β−π/2) . (30)

In the local coordinate system with the origin in the kth ship, the result can be expressed
as

φk
I (P ) =

∞∑
m=−∞

αk
m Z0(z)Jm(k0rk) e

−imθk , (31)

where αk
m = αm e−ik0(xok cos β+yok sin β) . (32)

For computing the wave drift force on each ship by the far-field method, the disturbance
potential must be described with the local coordinates of a ship to be considered. That is,
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Fig. 4 Relation between local coordinate systems with respect to the kth ship and ℓth ship
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the disturbance potential by Ship-A, ψA(P ), must be expressed with the local coordinates
of Ship-B, and vice versa.

Referring to Fig. 4, we consider the disturbance potential by the k-th ship, given by (24),
in terms of the local coordinates of the ℓ-th ship; which can be achieved by applying Graf’s
addition theorem for the Hankel function. For the case of Lkℓ > rℓ, the following relation
holds:

H(2)
m (k0rk) e

−imθk =
∞∑

n=−∞
H

(2)
m−n(k0Lkℓ) e

−i(m−n)αkℓ

{
Jn(k0rℓ) e

−inθℓ
}
, (33)

where Lkℓ and αkℓ are defined in Fig. 4.
In the same manner as in obtaining (27) and (28), we may obtain an expression of the

disturbance potential by the kth ship expressed with the local coordinate system of the ℓth
ship. The result takes the form

ψkℓ(P ) =
∞∑

m=−∞
Akℓ

m Z0(z)Jm(k0rℓ) e
−imθℓ , (34)

where Akℓ
m =

∞∑
n=−∞

Ak
nH

(2)
n−m(k0Lkℓ) e

−i(n−m)αkℓ . (35)

As is obvious from (29), ψkℓ(P ) given by (34) can be regarded as a progressive wave
incident on the ℓth ship. Therefore the total incident-wave potential on the ℓth ship must
be written as

ψℓ
I(P ) = φℓ

I(P ) + ψkℓ(P ) =
∞∑

m=−∞

{
αℓ
m +Akℓ

m

}
Z0(z) Jm(k0rℓ) e

−imθℓ . (36)

Likewise, in the local coordinate system of the kth ship, the disturbance by the ℓth ship
may be viewed as an incident wave, and thus the total incident-wave potential on the kth
ship must be written as

ψk
I (P ) = φk

I (P ) + ψℓk(P ) =

∞∑
m=−∞

{
αk
m +Aℓk

m

}
Z0(z)Jm(k0rk) e

−imθk . (37)

To summarize the above, since the velocity potential is given as the sum of the incident-
wave and disturbance potentials, the far-field asymptotic expression of the velocity potential
can be given in the following form:

φ(P ) =

∞∑
m=−∞

{
αm Jm(k0r) +AmH(2)

m (k0r)
}
Z0(z) e

−imθ . (38)

When considering with the global coordinate system, αm and Am are given by (30) and
(28) respectively, and (38) is valid outside of a fictitious vertical circular cylinder encompass-
ing both ships. On the other hand, when considering in a field outside of a fictitious vertical
circular cylinder encompassing only the kth ship, αm in (38) must be αk

m + Aℓk
m shown in

(37) and Am in (38) must be Ak
m shown in (24). (Of course (r, θ) in (38) must be replaced

by (rk, θk) of the kth local coordinates.) It should be stressed that the contributions of Aℓk
m

and Akℓ
m are entirely neglected in the method of Fang and Chen (2002) for computing the

wave drift force and moment on each ship by a practical far-field method.
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5. Calculation of Wave Drift Forces

5.1 Far-field method

With the far-field asymptotic representation of (38) for the velocity potential, the calculation
formulae for the time-averaged wave drift forces were provided by Kashiwagi and Yoshida
(2001), the analyses of which were based on the far-field method, i.e. the principle of linear
and angular momenta conservation, initiated by Maruo (1960) and Newman (1967).

Performing the same analytical integrations as in Kashiwagi and Yoshida with respect to
z and θ at a certain large distance of r, the calculation formulae for the wave drift forces
(F x − iF y ) in the horizontal plane and the drift yaw moment (Mz ) about the vertical axis
can be obtained as follows:

F x − i F y
1
2 ρgζ

2
wa

=
i k0
C0K

∞∑
m=−∞

[
2Am A∗

m+1 + αm A∗
m+1 + α∗

m+1 Am

]
, (39)

Mz
1
2 ρgζ

2
wa

2
= − 2

C0K

∞∑
m=−∞

m
[
|Am|2 +Re

(
αm A∗

m

) ]
, (40)

where the asterisk in the superscript stands for the complex conjugate.
These formulae are for the total wave drift forces and moment on both ships, because we

used (38) expressed with the global coordinates valid at a large distance of r encompassing
both ships. It should be noted that essentially the same analyses can be done on a control
surface encompassing only the kth ship in terms of the local cylindrical coordinates of the
kth ship, which gives the wave drift forces and moment acting on only the kth ship. The
resultant calculation formulae are of the same form as (39) and (40), except that αm and Am

must be replaced by αk
m +Aℓk

m and Ak
m, respectively, as noted at the end of the preceding

section. We will provide in this paper the results based on the idea of Fang and Chen, which
are obtained by neglecting Aℓk

m (or Akℓ
m) in the coefficients of the total incident wave on the

kth (or ℓth) ship.
As a check of numerical accuracy, satisfaction of the energy-conservation principle may be

confirmed. The analysis of this energy conservation in the whole domain of fluid is similar
to that for Mz and the result takes the form

∞∑
m=−∞

[ ∣∣Am

∣∣2 +Re
(
αm A∗

m

) ]
= 0. (41)

5.2 Near-field method

The wave drift forces can also be computed as the second-order steady forces by integrating
the pressure on the wetted surface of a ship concerned, which is the so-called near-field
method. Derivation of the calculation equation based on the near-field method is some-
what lengthy. Referring to an established second-order theory using consistent perturbation
scheme (e.g. Kashiwagi (2002) and the references therein), the time-averaged second-order
steady force in the ith direction (i = 1 ∼ 3) of the mth ship (m = A or B) can be computed
by
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F
m

i
1
2 ρgζ

2
wa

=
1

2K

∫∫
Sm

∣∣∇φ∣∣2ni dS
− 1

2

∮
Cm

∣∣∣φ−
{
X3 +X4 y −X5(x− xG)

} ∣∣∣2 ni√
1− n23

dℓ

+Re

∫∫
Sm

{
Xj + εjkℓXk+3(xℓ − xℓG)

}∂φ∗

∂xj
ni dS

−KM Re
[
εijkXj+3X

∗
k

]
−AW Re

[
X6X

∗
4 (xF − xG)

]
δi3 , (42)

where xℓ (ℓ = 1, 2, 3) is used to mean (x, y, z); εijk is the alternating tensor; M and AW are
the nondimensional mass and water-plane area of the mth ship respectively; and xF and
xG are the x-ordinates of the centers of floatation and gravity respectively. The integration
path of the line integral Cm is to be taken along the water line at z = 0, which is associated
with the relative wave height along the intersection between the body and free surfaces.

Similarly, the time-averaged second-order steady moment about the ith axis of the mth
ship can be computed by the following:

M
m

i
1
2 ρgζ

2
wa

2
=

1

2K

∫∫
Sm

∣∣∇φ∣∣2ni+3 dS

− 1

2

∮
Cm

∣∣∣φ−
{
X3 +X4 y −X5(x− xG)

} ∣∣∣2 ni+3√
1− n23

dℓ

+Re

∫∫
Sm

{
Xj + εjkℓXk+3(xℓ − xℓG)

}∂φ∗

∂xj
ni+3 dS

−KM Re
[
εijkXj+3X

∗
k+3 κ

2
kk

]
−M Re

[
X6

{
X∗

5GMδi1 −X∗
4 GML δi2

}]
, (43)

where ni+3 is defined as ni+3 = εijk (xj−xjG)nk; κkk is the radius of gyration about the kth
axis; GM and GML are the transverse and longitudinal metacentric heights, respectively.

With the near-field method, we can compute all of the six components of the second-
order steady forces and moments on each ship. The total wave drift forces on both ships,
corresponding to (39) and (40), can readily be computed by simple summation of the same
force components on each ship. This kind of comparison of the results by the far-field and
near-field methods may validate the numerical computation method and indicate the degree
of numerical accuracy.

6. Validation of Numerical Computation

The integral equation (13) was solved by the higher-order boundary-element method
(HOBEM) using 9-point representation for both the geometry of body surface and the
velocity potential. The irregular frequencies are removed by considering a few additional
field points on the interior free surface of both ships, for which the solid angle C(P ) must be
zero. The resultant over-constraint simultaneous equations are solved by the least-squares
method.
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The HOBEM is advantageous in attaining higher accuracy with less number of panels for
a solution of the first-order problem, and more importantly advantageous in computing the
spatial derivatives of the velocity potential, ∇φ, and the relative wave elevation along the
body surface at z = 0 which are to be evaluated in the near-field method for the second-order
steady forces.

To validate the numerical calculation method and to confirm the accuracy of computed
results, computations were performed for two identical ellipsoids, each of which is represented
by

x = a cos θ, y = b sin θ cosω, z = c sin θ sinω (44)

The relative lengths of a, b and c in (44) are chosen such that b/a = 0.15 and c/a = 0.125,
and both ships are exactly the same in size and geometry. The divided element angle in θ
and ω in (44) are even, and their numbers of division over each ship are chosen such that
NX = 20 in θ and NY = 16 in ω. The number of additional field points on the interior free
surface is NF = 9 for each ship.

As an example of numerical results of the wave drift forces, Table 1 shows the steady force
in the y-direction in an incident wave of λ/L = 1.0 and β = 45◦ for the case of all modes of
the ship motion being fixed. Table 2 shows the results in the same fashion for the case of all
six modes of the motion of both ships being free to oscillate. In these Tables, three cases of
S/L, the ratio of the separation distance between the longitudinal centerlines of each ship
S = |xoA − xoB | and the ship’s length L = 2a, are tested. For each case, presented are
the results by the far-field method, the near-field method, a ‘new’ method taking account
of Akℓ

m and Aℓk
m in (36) and (37) in evaluating the incident-wave coefficients on each ship,

and Fang and Chen’s method ignoring Akℓ
m and Aℓk

m . S/L = 1.0 corresponds to the case
that circles encompassing each ship do not overlap (actually they touch just at one point),
and the overlap region increases as the value of S/L decreases (which means violating a
condition of justifying Graf’s addition theorem shown by (33) ).

Irrespective of whether the motions of ships are fixed or not, for S/L = 1.0, the result of

Table 1 Computed steady sway forces on two identical ellipsoids of b/a = 0.150 and c/a =
0.125 in incident wave of λ/L = 1.0 and β = 45◦, when body motions are completely
fixed (diffraction problem)

Far-field Near-field New method Fang and Chen

For S/L = 1.00

F y on Ship-A 0.02743 0.02736 0.27954

F y on Ship-B 0.43381 0.43341 0.42276

Summation 0.46077 0.46124 0.46077 0.70230

For S/L = 0.75

F y on Ship-A 0.58339 0.59374 0.43417

F y on Ship-B 0.30401 0.33292 0.36571

Summation 0.88668 0.88740 0.92666 0.79988

For S/L = 0.50

F y on Ship-A 0.14506 −0.3073×104 0.21433

F y on Ship-B 0.27723 0.8826×104 0.32735

Summation 0.42194 0.42229 0.5753×104 0.54168
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Table 2 Computed steady sway forces on two identical ellipsoids of b/a = 0.150 and c/a =
0.125 in incident wave of λ/L = 1.0 and β = 45◦, when all modes of motion of two
bodies are free to oscillate

Far-field Near-field New method Fang and Chen

For S/L = 1.00

F y on Ship-A 0.01967 0.01966 0.01972

F y on Ship-B 0.01653 0.01653 0.01821

Summation 0.03619 0.03620 0.03619 0.03794

For S/L = 0.75

F y on Ship-A 0.02175 0.02184 0.01807

F y on Ship-B 0.01571 0.00357 0.01793

Summation 0.03749 0.03746 0.02541 0.03600

For S/L = 0.50

F y on Ship-A 0.00338 0.8715×103 0.01116

F y on Ship-B 0.01324 0.3982×104 0.01728

Summation 0.01658 0.01662 −0.3111×104 0.02845

the total sway force by the new method is identical to that by the far-field method, and also
virtually the same as that by the near-field method. Furthermore, the forces on each ship
predicted by the near-field and new methods are in good agreement, which demonstrates
validity and good accuracy of the present numerical computations. On the other hand, the
results by Fang and Chen’s method are similar in the order but not correct, which means
that the radiated waves from the other ship must be taken into account as a part of the
incident wave. (We note that the disturbance potential around each ship is determined
exactly by taking account of hydrodynamic interactions between two ships.)

From the results for S/L = 0.75 and S/L = 0.5, it can be seen that the near-field method
gives reasonable results irrespective of the separation distance, whereas the results by the
new method tend to diverge as the separation distance decreases. The results by Fang and
Chen do not diverge even for a narrow separation distance, because Graf’s addition theorem
of (33) is not used. However, the results are not correct although the order and variation
tendency of the results are rather similar to the ones by the near-field method.

Needless to say, satisfaction of the energy conservation (41) by the far-field method is very
good, with the order of absolute error less than 10−4 with M = 31 terms (m = −15 ∼ +15)
in the Fourier series in the azimuth direction.

7. Experiments

Experiments were carried out for the side-by-side arrangement of a modified Wigley model
(which will be referred to as Ship-A) and a rectangular barge model (which will be referred
to as Ship-B) at the experimental tank (its length, width, and depth are 65m, 5m and 7m
respectively) of the Research Institute for Applied Mechanics of Kyushu University. The
modified Wigley model used in experiments is expressed mathematically as

η = (1− ξ2)(1− ζ2)(1 + 0.2ξ2) + ζ2(1− ζ8)(1− ξ2)4

ξ = 2x/L, η = 2y/B, ζ = z/d

}
(45)
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Y

Z

X

L=2.0 m

B=0.30 m

d =0.125 m

A  =0.416 mW
2

3
=0.04205 mV

Fig. 5 Perspective view and principal dimensions of a modified Wigley model (referred to
as Ship-A)

Both models are L = 2.0m in length, B = 0.3m in breadth, and d = 0.125m in draft.
The 3-D perspective view and principal dimensions are shown in Fig. 5 for Ship-A and in
Fig. 6 for Ship-B, which also show the panels used for numerical computations. Both ships
were set in the beam-wave condition (β = 90◦) with the separation distance between the
longitudinal centerlines of each ship set equal to S = 1.097m and S = 1.797m.

The experiment conducted first is the forced heave oscillation tests, with Ship-A oscillated
and Ship-B fixed, and vice versa. The second experiment is the measurement of the first-
order wave-exciting forces and the second-order steady forces in plane progressive waves with
both ships completely fixed, corresponding to the diffraction problem. For each of the two
separation distances, measurements were carried out for both arrangements of ships; namely,
with Ship-A in the upwave side and Ship-B in the downwave side, and vice versa. Therefore,

Y

Z

X

L=2.0 m

B=0.30 m

d =0.125 m

A  =0.60mW
2

3
=0.075 mV

Fig. 6 Perspective view and principal dimensions of a rectangular barge model (referred
to as Ship-B)
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there were four cases for each of the radiation- and diffraction-problem experiments, among
which some typical results will be presented in the next section.

8. Comparison between Experiments and Calculations

8.1 Added-mass and damping coefficients

To demonstrate capability of the HOBEM adopted in the present study, the results are
shown for the case of Ship-A forcedly oscillated in heave and Ship-B fixed with separation
distance S = 1.797m. Fig. 7 shows only four coefficients of the forces acting on Ship-
A. Nondimension in Fig. 7 is made using the mass of Ship-A (ρ∇A) for the added-mass
coefficient and the product of the mass of Ship-A and oscillation frequency (ρ∇Aω) for the
damping coefficient. For all cases shown in Fig. 7, hydrodynamic interactions are properly
accounted for; especially we note that the sway-force coefficients (AAA

23 and BAA
23 ) are exerted

only by wave interactions between Ship-A and Ship-B. Some discrepancies can be seen in
the heave-force coefficients (AAA

33 and BAA
33 ) at low frequencies, which may be attributed to

the effect of reflection waves from parallel side walls of the tank.

8.2 Wave-exciting forces

Hydrodynamic interactions in the first-order wave-exciting forces can also be accounted for
by the present calculation method. As an example, Fig. 8 shows the sway exciting forces
on Ship-A (EA

2 ) and Ship-B (EB
2 ) which are situated in the upwave and downwave sides,

respectively, in beam waves (β = 90◦) with separation distance S = 1.097m. Likewise,
Fig. 9 shows the heave exciting forces on Ship-A (EA

3 ) and Ship-B (EB
3 ) for the same

experimental condition. The nondimension for the sway and heave exciting forces is made
using ρgζwA

k
W (k = A or B), with Ak

W being the water-plane area of the kth ship.
The overall agreement between measured and computed results is good, although slight

discrepancies can be seen in a range of long wavelengths (which may be due to reflection-
wave effects from side walls of the tank) and near the maximum peak at about λ/L = 0.65
(which may be due to viscous effects ignored in the present calculation method).

8.3 Wave drift forces

Since the second-order wave drift forces are of main concern in the present paper, their
results will be shown for two typical cases:

(1) Ship-A is situated in the upwave side and Ship-B is in the downwave side with separation
distance S = 1.097m, and

(2) Ship-A is situated in the downwave side and Ship-B is in the upwave side with separation
distance S = 1.797m.

For the first case, the steady sway forces on Ship-A (F
A

2 ) and Ship-B (F
B

2 ) are shown
in Figs. 10 and 11, respectively, and the total drift force in sway (the sum of steady sway
forces on each ship) is shown in Fig. 12. In comparison of the steady force on each ship,
computed results of the near-field method and Fang and Chen’s method are shown, because
the far-field method gives only the total drift force on both ships and the ‘new’ method
cannot be applied for two ships situated abreast with a narrow gap, as demonstrated in
Tables 1 and 2. In Fig. 12 for the total drift force, computed results by the far-field method
are shown by the broken line.

We can see from these figures that computed results by the near-field method agree
well with measured ones and the results by Fang and Chen’s method are apparently incorrect,
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S=1.097m

Fig. 10 Sway steady force on Ship-A situated in the upwave side of beam wave (β = 90◦)
for the case of S = 1.097m

particularly for the force on a ship in the upwave side. It is noteworthy that, around
λ/L = 0.67, the steady sway force becomes large negative on Ship-A in the upwave side and
large positive on Ship-B in the downwave side; that is, a large repulsion force is exerted
between two ships around this wavelength, but the total force in sway on both ships is
positive as seen in Fig. 12.

Computed results by the far-field and near-field methods must be coincident as confirmed
for two identical ellipsoids, but a small discrepancy can be seen in Fig. 12. This discrepancy
did not diminish even when the number of panels on both ships was increased, from which we
conjecture that numerical inaccuracy occurs in evaluating the velocity components around

S=1.097m

Fig. 11 Sway steady force on Ship-B situated in the downwave side of beam wave (β = 90◦)
for the case of S = 1.097m
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S=1.097m

Fig. 12 Sway steady force on two ships in the beam wave (β = 90◦) for the case of Ship-A
in the upwave side and S = 1.097m

the edge or corner of a rectangular barge model. However, this order of discrepancy may be
allowable in practical computations for an engineering purpose.

The near-field method predicts all components of the steady forces on each ship, unlike
the far-field method or Fang and Chen’s method. To demonstrate this capability, Figs. 13
and 14 show the steady heave forces on Ship-A and Ship-B, respectively, and the sum of
these are shown in Fig. 15 with experimental values. Not only the total heave force but also
the individual heave force on each ship is positive for all cases, and the heave force becomes
large around λ/L = 0.67 at which a large repulsion force in sway is exerted. The agreement
between computed and measured results is favorable except for long wavelengths at which

S=1.097m

Fig. 13 Heave steady force on Ship-A situated in the upwave side of beam wave (β = 90◦)
for the case of S = 1.097m
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S=1.097m

Fig. 14 Heave steady force on Ship-B situated in the downwave side of beam wave (β = 90◦)
for the case of S = 1.097m

measured results may be contaminated by reflection waves from parallel side walls of the
tank.

For the second case, i.e. when Ship-B is situated in the upwave side with larger separation
distance of S = 1.797m, the results are shown in Figs. 16–21 in the same way. Regarding
the steady sway force, as can be seen in Figs. 16 and 17, a larger force is exerted on Ship-B
in the upwave side, and when the force on Ship-B is large, the force on Ship-A tends to
be small, and vice versa. The steady sway forces on each ship are predicted well by the
near-field method but not so well by Fang and Chen’s method especially for a ship in the
upwave side. Therefore, when summing up individual sway forces on each ship, as shown

S=1.097m

Fig. 15 Heave steady force on two ships in the beam wave (β = 90◦) for the case of Ship-A
in the upwave side and S = 1.097m
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S=1.797m

Fig. 16 Sway steady force on Ship-B situated in the upwave side of beam wave (β = 90◦)
for the case of S = 1.797m

in Fig. 18, the results by the near-field method are in good agreement with measured ones,
but the results by Fang and Chen’s method are not.

Noticeable discrepancy can be seen in Fig. 18 between the results by the near-field and
far-field methods, and the degree of this discrepancy is larger than that in the first case
shown in Fig. 12. Fig. 18 is for the case that a rectangular barge model is situated in the
upwave side and receiving a larger force. For a barge model, numerical inaccuracy may
occur near rectangular edges or corners. Thus the discrepancy in the results for Ship-B
in the upwave side tends to be prominent between the far-field and near-field methods, as
compared to the opposite arrangement shown in Fig. 12.

S=1.797m

Fig. 17 Sway steady force on Ship-A situated in the downwave side of beam wave (β = 90◦)
for the case of S = 1.797m
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S=1.797m

Fig. 18 Sway steady force on two ships in the beam wave (β = 90◦) for the case of Ship-B
in the upwave side and S = 1.797m

The steady heave forces are compared in Figs. 19–21. We must anticipate the side-wall
effects of a tank in the heave force at larger wavelengths, which may be a reason of discrep-
ancy between measured and computed results. Another discrepancy to be noted is the value
of wavelength at which the heave force on Ship-A in the downwave side takes a maximum.
Since Ship-B with sharp edges is located in the upwave side, we can envisage that vortices
are shed in the downstream and the flow is different from the potential flow; which can be
considered as a possible reason of discrepancy. Nevertheless, the overall agreement is rather
good, confirming validity of the near-field method developed in the present study.

S=1.797m

Fig. 19 Heave steady force on Ship-B situated in the upwave side of beam wave (β = 90◦)
for the case of S = 1.797m
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S=1.797m

Fig. 20 Heave steady force on Ship-A situated in the downwave side of beam wave (β = 90◦)
for the case of S = 1.797m

S=1.797m

Fig. 21 Heave steady force on two ships in the beam wave (β = 90◦) for the case of Ship-B
in the upwave side and S = 1.797m

9. Conclusions

With a higher-order boundary-element method, numerical computations were implemented
for the first-order oscillatory hydrodynamic forces and the second-order steady forces on each
of the two ships arranged side by side. Hydrodynamic interactions were taken into account
exactly in the framework of potential theory for the first-order and second-order problems
studied in this paper. For the computation of second-order steady forces, in addition to the
near-field and far-field methods, a ‘new’ far-field method was studied, computing the force
on each ship by considering a control surface encompassing only either ship and applying
the principle of momentum conservation. Experiments were also conducted using two ship
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models with side-by-side arrangement, and measured results were compared with computed
ones.

From the study above, the followings were observed:

(1) Hydrodynamic interactions are well accounted for by the present calculation method,
because the agreement between measured and computed results is good as a whole.

(2) When hydrodynamic interactions are severe, the second-order steady forces on each ship
become large in both sway and heave. The sway steady forces on each ship are repulsive
but the total force on both ships is positive. The heave steady forces on each ship are
always positive in the vertically downward direction.

(3) Irrespective of whether the two ships are free to oscillate, the results by the ‘new’ far-
field method are in good agreement with the ones by the near-field method, if no overlap
region exists between fictitious vertical circular cylinders surrounding each ship.

(4) When a rectangular barge is located in the upwave side, discrepancy in computed and
measured results tends to be prominent especially in the results of a downwave-side
ship; which may be attributed to vortices shed in the downstream from sharp edges of a
rectangular barge and also to numerical inaccuracy in computing the flow velocity near
rectangular edges or corners.
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ABSTRACT

A theoretical study is made first on the transmission and reflection waves past 2-
dimensional, general, antisymmetric floating bodies which are oscillating in response to
regular incident waves. As a result, the reciprocity theorem for the transmission and reflec-
tion coefficients and the wave-energy splitting theorem for the symmetric and antisymmetric
wave components are derived for a general case of the motions of an antisymmetric body
being free. Next, in order to develop floating piers with high performance in wave reflec-
tion, numerical computations and corresponding experiments are conducted with emphasis
placed on the effects of horizontal fins attached to the original body of the rectangular
shape. Depending on the number and location of the fins, there exist one or two frequen-
cies at which zero wave transmission can be realized. With this fact, it is suggested that
the transmission wave can be small over the frequency range of our interest by optimizing
the number, size, and location of horizontal fins attached to a rectangular-shaped main
body.

Keywords: Wave reflection and transmission, reverse theorem, wave-energy splitting the-
orem, antisymmetric body, perfect reflection, waveless frequency.

1. INTRODUCTION

There is a practical demand that floating breakwaters or piers (hereafter described gener-
ically as breakwaters) with high performance in the wave reflection to be developed and
installed near the mouth of a marina to protect yachts or other small vessels from waves
coming from the open sea or generated by a high-speed boat running in proximity. From a
viewpoint of preservation of water by exchanging with fresh water, floating-type breakwaters
may be preferable. In fact, there have been many studies so far for the development of float-
ing breakwaters using various ideas, and most of them were moored by slack chains anchored
to the sea bottom. However, in this study, it is required that the water depth is relatively
shallow, and that floating breakwaters to be developed must not move horizontally to avoid
collision with vessels in the marina; that is, the movement of floating breakwaters may be
restricted to heave by a number of vertical piles mounted to the sea bottom. In addition,
the section shape of a body is required to be relatively simple for easy construction.

∗ Reprinted from International Journal of Offshore and Polar Engineering, Vol. 17, No. 1, pp. 39–
46, 2007 (March)
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Under these circumstances, experiments in a wave channel and numerical computations
based on the potential-flow theory have been conducted for a variety of 2-D models with a
rectangular-shaped model used as the original one. To enhance the performance in wave re-
flection, small horizontal fins are attached to the right and/or left part of the bottom and/or
side wall of the original body, and the performance is tested by changing systematically the
number, length, and position of the fins.

In connection with antisymmetric bodies (a body with only one fin attached to the right
or left lower bottom), a theoretical study is made of transmission and reflection waves past
2-D, general, antisymmetric bodies oscillating freely in response to incident waves. Based
on Green’s theorem applied to the two different velocity potentials, very useful relations
are found. One of these relations is the so-called reciprocity property that both of the
transmission and reflection coefficients for an antisymmetric body are independent of the
incoming direction of incident waves; this property is valid irrespective of whether the body
motions are fixed or free to oscillate in waves. The other is the wave-energy splitting theorem:
The energy of the symmetric (antisymmetric) wave component when the incident wave is
incoming from the right is equal to that of the antisymmetric (symmetric) wave component
when the incident wave is incoming from the left.

Numerical computations indicate that, depending on the number and location of the
horizontal fins, there exist one or two frequencies at which zero wave transmission is realized,
and these frequencies are different from the so-called waveless frequency at which the wave-
exciting force in heave becomes zero. Although the degree of agreement between numerical
computations and corresponding experiments is not very good because of viscous effects,
particularly around the heave resonance, experimental results seem to support the findings
by this paper’s theoretical and numerical studies.

2. REFLECTION AND TRANSMISSION WAVES

Under the assumption that the fluid is incompressible and inviscid with irrotational motion,
we introduce the velocity potential and consider the flow around a floating body in regular
waves. The wave-induced motion of a body and associated fluid motion are assumed to be
linear in the incident-wave amplitude and harmonic in time with circular frequency ω of the
incident wave. In what follows, all oscillatory quantities will be expressed in complex form,
with the time dependence eiωt understood.

In order to treat the problem in general, we consider an antisymmetric body; in this case,
depending on the incoming direction of the incident wave, the flow field around a body may
be different. Accordingly, as shown in Fig. 1, let us first consider the case where the incident
wave is incoming from the positive x-axis and write the resulting velocity potential in the
form:

ϕ+(x, y) =
gζa
iω

{
ϕ+D(x, y)−KX+

j ϕj(x, y)
}
≡ gζa

iω
φ+(x, y), (1)

ϕ+D = ϕ+0 + ϕ+4 , (2)

ϕ+0 =
cosh k(y − h)

cosh kh
eikx , K =

ω2

g
= k tanh kh, (3)

where ζa is the amplitude of the incident wave and g is the acceleration of gravity. ϕ+D
is the diffraction potential which is the sum of the incident-wave potential ϕ+0 and the
scattering potential ϕ+4 (we note that this definition follows Newman (1977) but may be
defined differently by other authors). The water depth is assumed to be finite and constant
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h in this paper, and the wavenumber k of a progressive wave satisfies the dispersion relation
given by Eq. 3.
X+

j denotes the complex amplitude of the body motion in the j-th mode (j = 1 for sway,
j = 2 for heave, and j = 3 for roll), and ϕj is the radiation potential with unit velocity in
the j-th direction (which is independent of the incident wave and hence has no superscript
attached). The summation sign with respect to j is deleted throughout this paper with the
convention that any term of an equation containing the same index twice should be summed
over that index.

Transmission
      wave

Reflection
    wave

Incident waveR+T +

+ +φ ∼ e  ikx

y

O x

0

Fig. 1 Reflection and transmission waves for an incident wave incoming from the positive
x-axis.

The asymptotic expression of the velocity potential at x→ ±∞ can be given as follows:

φ+(x, y) = ϕ+D(x, y)−KX+
j ϕj(x, y)

∼ cosh k(y − h)

cosh kh

[
eikx + iH±

4 e∓ikx −KX+
j iH

±
j e∓ikx

]
. (4)

Here the upper or lower sign in the double sign is taken according to whether x → +∞ or
−∞, respectively. H±

4 and H±
j (j = 1 ∼ 3) denote the Kochin functions associated with

the far-field scattered and radiated waves, respectively. (Their explicit expressions will be
given subsequently.)

From Eq. 4, the velocity potential on the free surface (y = 0) may be expressed as:

φ+(x, 0) ∼

{
eikx +R+

F e
−ikx as x→ +∞

T+
F eikx as x→ −∞

(5)

where:
R+

F = R+
D − iKX+

j H
+
j , R+

D = iH+
4

T+
F = T+

D − iKX+
j H

−
j , T+

D = 1 + iH−
4

}
(6)

R+ and T+ are defined as the coefficients of reflection and transmission waves, respectively.
Suffix D to these coefficients indicates the quantities for the diffraction problem; likewise
suffix F indicates the quantities for the case where the body motions are free to respond to
the incident wave. These coefficients and the amplitude of a body’s wave-induced motion
are nondimensionalized using the incident-wave amplitude.

In a similar manner, we consider the case of Fig. 2 where the incident wave is incoming
from the negative x-axis and write the corresponding velocity potential in the form:

ϕ−(x, y) =
gζa
iω

{
ϕ−D(x, y)−KX−

j ϕj(x, y)
}
≡ gζa

iω
φ−(x, y). (7)
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Transmission
      wave

Reflection
    wave

Incident wave

x

y

O

TR

φ ∼ e   ikx
0

Fig. 2 Reflection and transmission waves for an incident wave incoming from the negative
x-axis.

The asymptotic expression of this velocity potential at x→ ±∞ takes the following form:

φ−(x, y) = ϕ−D(x, y)−KX−
j ϕj(x, y)

∼ cosh k(y − h)

cosh kh

[
e−ikx + ih±4 e

∓ikx −KX−
j iH

±
j e∓ikx

]
. (8)

Because the scattered wave is different from that in the former case, the associated Kochin
function is expressed as h±4 . (Note that h±4 = H∓

4 for a body with horizontal symmetry.)
From Eq. 8, the velocity potential on the free surface can be expressed with the reflection

and transmission coefficients as follows:

φ−(x, 0) ∼

{
T−
F e−ikx as x→ +∞

e−ikx +R−
F e

ikx as x→ −∞
(9)

where: R−
F = R−

D − iKX−
j H

−
j , R−

D = ih−4

T−
F = T−

D − iKX−
j H

+
j , T−

D = 1 + ih+4

}
(10)

For a symmetric body about the y-axis, it is obvious from Eqs. 6 and 10 that R+ = R− and
T+ = T−; in this particular case then, the superscript (+ or −) will be deleted.

In order to compute the reflection and transmission waves, the diffraction and radiation
potentials must be determined first. Then the Kochin functions and wave-induced motions
must be evaluated; this is described below.

3. NUMERICAL SOLUTION METHOD

In addition to the far-field behavior described above, the velocity potential must satisfy the
following linearized boundary conditions:

∂ϕ±

∂y
+Kϕ± = 0 on y = 0, (11)

∂ϕ±

∂y
= 0 on y = h, (12)

∂ϕ±D
∂n

= 0

∂ϕj
∂n

= nj

 on SH , (13)

where SH denotes the body surface below y = 0 and nj denotes the j-th component (n1 = nx,
n2 = ny, and n3 = xn2 − yn1) of the normal vector, which is defined as positive outward
from the body surface.



Development of Floating Body with High Performance in Wave Reflection 333

The diffraction (ϕ±D) and radiation (ϕj) potentials are determined directly by solving an
integral equation to be derived from Green’s theorem; which may be written in the form:

C(P)ψj(P) +

∫
SH

ψj(Q)
∂

∂nQ
G(P;Q) dℓ(Q)

=


ϕ±0 (P) (j = D)∫
SH

nj(Q)G(P;Q) dℓ(Q) (j = 1 ∼ 3)
(14)

where P = (x, y) and Q = (ξ, η) denote the field and integration points, respectively, located
on the body surface, and C(P) denotes the solid angle. G(P;Q) represents the free-surface
Green function in water of constant finite depth (Thorne, 1953; Wehausen and Laiton, 1960),
and its asymptotic form at a far field is written as:

G(P;Q) ∼ iC0
cosh k(y − h)

cosh kh

cosh k(η − h)

cosh kh
e−ik|x−ξ|, (15)

C0 =
k

K + h(k2 −K2)
. (16)

Substituting Eq. 15 into Eq. 14 with C(P) = 1, the asymptotic form of the velocity po-
tential at x → ±∞ can readily be obtained. Since the results are expressed as Eq. 4 or
Eq. 8 depending on the incoming direction of the incident wave, the Kochin functions in the
diffraction and radiation problems can be defined explicitly as follows:

H±
4 = −C0

∫
SH

ϕ+D
∂

∂n

cosh k(η − h)

cosh kh
e±ikξ dℓ,

h±4 = −C0

∫
SH

ϕ−D
∂

∂n

cosh k(η − h)

cosh kh
e±ikξ dℓ,

H±
j = C0

∫
SH

(
nj − ϕj

∂

∂n

)cosh k(η − h)

cosh kh
e±ikξ dℓ.


(17)

The integral equation Eq. 14 is solved by the so-called constant-panel collocation method,
with a remedy for getting rid of the irregular frequencies proposed by Haraguchi and
Ohmatsu (1993). The free-surface Green function is evaluated using a power-series ex-
pression for relatively large values of |x − ξ| and integral expressions for other values of
|x− ξ|. The numerical method adopted for evaluating integral expressions is similar to that
proposed by Seto (1991, 1992) for 3-D cases.

Once the velocity potentials on the body surface are determined, it is straightforward to
compute the hydrodynamic forces. With the convention that all quantities are written in
nondimensional form, the hydrodynamic forces in the diffraction and radiation problems are
expressed in the form:

E±
j =

∫
SH

ϕ±Dnj dℓ,

fjk = −
∫
SH

ϕknj dℓ = Ajk − iBjk ,

 (18)

where E±
j is called the wave-exciting force in the j-th direction, and Ajk and Bjk are the

added-mass and damping coefficient, respectively, in the j-th direction due to the k-th mode
of motion.
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In terms of these forces, the equations of motion of a body can be expressed in a matrix
form as follows: [

−K
(
Mjk + fjk

)
+ Cjk

]
X±

k = E±
j (j = 1 ∼ 3), (19)

where Mjk denotes the mass matrix, and its values in the diagonal (j = k) are the body
mass (m) for j = 1 and 2 and the moment of inertia for j = 3; also nonzero values at off-
diagonals are M13 =M31 = −myG and M23 =M32 = mxG, where (xG, yG) is the position
of the center of gravity, generally unequal to the origin of the coordinate system due to body
asymmetry. Cjk denotes the restoring force coefficients due to the static pressure. It should
be noted that bothMjk and Cjk are real quantities and the symmetry relation ofMjk =Mkj

and Cjk = Ckj holds, as is the same for the added mass and damping coefficients.

4. HYDRODYNAMIC RELATIONS

In order to derive some important reciprocity and energy-conservation relations for the
reflection and transmission waves, Green’s theorem can be applied to the two different
velocity potentials. The idea is the same as that proposed by Newman (1975), and we can
obtain the following relation:∫

SH

(
ϕ
∂ψ

∂n
− ψ

∂ϕ

∂n

)
dℓ =

1

2kC0

[(
ϕ
∂ψ

∂x
− ψ

∂ϕ

∂x

)
y=0

]+∞

−∞
(20)

Here both potentials ϕ and ψ must satisfy the free-surface and water-bottom conditions
given by Eqs. 11 and 12, but not necessarily the same boundary conditions on the body
surface (SH) and the radiation surface at x = ±∞. The square brackets with superscript
+∞ and subscript −∞ means the difference between the quantities in the brackets evaluated
at x = +∞ and x = −∞.

As the first application of Eq. 20, we consider φ+ for ϕ and φ− for ψ. In this case, the
left-hand side of Eq. 20, denoted by L, may be evaluated as follows:

L =

∫
SH

{(
ϕ+D −KX+

j ϕj
)(

−KX−
k nk

)
−
(
ϕ−D −KX−

k ϕk
)(

−KX+
j nj

)}
dℓ

= −KX−
k

(
E+

k +KX+
j fkj

)
+KX+

j

(
E−

j +KX−
k fjk

)
= −KX−

k X
+
j

(
−KMkj + Ckj

)
+KX+

j X
−
k

(
−KMjk + Cjk

)
= 0, (21)

where the body-boundary condition Eq. 13, the hydrodynamic forces Eq. 18, the equations
of body motion Eq. 19, and the symmetry relation of Mjk =Mkj and Cjk = Ckj have been
used.

The right-hand side of Eq. 20, denoted by R, may be evaluated by using Eqs. 5 and 9,
and the result becomes:

R =
i

C0

(
T+
F − T−

F

)
. (22)

L = R thus gives the following relation:

T+
F = T−

F . (23)

This means that the coefficient of a transmission wave past an antisymmetric body is
independent of the incoming direction of incident wave and must be the same in both
amplitude and phase; this is the case even when the body motions are free to oscillate in
response to the incident wave.
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Next we consider φ+ (which is the complex conjugate and physically the reverse-time
velocity potential) for ϕ and φ− for ψ. In this case, in the same way as we obtained Eq. 21,
the left-hand side of Eq. 20 becomes

L =

∫
SH

{(
ϕ+D −KX+

j ϕj
)(

−KX−
k nk

)
−
(
ϕ−D −KX−

k ϕk
)(

−KX+
j nj

)}
dℓ

= −KX−
k

(
E+

k +KX+
j fkj

)
+KX+

j

(
E−

j +KX−
k fjk

)
= −KX−

k X
+
j

(
−KMkj + Ckj

)
+KX+

j X
−
k

(
−KMjk + Cjk

)
= 0, (24)

where a fact that Mjk and Ckj are real quantities has been used.
On the other hand, using Eqs. 5 and 9, the right-hand side of Eq. 20 takes the form:

R = − i

C0

(
R−

F T
+
F +R+

F T
−
F

)
. (25)

Thus L = R gives the following relation:

R−
F T

+
F +R+

F T
−
F = 0. (26)

Substituting the relation T+
F = T−

F given by Eq. 23 into Eq. 26, we can obtain an important
relation for the reflection wave: ∣∣R+

F

∣∣ = ∣∣R−
F

∣∣. (27)

Namely, the amplitude of the reflection wave past an oscillating antisymmetric body must
be also the same, irrespective of the incoming direction of incident wave.

It is obvious from the above proof that the relations of Eqs. 23 and 27 are also true for
the diffraction problem; in fact, these relations for the diffraction problem were proved for
the first time by Bessho (1975) with the idea of the reverse-time velocity potential.

By taking φ+ for ϕ and φ+ for ψ (or similarly φ− for ϕ and φ− for ψ) and evaluating
Eq. 20 in the same manner, we can easily prove that:∣∣R+

F

∣∣2 + ∣∣T+
F

∣∣2 =
∣∣R−

F

∣∣2 + ∣∣T−
F

∣∣2 = 1. (28)

This is known as the relation of energy conservation for the case where the body motions
are free to oscillate in waves.

In passing, let us consider the followings:∣∣R+ ± T+
∣∣2 =

∣∣R+
∣∣2 + ∣∣T+

∣∣2 ± (R+T+ +R+T+
)

∣∣R− ± T−
∣∣2 =

∣∣R−
∣∣2 + ∣∣T−

∣∣2 ± (R−T− +R−T−)
 (29)

In terms of Eqs. 23 and 26, we can see that:

R+T+ = R+T− = −R−T+ = −R−T− . (30)

Accordingly, combining these results, it follows that:∣∣R+ ± T+
∣∣ = ∣∣R− ∓ T−∣∣. (31)

We note that R+T and R−T give the symmetric and antisymmetric wave components,
respectively, with respect to x = 0 and the amplitude is related to the energy of a progressive
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wave. We can then understand that the energy of the symmetric (antisymmetric) wave
component when the incident wave is incoming from the right is equal to the energy of the
antisymmetric (symmetric) wave component when the incident wave is incoming from the
left. This new finding can be regarded as an extension of the wave-energy splitting theorem
to antisymmetric bodies.

For bodies with horizontal symmetry, RT + RT = 0 from Eq. 26 and |R|2 + |T |2 = 1
from Eq. 28, hence: ∣∣R+ T

∣∣ = ∣∣R− T
∣∣ = 1. (32)

This relation has been known (Kato et al., 1974; Newman, 1975) and implies that the
energies of the symmetric and antisymmetric wave components are splitted equally into half
of the energy of incident wave.

5. EXPERIMENTS

This study on the development of floating breakwaters started with measurements for the
original model shown in Fig. 3, which was proposed by SRI Hybrid Limited. This original
model is featured in a simple rectangular shape with small feet projecting vertically down-
ward, which are expected to generate vortices from the tip and thus contribute to dissipation
of the energy of incident wave, thus making the transmission wave small.

A floating pier with the section shape of the original model is actually developed, which
is restricted to move only in heave by a number of bottom-mounted vertical piles in a real
harbor. To simulate this real situation, the experiments in this study were all performed
with only the heave motion free, i.e. sway and roll modes are fixed.

To enhance the performance in the wave reflection, horizontal fins are attached to the
original model in several styles, as shown in Fig. 3. The dimensions of the original model and
attached fins are given in Fig. 4, and Table 1 lists the actual lengths of these dimensions.
The incident wave is assumed to be coming from the right, and thus Model-2 in Fig. 3
is equivalent to the case of Model-1 with the incident wave coming from the left. Thus,
following the notations above, if the velocity potential for a flow around Model-1 is denoted
by ϕ+, the velocity potential for a flow around Model-2 can be written as ϕ−.

Original
  model Model-1 Model-2

Model-3 Model-4

Fig. 3 Shapes of various models of floating breakwaters used in the experiments; incident
wave assumed to be from right



Development of Floating Body with High Performance in Wave Reflection 337

h

d

aa

b

cce

e
z

f f

b
x

y

O

Incident wave

Fig. 4 Coordinate system and notations for various dimensions in the models

The experiments were carried out with the wave channel (10m long and 0.3m wide) at
the Research Institute for Applied Mechanics of Kyushu University. The heave motion of
floating bodies was measured using a potentiometer as the vertical movement of a heaving
rod installed in the body, and the transmission wave was measured using a capacitance-
type wave probe at a distance from the body. The amplitudes of the heave motion and
transmission wave were nondimensionalized with the amplitude of the incident wave, which
was measured in advance without a floating body at the position where the models were
placed.

Table 1 Dimensions of the tested models and the water depth in the experiments

Notations Length (mm)

a 22.5

b 150.0

c 37.5

d 247.5

e 10.0

f 30.0, 45.0, 60.0

z 87.5

h 400.0

6. RESULTS AND DISCUSSION

Figure 5 shows the results for the original model; open circles indicate measured results
with only the heave motion free, and solid lines show corresponding computed results. For
reference, computed values of the transmission coefficients for the cases of all motions (sway,
heave, and roll) free and fixed (i.e. diffraction) are indicated by the dotted line and the
broken line, respectively. The abscissa is taken as λ∞/B, where λ∞ is the wavelength
in water of infinite depth, and B is the breadth of the model equal to 2b in Fig. 4; thus
λ∞/B = π/Kb.
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All motions free

Diffraction

Heave only free

λ1 B=π/ /Kb

λ1 B=π/ /Kb

Original model

Original model λ1 B=π/ /Kb

λ1 B=π/ /Kb

Model  1 & 2

Model  1 & 2

Fig. 5 Nondimensional amplitudes of trans-
mission wave and heave motion of
original model

Fig. 6 Nondimensional amplitudes of trans-
mission and heave motion of Model-
1 and Model-2 with fin length f =
60mm

Around the heave resonant frequency, the numerical calculation overpredicts the heave
amplitude, which may be attributed to the viscous damping due to vortex shedding from
sharp corners. Correspondingly, the transmission coefficient around the heave resonant
frequency is overpredicted by the present calculation based on the potential theory. Still,
it is obvious from Fig. 5 that the transmission coefficient with the effect of heave motion
becomes larger than that for the case of wave diffraction only. We should note that measured
values of the transmission coefficient tend to become larger in short wavelengths; this may
be due to the effects of little oscillation in sway and roll. (The rigidity of the heaving
rod was not enough to completely fix the sway and roll motions, because the heaving rod
used was relatively long and flexible.) In fact, this little oscillation in sway and roll was
prominent in the measurements in short wavelengths, and as shown by the dotted line, the
numerical calculation predicts a larger effect from sway and roll motions on the transmission
coefficient. In waves of short wavelength, we can envisage that variation in the pressure may
be confined to a fluid layer near the free surface, and thus for a body with the vertical sides,
larger motions will be induced in sway and roll rather than in heave.

Figure 6 shows both results of Model-1 and Model-2. As proved theoretically above, the
transmission coefficient must be identical even if the left and right shapes of a body are
reversed, and this is true for both cases of body motions being fixed and free. Of course,
computed results are confirmed to satisfy this so-called reciprocity property, and we can see
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λ1 B=π/ /Kb

λ1 B=π/ /Kb

Model  3

Model  3
λ1 B=π/ /Kb

λ1 B=π/ /Kb

Model  4

Model  4

Fig. 7 Nondimensional amplitudes of trans-
mission and heave motion of Model-3
with 3 different fin lengths: f = 30,
45 and 60mm

Fig. 8 Nondimensional amplitudes of trans-
mission wave and heave motion of
Model-4 with 3 different fin lengths:
f = 30, 45 and 60mm

also experimentally from Fig. 6 that the measured results for Model-1 and Model-2 support
this reciprocity property. Although the transmission (and reflection) coefficients are the
same, Model-1 and Model-2 have different heave amplitudes, and each of the results agrees
with the numerical calculation except near the heave-resonant frequency. Large values of
the transmission coefficient at shorter wavelengths in Fig. 6 (and Fig. 7 as well) may be
attributed to the same reason given for the original body, that is, noticeable oscillation in
sway and roll was observed because of a relatively long and thus non-rigid heaving rod.

Another feature to be noted in Fig. 6 is the existence of a frequency at which complete
reflection (zero transmission) is realized (λ∞/B ≃ 6.4 for Model-1 and Model-2). Since the
transmission coefficient is given by Eq. 6 and only the heave is free in the present case, zero
transmission coefficient can be achieved if:

1 + iH−
4 = iKX+

2 H
−
2 . (33)

Physically this means that the radiation wave generated by the heave motion cancels out
the diffraction wave at downstream infinity (x→ −∞); that is, both waves are the same in
magnitude and opposite in sign. Some authors, e.g. Evans (1975), have studied this subject
of complete reflection for symmetric bodies.

As in Fig. 6, if the zero transmission frequency exists in the frequency range of our interest,
we can expect reduction of the transmission wave over a wider range of frequencies. It is also
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interesting to see that the heave motion with a fin attached to the right (weather side) can
be smaller than that with the same fin attached to the left (lee side). However, the resonant
frequencies in both cases are the same and lower than that of the original model (thus move
to the right-hand side in the present figure), because the added mass becomes large, as will
be shown later. Fig. 7 shows the result for Model-3 (where the same horizontal fins were
attached symmetrically to both sides of small projecting feet), in which 3 fins different in
length were tested.

Fundamental features of Model-3 in the transmission coefficient and heave amplitude are
the same as those for Model-1 and Model-2, and the wavelength of zero transmission and
heave resonance becomes longer with increase in the fin length. Except for large values
at shorter wavelengths, numerical computations based on the potential flow account for a
tendency in reduction of the wave transmission for different lengths of the attached fin.
Among the 3 cases shown in Fig. 7, using twin fins of f = 60mm provides the best overall
performance in less wave transmission over the range of wavelengths tested in this study.

λ1 B=π/ /Kb

λ1 B=π/ /Kb

λ1

Bπ
2

m'

Fig. 9 Added mass and wave-exciting
force in heave of various models
(fin length: f = 60mm)

In order to see effects of increase in the
number of fins, the same 4 horizontal fins
were attached to the original model, Model-
4 in Fig. 4, and the length of these fins was
changed in the same way as for Model-3.
Fig. 8 shows the results for this Model-4.
(In this case, however, no measured results
are available for f = 45mm.) In the case
of 4 fins, it is apparent from Fig. 8 that
there exist 2 different wavelengths at which
zero transmission (perfect reflection) is real-
ized. These wavelengths for zero transmis-
sion and the wavelength for heave resonance
become longer as the fin length increases.
From the viewpoint of real construction and
installation, a simpler shape and a smaller
body size may be preferable, hence an opti-
mal selection seems to exist in the number
and size of the fin.

In fact, the transmission coefficient for
the case of 4 fins with f = 60mm becomes
relatively large near the middle between the
2 frequencies of zero transmission. Thus,
among the 3 cases shown in Fig. 8, using
4 fins of f = 45mm appears to be the
best on the whole for less wave transmis-
sion over the range of wavelengths tested in
this study.

Figure 9 shows the added mass A22 and
the wave-exciting force E+

2 in heave for var-
ious models (fin length in Model-1 to Model-4 is f = 60mm), for an understanding of a
relation between hydrodynamic forces and characteristics in the wave reflection and wave-
induced heave motion. A22 and E+

2 are nondimensionalized in terms of ρb2 and ρgζab,
respectively. We can see that A22 becomes large with an increased number of horizontal
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fins. A thin solid line with linear increase indicates the value of:

2

π

λ∞
B

−m′, (34)

where m′ is the nondimensional mass of body, hence the cross-point between the thin solid
line and each line of A22 gives the wavelength of heave resonance for the corresponding
model. (To be exact, the value of m′ is slightly different depending on the number of fins,
but its difference is negligible in the figure.) The wavelength of heave resonance becomes
obviously longer with the number of fins, which is a reason of reduction in heave amplitude
in the range of λ∞/B < 10.

Another reason for reduction in heave amplitude is the decrease in magnitude of the
heave-exciting force shown in the lower figure of Fig. 9. It is noteworthy that the so-called
waveless frequency (at which the wave-exciting force becomes zero) exists for bodies with at
least one fin attached on the weather side (Model-1, Model-3 and Model-4). At the waveless
frequency, Haskind-Newman’s relation tells us that:

E+
2 = H+

2 = 0 (35)

is realized, where H+
2 is the Kochin function associated with the radiated wave at x = +∞

by the forced heave motion. According to Fig. 9, the value of the waveless frequency is
different depending on the number of fins, and this value is much different from the heave
resonant frequency for the bodies studied in this paper.

λ1 B=π/ /Kb

Model  4

Fig. 10 Effect of the vertical position of
side fins in Model-4 on the trans-
mission coefficient (fin length:
f = 30mm)

As mentioned earlier, zero transmission
can be realized if Eq. 33 is satisfied; this is
true at one particular frequency for Model-1
to Model-3, in which at least one horizontal
fin is attached irrespective of weather or lee
location, and at 2 particular frequencies for
Model-4, in which twin horizontal fins are
attached on the same vertical side. How-
ever, these frequencies of zero transmission
are generally different from the waveless and
heave-resonant frequencies.

Finally, the effect on the transmission co-
efficient of the vertical position of side fins
in Model-4 was numerically investigated by
changing the value of z of both side fins;
Fig. 10 shows the result. We can see that
the value of the zero transmission frequency
is not so sensitive to the vertical position of
side fins, and the transmission coefficients
are very similar for different vertical positions of the side fins. Although the present com-
putations are only for f = 30mm, a conclusion obtained from Fig. 10 is the same for other
fin lengths.

7. CONCLUSIONS

In order to develop floating piers with high performance in the wave reflection, theoretical,
numerical, and experimental studies have been carried out for the hydrodynamic character-
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istics of a flow around 2-D floating bodies heaving in regular waves. Main results obtained
in this paper may be summarized as follows:

1 ) A theoretical proof was provided for the so-called reciprocity property that both of
the transmission and reflection coefficients for an antisymmetric body are independent of
the incoming direction of the incident wave; this is true irrespective of whether the body
motions are fixed or free to oscillate in incident waves. In addition, it was also proved that
the energy of the symmetric (antisymmetric) wave component when the incident wave is
coming from the right is equal to that of the antisymmetric (symmetric) wave component
when the incident wave is coming from the left.

2 ) With one horizontal fin attached to the right or left bottom part (or twin horizontal fins
to both sides of the bottom) of a rectangular body, zero wave transmission can be realized
at a certain frequency. By changing the length of a fin, this frequency can be adjusted and
thus set to almost the middle in the frequency range of our interest. In this manner, it may
be possible to make the transmission wave small over a wide range of frequencies.

3 ) With 2 horizontal fins attached to upper and lower parts on the same vertical side (or
2 pairs of 2 horizontal fins to both of the vertical sides) of a rectangular body, there exist
2 different frequencies at which zero wave transmission is realized. Thus we can optimize
the number, size, and location of horizontal fins with which the wave transmission becomes
small over the frequency range of our interest.

4 ) The heave amplitude can be reduced in the frequency range of our interest by increasing
the number of horizontal fins, mainly because the added mass increases, hence the resonant
frequency shifts to a lower frequency (longer wavelength).

5 ) The vertical position of horizontal side fins in Model-4 is not influential in reducing
the transmission coefficient, and the length of the fins is more important in changing the
frequency of zero transmission.
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ABSTRACT

The forced oscillation test in heave using a box-shaped floating body was conducted in a
narrow wave channel to obtain the added-mass and damping coefficients. When the gap
between the sidewalls of the model and the wave channel was 5 mm, measured results
showed unnatural variation at higher frequencies, and there was a large discrepancy from
computed results by a 2D BEM based on the potential-flow theory. Measured results after
lessening the gap from 5mm to 1mm became reasonable, but we could still observe notice-
able discrepancy and dependency on the oscillation amplitude in the damping coefficient.
To understand the hydrodynamic reasons in these observations, numerical computations
were performed using a 3D BEM for potential flows and an in-house 2D computer code
for nonlinear viscous fluids. We confirmed through comparisons that the unnatural varia-
tion observed at higher frequencies for the gap equal to 5mm was associated with trapped
waves generated in the gap, and that the discrepancy in the damping coefficient between
the experiment and the computation by BEM was associated with the effect of vortex
shedding.

Keywords: Added mass and damping coefficient, 3D effects, viscous effects, forced oscil-
lation test.

1. INTRODUCTION

We are currently concerned with strongly nonlinear wave-body interactions such as a lo-
cal, green-water impact on deck and its effects on the global motion of a floating body in
large-amplitude waves. Numerical calculation methods applicable to such strongly nonlinear
problems are being developed at the RIAM (Research Institute for Applied Mechanics) of
Kyushu University (e.g. Hu and Kashiwagi, 2006). In particular, the method based on the
CIP scheme (Yabe et al., 2001) in a Cartesian grid is named RIAM-CMEN (Computation
Method for Extremely Nonlinear hydrodynamics). This computer code has been validated
through comparisons with 2D experiments for wave-induced motions of a body including the
water-on-deck phenomenon. Although RIAM-CMEN has now been extended to 3D prob-
lems and is being validated by comparison with 3D experiments measuring the pressure on

∗ Reprinted from International Journal of Offshore and Polar Engineering, Vol. 20, No. 1, pp. 1–
7, 2010 (March)
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deck and ship motions in waves (Hu and Kashiwagi, 2007), we realized that validation of
the code should be made for fundamental components of the hydrodynamic force appearing
in the motion equations of a floating body.

The model prepared for 2D experiments was box-shaped under the still-water surface,
with a rather small freeboard and a box-shaped upstructure installed on the deck, because
we planned to measure a phenomenon of water on deck and its effect on body motions.
Using this model, we conducted the forced heave oscillation test to measure the added-mass
and damping coefficients in heave. First the experiment was carried out with amplitude of
forced heave oscillation set to 10mm, and the obtained results were unnatural in variation
particularly at the higher frequencies of Ka > 2.0 (where a is the half-length of a model
and K = ω2/g). Although we did the same experiment with amplitude of forced oscillation
lowered to 5mm, the variation tendency was virtually the same and the results were much
different from those computed by a 2D BEM (Boundary Element Method) based on the
linear potential theory. Then, before proceeding to a comparison with computation by the
2D version of RIAM-CMEN, we were obliged to study the reasons for the unnatural results
obtained in the experiment. Through observation of the wave field around the model, we
noticed large-amplitude waves in the gap between the sidewalls of the model and the wave
channel, which seemed to be not propagating away from the body. From this observation,
we conjectured that the unnatural variation and values in the measured results, particularly
at higher frequencies, must be associated with a flow in the gap.

After several trials, the model was modified, attaching a thin plate to both sides of the
model, which lessened the gap between the model and wave channel from 5mm to 1mm.
With this modification of the model, the obtained results were found to be reasonable
and close to the computed results by a 2D BEM. In order to understand more clearly the
hydrodynamic reasons in this drastic change, we performed numerical computations using a
3D BEM with the method of mirror images to see 3D effects, and the 2D RIAM-CMEN to
see viscous effects. A comparison of these results with corresponding experiments seems to
be convincing and provides us with a suggestion for carrying out 2D experiments in a wave
channel.

This paper is organized as follows. First, the experiment and obtained results are shown
in the next section, including a comparison with results computed by a 2D BEM. Next, a
brief description is given for the numerical computation methods adopted; that is, a 3D BEM
combined with the method of images and the 2D RIAM-CMEN solving the Navier-Stokes
equations. Then, the comparison is shown between measured and computed results, and
discussions are undertaken on 3D effects related to trapped waves in the gap and viscous
effects associated with vortex shedding. Conclusions are summarized last.

2. EXPERIMENT

The forced oscillation test for measuring the heave added-mass and damping coefficients was
conducted in a narrow and long wave channel (18 m in length, 0.3 m in width, and 0.4 m
in water depth) at the Research Institute for Applied Mechanics of Kyushu University. The
model used in the experiment was box-shaped under the still water level, as shown in Fig. 1,
and its length and draft are L = 0.5 m and d = 0.1 m. The model was originally made as
the width being B = 0.29 m in width, which means that the gap between the sidewalls of
the channel and the box-shaped model is s = 5 mm on both sides.

In the forced heave oscillation test, the harmonic heave motion z(t) is given, for example,
as z(t) = za cosωt by a forced oscillation apparatus, where za is the amplitude of heave
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Fig. 1 Dimensions of a tested box-shaped model in a wave channel and the location of
wave probes.

and ω the angular frequency of harmonic oscillation. Then the reaction force, say F (t),
is measured by a dynamometer and analyzed with the Fourier-series expansion. From the
linearized motion equation in heave, the measured reaction force F (t) may be expressed as:

F (t) = −
{
(m+A33)z̈(t) +B33ż(t) + C33z(t)

}
, (1)

where m is the mass of a body and A33, B33, and C33 are the added mass, damping coef-
ficient, and restoring-force coefficient, respectively. Since m and C33 = ρgLB are known in
advance, the added mass A33 and the damping coefficient B33 can be obtained by equating
the cosine and sine components, respectively, on both sides of Eq. 1.

In addition to the force measurement by a dynamometer, the amplitude of a progressive
wave was also measured by a capacitance-type wave probe at 2 different positions shown
in Fig. 1. Denoting the amplitude ratio between progressive wave (ζa) and heave oscillation
(za) as Ā = ζa/za, the principle of energy conservation in the potential-flow theory relates
the damping coefficient B33 with the progressive-wave ratio Ā in the form:

B33 =
ρg2

ω3
Ā2 . (2)

A comparison (difference) between 2 different values of B33, one obtained from the direct
measurement of the force, and the other from Eq. 2, may provide information on viscous
effects.

Obtained results of the added-mass and damping coefficients are shown in nondimensional
form in Figs. 2 and 3; these are for the amplitude of forced heave motion equal to za = 5
mm and 10 mm, respectively. The nondimensional forms of the coefficients are such that:

A33/ρa
2, B33/ρa

2
√
g/a,

where a = L/2 is half breadth, and the abscissa is taken as Ka = ω2a/g. The solid
and broken lines indicate computed results by a 2D BEM using the free-surface Green
function which satisfies the linearized boundary conditions on the free surface and bottom
of constant finite water depth and also the radiation condition of outgoing waves. Note that
the measured results in Figs. 2 and 3 are for the case where the gap between the sidewall of
the wave channel and that of box-shaped model is s = 5 mm.



348 Masashi KASHIWAGI and Changhong HU

s=5mm, z          =5mma

Ka

Added mass

Damping coeff.

A
3
3
/
ρ
a

a
2

B
3
3
/

/
ρ
a

2
g

,

s=5mm, z          =10mma

Ka

Added mass

Damping coeff.

A
3
3
/
ρ
a

a
2

B
3
3
/

/
ρ
a

2
g

,
Fig. 2 Heave added-mass and damping coef-

ficients for the case of gap equal to
s = 5 mm and oscillation amplitude
equal to za = 5 mm. Solid and bro-
ken lines are computed results by 2D
BEM

Fig. 3 Heave added-mass and damping coef-
ficients for the case of gap equal to
s = 5 mm and oscillation amplitude
equal to za = 10 mm. Solid and bro-
ken lines are computed results by 2D
BEM

We can see that the variation tendency in measured results is the same irrespective of the
amplitude of forced heave motion. (Exactly speaking, the damping coefficients obtained by
the direct force measurement at za = 10mm are larger than those measured at za = 5mm
at higher frequencies.) More importantly, variation in the added mass and the damping
coefficient obtained by the direct force measurement looks unnatural in the frequency range
of Ka > 2.0. This unnatural variation may not be attributed to viscous effects only. In
fact, a tendency to become apart from predicted values by the BEM in the added mass for
Ka > 2.0 should have nothing to do with viscous effects. In addition, the difference between
the damping coefficient obtained by the force measurement and that obtained from the
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Fig. 4 Heave added-mass and damping coef-
ficients for the case of gap equal to
s = 1 mm and oscillation amplitude
equal to za = 5 mm. Solid and bro-
ken lines are computed results by 2D
BEM

Fig. 5 Heave added-mass and damping coef-
ficients for the case of gap equal to
s = 1 mm and oscillation amplitude
equal to za = 10 mm. Solid and bro-
ken lines are computed results by 2D
BEM
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energy-conservation principle is too large to explain only with the effect of vortex shedding.
From these results, we envisaged that 3D effects associated with a flow in the gap between

the sidewalls of the wave channel and the tested model exist in the results shown in Figs. 2
and 3. In order to confirm this conjecture, the model was modified by attaching to both
sides of the model a thin plate 4mm in thickness and the same in form and size as the side
of the model, resulting in the gap being s = 1mm. Then the same experiment and analysis
were carried out after the modification, and obtained results are shown in Figs. 4 and 5 in
the same manner as before. We can see that the added mass agrees with the predicted value
by a 2D BEM, and that there is no unnatural tendency at higher frequencies as compared to
the case where the gap equals s = 5mm. Further, variation in the damping coefficient also
looks plausible in that the measured values by a dynamometer are closer to but still larger
than the predicted line by a 2D BEM and measured values from the energy-conservation
principle.

Comparing the results of za = 5mm with those of za = 10mm, we can see that the
damping coefficient by the force measurement becomes larger as the amplitude of forced
oscillation increases; this is also plausible when considering that the amount of vortex shed-
ding and its effect on the force depend on the oscillation amplitude (Keulegan-Carpenter
number).

In order to understand 3D effects due to a flow in the gap between the model and wave
channel and viscous effects due to vortex shedding, we performed numerical computations
using a 3D BEM based on the method of mirror images and a 2D CFD method solving the
Navier-Stokes equations. Those computation methods are summarized directly below.

3. NUMERICAL COMPUTATIONS

3.1 3-D Higher-Order BEM

As usual in the BEM, the flow is assumed to be incompressible and inviscid with irrotational
motion, and then the velocity potential is introduced, satisfying Laplace’s equation. The
boundary conditions are linearized, and all oscillatory quantities are assumed to be time-
harmonic with angular frequency ω.

Since the corresponding experiment is the so-called radiation problem, the velocity po-
tential is expressed in the form:

Φ = Re
[
iωXj ϕj(x, y, z) e

iωt
]
. (3)

Here Xj denotes the amplitude of forced motion in the j-th mode (j = 3 only in the present
paper) and ϕj the radiation potential due to unit velocity in the j-th mode.

A right-hand Cartesian coordinate system is considered, with the x-y plane taken on the
undisturbed free surface, and the positive z-axis taken vertically downward. The origin of
the coordinate system is placed at the center of a floating body, and the water depth is
assumed constant as in the experiment. Then the boundary conditions to be satisfied are

[F ]
∂ϕj
∂z

+Kϕj = 0 on z = 0, (4)

[B ]
∂ϕj
∂z

= 0 on z = h, (5)

[H ]
∂ϕj
∂n

= nj on SH , (6)
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[W ]
∂ϕj
∂y

= 0 on y = ±(b+ s), (7)

and the radiation condition of outgoing waves at longitudinal infinity of the wave channel
(x → ±∞). Here K = ω2/g with g the gravitational acceleration, and nj in Eq. 6 denotes
the j-th component of the normal vector, defined as positive when directing out of the body
surface (SH) and into the fluid.

Eq. 7 is the condition of zero normal velocity on the vertical sidewall of a wave channel
located at y = ±(b + s), where b = B/2 and s is the gap between the model and the
wave channel. In order to satisfy this boundary condition, the method of mirror images
is adopted in the present study (see Fig. 6). Since there are vertical sidewalls of the wave
channel on both sides of an actual floating body, an infinite number of mirror images must
be considered to satisfy exactly the condition of Eq. 7. However, if we will use an ordinary
free-surface Green-function method with multiple bodies viewed as a large single body, the
number of mirror images must be truncated due to limitation in the number of unknowns
and accordingly in the computation time. As shown in Fig. 6, we consider 2M +1 bodies in
total, where m = 0 corresponds to the actual body and m = ±1, ±2, · · · , ±M correspond
to mirror-image bodies.

Then from Green’s theorem, an integral equation for the velocity potential on the surface
of bodies can be obtained in the form:

C(P)ϕj(P) +
M∑

m=−M

∫∫
Sm

ϕj(Q)
∂

∂nQ
G(P;Q) dS

=

M∑
m=−M

∫∫
Sm

∂ϕj(Q)

∂nQ
G(P;Q) dS, (8)

where C(P) is the solid angle; P = (x, y, z) the field point; Q = (x′, y ′, z ′) the integration
point on the surface of each body denoted as Sm; G(P;Q) is the free-surface Green function
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Fig. 6 Notations in the method of mirror images and coordinate system adopted in 3D
BEM.
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satisfying Eqs. 4 and 5, and the radiation condition for the case of no wave channel. Numer-
ical computations of this Green function for finite water depth were performed using both
the power-series expansion and integral expressions, depending on the horizontal distance
between P and Q.

The integral equation (Eq. 8) was solved by means of a HOBEM (higher-order boundary-
element method), described in Kashiwagi (1995), discretizing the body surface into a large
number of quadrilateral panels and representing both body surface and velocity potential
on each panel with 9-point quadratic shape functions.

Once the velocity potential ϕj on the body surface is determined by solving Eq. 8, the
added-mass and damping coefficients in heave of the actual body located in the middle of a
wave channel can be computed by:

A33 − i
B33

ω
= −ρ

∫∫
S0

ϕ3 n3 dS. (9)

Here we should note that the area of integration is just on the surface of the actual body.
In order to reduce the number of unknowns in numerical computations, the so-called

Ka
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M=7

2-D BEM
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s=5 mmDamping Coeff. (B33)

M=4

M=5

M=6

M=7

2-D BEM

Fig. 7 Convergence check in heave added-mass and damping coefficients computed by 3D
BEM with the method of mirror images for the case of gap equal to s = 5 mm
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double symmetry relations with respect to the x- and y-axes were employed, and thus only
a quarter of the total bodies was considered in the panel discretization. Suppose that the
numbers of panels in the x-, y-, and z-axes over a quarter of an actual body are Nx, Ny,
and Nz, respectively, and the number of mirror images in the positive y-axis is M ; then the
total number of unknowns are:

NT = N0 +M ×Nm

N0 = (Nx+ 1)× (Ny +Nz + 1) +Ny ×Nz

Nm = N0 + (Nx+ 1)× (Ny +Nz) + (Ny − 1)×Nz

 (10)

For the case of Nx = 10, Ny = 6, Nz = 4, and M = 7, the total number of unknowns
from Eq. 10 will be NT = 2070. In fact, after a convergence check, the number of panels
over a quarter of the actual body was fixed to Nx = 10, Ny = 6, and Nz = 4, and then the
convergence in the added-mass and damping coefficients, Eq. 9, with increasing the number
of mirror images was studied numerically. The results are shown in Fig. 7 for the case of a
gap equal to s = 5mm and in Fig. 8 for the case of s = 1mm. We can see from these figures
that the results can be regarded as almost converged for the frequency range of Ka > 1.0 by

Ka

s=1 mmAdded Mass (A33)
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M=5

M=6

M=7

2-D BEM
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s=1 mmDamping Coeff. (B33)

M=4

M=5

M=6

M=7

2-D BEM

Fig. 8 Convergence check in heave added-mass and damping coefficient computed by 3-D
BEM with the method of mirror images for the case of gap equal to s = 1 mm.
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taking M = 7. (In this case the total number of bodies is 2M +1 = 15). It should be noted
however that the results around Ka = 2.9 in Fig. 8 are somewhat sensitive to the frequency
and not accurate, because the damping coefficients at those frequencies sometimes become
negative. (The value on the entire bodies including mirror images must be positive from
consideration of energy conservation principle). Apart from this limited range of frequency
for the case of s = 1mm, computed results with M = 7 will be used in this paper as the
results of 3D BEM in comparison with measured results.

3.2 2D CFD Code: RIAM-CMEN

At RIAM (Research Institute for Applied Mechanics) of Kyushu University, efforts have been
devoted to develop an in-house computer code which can be applied to strongly nonlinear
problems in wave-body interactions. The main feature of this code is that the wave-body
interaction is treated as a multi-phase problem with a stationary Cartesian grid. In this
kind of method, the free surface must be detected by an interface-capturing scheme, for
which the CIP method, initiated by Yabe et al. (2001) using a density function is basically
adopted. The CFD code developed in this framework is given the code name RIAM-CMEN
(Computation Method for Extremely Nonlinear hydrodynamics). Although RIAM-CMEN
is extended to 3D problems, the 2D version will be used in the present study for a comparison
with results measured in the forced oscillation test.

In this code, an unsteady, viscous and incompressible flow is considered. Then the gov-
erning equations for the fluid velocity ui in the i-th direction and the pressure p are as
follows:

∂ui
∂xi

= 0, (11)

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+

1

ρ

∂

∂xj

(
µSij

)
+ fi , (12)

where Sij = ∂ui/∂xj +∂uj/∂xi is the viscous stress; ρ is the fluid density; µ is the viscosity
coefficient; and fi denotes a body force such as the gravity force, etc. The surface tension
is neglected, and no turbulence models are introduced.

To solve Eqs. 11 and 12 with a finite difference method, a Cartesian grid with staggered
arrangement of the variables is employed. The calculation of time evolution in Eq. 12 is
performed by a fractional step method, with the equation divided into 3 steps:

• advection phase (qn → q∗);

• first non-advection phase (q∗ → q∗∗);

• and second non-advection phase (q∗∗ → qn+1),

where q represents the variables to be computed, and tn+1 − tn = ∆t is the size of one time
step.

In the advection phase, only the advection equation is solved with the CIP scheme (Yabe
et al., 2001), constructing an interpolation function for the profile of a quantity concerned
within a computational cell in terms of a cubic polynomial and using it during the advection
with a semi-Lagrangian concept.

In the first nonadvection phase, all terms on the right-hand side of Eq. 12 except for the
pressure-related terms are evaluated using an Euler explicit scheme with a central finite
difference algorithm. In the second nonadvection phase, coupling between the velocity and
the pressure is treated by an implicit scheme. Taking account of the continuity equation,
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Eq. 11, the following Poisson-type equation can be obtained:

∂

∂xi

(
1

ρ

∂pn+1

∂xi

)
=

1

∆t

∂u∗∗i
∂xi

. (13)

Equation 13 is assumed valid for liquid, gas and solid phases, thus giving the pressure dis-
tribution in the whole computation domain.

The interface between water and air is the free surface, which is determined by an interface
capturing method. To recognize different phases in a multi-phase flow, we define density
functions ϕm for liquid (m = 1), gas (m = 2), and solid (m = 3) phases. The density
function for a solid body ϕ3 will be computed first by integrating in time the equations
of body motions, thus determining the exact position of the rigid-body surface. Next,
the density function for liquid ϕ1 will be determined by solving the advection equation.
Finally, the remaining density function for gas ϕ2 can be determined from a simple identity
ϕ1 + ϕ2 + ϕ3 = 1.

The advection equation for ϕ1 may be solved by using some version of CIP-based schemes.
In the present paper, THINC (Tangent of Hyperbola for INterface Capturing) scheme, orig-
inally proposed by Xiao et al. (2005), is adopted. This scheme is based on a conservative
form of the advection equation:

∂ϕ1
∂t

+
∂(ujϕ1)

∂xj
= 0. (14)

Hence the conservation of mass may be guaranteed.
The main concept for solution is the same as that in the CIP method, but unlike a higher-

order polynomial in the CIP method, a hyperbolic tangent function is used to reproduce a
step-like sharp change of ϕ1 near the free surface. Thus, no spurious oscillation appears in
the results. Hu and Kashiwagi (2007) provide more details.

As already described, a floating body is treated as a rigid body. The body surface is
approximated using virtual particles, which have the geometrical information of the local
area and the normal vector to the body surface. The pressure at a particle can be evaluated
by interpolation in terms of the pressures at surrounding grid points. Using the pressure
thus obtained and the geometrical information at particles, hydrodynamic forces on the
body can be calculated as:

Fj = −
∫∫

SH

p nj dS, (15)

where SH denotes the wetted portion of the body surface, and nj is the j-th component of
the normal vector.

Once the time history of the hydrodynamic force due to forced heave oscillation is ob-
tained, the added-mass and damping coefficients can be determined by the Fourier-series
analysis as in the experiment.

Numerical computations by RIAM-CMEN were performed with a grid of 400×183 (in
the horizontal and vertical directions, respectively), in which the minimum grid spacing was
3 mm around the body. The time step size was ∆t/T = 1/1000; T is the oscillation period.
The total simulation time was 15T and the time history for the last 10T was used for the
Fourier analysis to calculate the added-mass and damping coefficients.

4. COMPARISON AND DISCUSSIONS

Results computed by a 3D BEM based on the method of mirror images and by the 2D version
of RIAM-CMEN are compared with results measured by the experiment. The results for
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Fig. 9 Comparison of heave added-mass and damping coefficients for the case of gap equal
to s = 5 mm and oscillation amplitude equal to za = 5 mm
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Fig. 10 Comparison of heave added-mass and damping coefficients for the case of gap equal
to s = 5 mm and oscillation amplitude equal to za = 10 mm

the gap of s = 5 mm are shown in Fig. 9 for the case of oscillation amplitude of za = 5
mm, and in Fig. 10 for the case of oscillation amplitude of za = 10 mm. In the same way,
the results for the gap of s = 1 mm are shown in Figs. 11 and 12 for za = 5 mm and 10
mm, respectively. Results computed by the 2D and 3D BEMs are the same irrespective
of the amplitude of forced oscillation, because they are based on the linear theory. The
damping coefficients shown in these comparisons are only the values obtained by the direct
force measurement, and they are indicated by open triangles. On the other hand, measured
values of the added mass are indicated by open circles.

Results computed by the 3D BEM show a sharp variation around Ka = 2.5 for the case
of s = 5 mm and Ka = 2.8 for the case of s = 1 mm. This may be attributed to the presence
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Fig. 11 Comparison of heave added-mass and damping coefficients for the case of gap equal
to s = 1 mm and oscillation amplitude equal to za = 5 mm
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Fig. 12 Comparison of heave added-mass and damping coefficients for the case of gap equal
to s = 1 mm and oscillation amplitude equal to za = 10 mm

of trapped wave generated in the gap between the body and the sidewall of the wave channel
(Linton and Evans, 1992; Maniar and Newman, 1997). The cut-off frequency to be used for a
rough estimation of trapped waves is given by KBT = π, where BT is the width of a channel.
In the present case, this estimation gives Ka = KBT (a/BT ) = π(0.25/0.3) ≃ 2.62, which
seems to correspond to the frequency where a sharp variation is observed in the computed
results.

First, looking at Fig. 9, we can see that unnatural variation in the measured results
for Ka > 2.0 may be explained by the presence of a trapped wave. Of course there is a
quantitative difference around the trapped-mode frequency, and the variation in measured
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results is much milder than that in the results of 3D BEM results. This is partly because
the BEM assumes an inviscid fluid with irrotational motion, and viscous effects are ignored.
Another reason is that the measurement duration in the experiment was finite to take only a
part of the measured data, which was seemingly constant in amplitude, and thus the trapped
wave was not fully developed.

At any rate, we may conclude that a large difference between results measured and
computed by a 2D BEM can be partly explained by 3D effects due to the existence of the
gap between the sidewalls of the model and the wave channel.

A comparison of Figs. 9 and 10 reveals that the damping coefficient at za = 10 mm shown
in Fig. 10 is larger than that at za = 5 mm shown in Fig. 9, especially for Ka > 1.0. This
difference can be attributed to the viscous effect due to vortex shedding from sharp corners of
the model. In fact, computed results by the 2D RIAM-CMEN include such viscous effects,
and the difference from the results of 2D BEM may be regarded as a contribution from
viscous effects. Obviously the results computed by the 2D RIAM-CMEN for za = 10 mm
are larger than those for za = 5 mm, which is an important nonlinear effect. It is interesting
to see that the sum of the value by the 3D BEM and the difference between the 2D BEM
and RIAM-CMEN becomes almost the same in magnitude as the measured results.

Looking at Figs. 11 and 12 for the case of gap equal to s = 1 mm, the difference between
results computed computed by 2D BEM and 3D BEM is small except for Ka < 1.0 and
around the trapped-mode frequency. We note, as described before, that the results of 3D
BEM for Ka < 1.0 are not converged as the number of mirror images increases up toM = 7.
No unnatural variation can be seen in measured results around the trapped-mode frequency.
This implies that 3D effects are remarkably decreased by lessening the gap from s = 5 mm
to s = 1 mm. In particular, in Fig. 11 for za = 5 mm, results measured and computed
by 2D BEM are in good agreement, and the difference in the damping coefficient can be
explained as viscous effects, because results computed by the 2D RIAM-CMEN solving the
Navier-Stokes equations agree with measured results.

In Fig. 12 for za = 10 mm, the measured values of the added mass are slightly larger
than the computed values by the BEM, yet relatively in good agreement with the results
computed by the 2D RIAM-CMEN. Looking at the damping coefficient shown in Fig. 12, the
measured results are obviously larger than those computed by the BEM, and this difference
seems to be explained successfully by the 2D RIAM-CMEN, implying that the viscous effects
due to vortex shedding are crucial for a box-shaped body and for a case of large amplitude
in body motion.

5. CONCLUSIONS

With a model of a box-shaped floating body, we carried out the forced heave oscillation
test in a narrow and long wave channel to obtain the data of the heave added-mass and
damping coefficients for validating an in-house computer code (RIAM-CMEN) based on
CFD techniques. In the original experiment, the gap between the sidewalls of the model
and the wave channel was 5 mm. In this case, an unnatural variation was observed in the
added mass at higher frequencies, and correspondingly the damping coefficient was too large
to attribute only to the effect of vortex shedding. After modifying the model by lessening
the gap from 5 mm to 1 mm, we did the same experiment. In this case, the obtained results
became reasonable and close to computed results by a 2D BEM. In order to understand
hydrodynamic reasons in this drastic change, numerical computations were performed using
a 3D BEM with the method of images to see 3D effects, and the 2D RIAM-CMEN to
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see viscous effects. We found that the unnatural variation at higher frequencies (around
Ka = 2.5) was associated with the generation of a trapped wave in the gap between the
sidewalls of the model and the wave channel (that is, the effect of 3D flow), and that the
difference in the damping coefficient between the values obtained by the force measurement
and computed by the BEM was associated with the effect of vortex shedding.

From this study, we realized that the gap between the sidewalls of a model and a wave
channel must be made small as much as possible in carrying out 2-D experiments using a
wave channel, within the extent that the friction and surface tension does not affect the
results.
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ABSTRACT

Despite a large amount of work so far, it is said that the prediction accuracy in the area
of added resistance is not enough, particularly in a range of short waves. For engineering
purposes, application of the enhanced unified theory (EUT) seems promising for evaluat-
ing the ware-amplitude function, which is the most important term in Maruo’s formula
for the added resistance. To confirm the applicability of the EUT, measurements of the
wave-induced ship motions and added resistance are carried out using a modified Wigley
model at several Froude numbers, and obtained results are compared with computed ones.
Discrepancy in the added resistance is observed at short wavelengths when forward speed
is present, and the amount of this discrepancy tends to increase and then become constant
as forward speed increases. This discrepancy may be attributed to hydrodynamic nonlin-
ear effects in the wave diffraction at the bow, which may be intensified in the presence of
forward speed. A practical factor for correcting this discrepancy, which is to be applied
only to the component due to diffraction of an incident wave, is proposed in a form of
mathematical function in the Froude number and the ratio of wavelength to ship length.

Keywords: Added resistance, forward-speed effect, enhanced unified theory, wave diffrac-
tion, short wavelength.

1. INTRODUCTION

When a ship navigates in waves, the ship’s forward speed decreases compared to that in a
calm sea because the resistance increases in waves. This increase in resistance is called the
added resistance, which is due mainly to unsteady wave making, specifically the wave radia-
tion by ship oscillations and the diffraction of an incident wave on the ship hull. The added
resistance caused by the unsteady wave-making phenomenon can be exactly estimated by
Maruo’s formula (1960) which is based on the principle of momentum and energy conser-
vation. The wave-amplitude function (which is referred to as Kochin function) included in
this formula influences greatly the prediction accuracy of the added resistance. The Kochin
function consists of 2 wave components: the radiation wave and the scattering wave.

According to various studies so far, the strip-theory method seems to provide sufficient
engineering accuracy in a frequency range where the effect of the radiation wave is dominant.
On the other hand, the scattering wave generated mainly near the ship bow cannot be

∗ Reprinted from International Journal of Offshore and Polar Engineering, Vol. 20, No. 3,
pp. 196–203, 2010 (September)
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evaluated by the strip theory. Accordingly some practical formulae have been proposed (Fujii
and Takahashi, 1975; Faltinsen, 1980) for the component of the added resistance due to bow
wave diffraction in short waves. In contrast, the enhanced unified theory (EUT) developed
by Kashiwagi (1995a) takes account of the effect of wave reflection at the bow through the
body boundary condition in the diffraction problem in the framework of linearized slender-
ship theories. In addition, 3D and forward-speed effects ignored in the strip theory are
incorporated in the EUT through matching between the inner and outer solutions. Thus
we can expect that the EUT can predict the added resistance at least with engineering
accuracy over the whole range of wavelengths including short waves. In fact, for the case of
zero forward speed, it was confirmed (Kashiwagi, 1995a) that computed results for the wave
drift force by the EUT and a 3D panel method agree very well, not only for the diffraction
problem but also for the case of all modes of ship motion being free.

However, when the forward speed of a ship exists, the wave diffraction near the ship bow
becomes intensified, and hydrodynamic nonlinear effects which are not taken into account
in the EUT and Maruo’s formula may become prominent, resulting in a relatively large
difference between the results of EUT and measurement, especially in short waves.

In order to confirm the degree of agreement in the prediction by EUT and the amount
of discrepancy due to the effect of forward speed, we conducted measurements of the added
resistance and ship motions using a modified Wigley model at several Froude numbers,
including zero speed. Numerical computations are implemented with EUT and NSM (New
Strip Method), and also with a 3D HOBEM (Higher-Order Boundary Element Method) for
the zero-speed case. Their results are compared with measured ones, from which forward-
speed effects on the added resistance are investigated. It is found that the agreement at
zero speed between the EUT and the experiment is very good, but when the forward speed
of a ship exists, the discrepancy at shorter wavelengths is observed, which tends to increase
and then become constant in quantity as the forward speed increases. In order to correct
this discrepancy from a practical viewpoint, a correction factor to be applied only to the
added-resistance component due to wave diffraction is newly proposed as a function of the
Froude number and the ratio of wavelength to ship length.

2. CALCULATION METHOD

2.1 Formulation

Let us consider a ship advancing with constant speed U and oscillating with circular fre-
quency ω in deep water. As shown in Fig. 1, a Cartesian coordinate system moving with
the ship is taken, where the x-axis is directed to the ship’s bow and the z-axis is directed
downward.

With the assumption of linearized potential flow, the velocity potential is introduced and
expressed as:

Φ = U
[
− x+ ϕS(x, y, z)

]
+Re

[
ϕ(x, y, z) eiωt

]
, (1)

ϕ =
gζw
iω0

{
ϕ0(x, y, z) + ϕ7(x, y, z)

}
+

6∑
j=1

iωXjϕj(x, y, z), (2)

ϕ0 = exp
{
− k0z − ik0(x cosβ + y sinβ)

}
≡ ψ0(y, z) e

iℓx, (3)

ω = ω0 − k0U cosβ, k0 = ω2
0/g, ℓ = −k0 cosβ. (4)
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Fig. 1 Coordinate system and notations

Here ϕ0 denotes the incident-wave po-
tential; ζw, ω0, k0, β are the ampli-
tude, circular frequency, wavenumber,
and incident angle of an incoming reg-
ular wave, respectively; g is the gravi-
tational acceleration. ϕ7 in (2) denotes
the scattering potential, and ϕj the radi-
ation potential of the j-th mode of mo-
tion with complex amplitude Xj (j = 1
for surge, j = 3 for heave, and j = 5 for
pitch). ϕS in Eq. 1 denotes the steady
disturbance potential due to the forward
motion of a ship in otherwise calm water.

In order to obtain numerical solutions
for the unsteady velocity potentials rep-
resented by ϕj (j = 1 ∼ 7), the EUT is
applied in this study. The EUT was developed by Kashiwagi (1995a), extending the uni-
fied theory initiated by Newman (1978) and Sclavounos (1984) to include various important
terms for the prediction of the added resistance. Related theories are reviewed by Kashi-
wagi (1997, 2000). Below, we will describe only some important equations for computing
the added resistance together with comments which may help the readers.

2.2 Added Resistance by EUT

Once the linearized boundary-value problem for the unsteady velocity potentials have been
solved, the added resistance in waves, which is a time-averaged quantity of second order with
respect to the amplitude of incident wave, can be computed with Maruo’s formula (1960):

RAW

ρgζ2w
=

1

4πk0

[
−
∫ k1

−∞
+

∫ k3

k2

+

∫ ∞

k4

]

×
{ ∣∣HC(k)

∣∣2 + ∣∣HS(k)
∣∣2}κ(k){k − k0 cosβ}√

κ2(k)− k2
dk , (5)

where
κ(k) =

1

g
(ω + kU)2 = K + 2kτ +

k2

K0

K =
ω2

g
, τ =

Uω

g
, K0 =

g

U2

 (6)

k1

k2

}
= −K0

2

(
1 + 2τ ±

√
1 + 4τ

)
(7)

k3

k4

}
=

K0

2

(
1− 2τ ∓

√
1− 4τ

)
(8)

Here it should be understood that k3 = k4 for τ > 1/4 and the integration range from k2 to
∞ in Eq. 5 becomes continuous.

The wave-amplitude functions in Eq. 5, HC(k) and HS(k), are given as a superposition
of all components of ship-generated progressive waves, where HC(k) and HS(k) denote the
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symmetric and antisymmetric components of the wave, respectively, with respect to the
centerplane (y = 0) of a ship. Thus, specifically the symmetric component, for example, can
be given in the form:

HC(k) = H7(k)−
ωω0

g

∑
j=1,3,5

Xj

ζw
Hj(k), (9)

where Hj(k) is called the Kochin function for the radiation (j = 1 ∼ 6) and diffraction
(j = 7) problems. In the slender-ship theory, the symmetric component of the Kochin
function can be computed as follows:

Hj(k) =

∫
L

Qj(x) e
ikx dx (for j = 1, 3, 5, 7). (10)

Here Qj(x) denotes the strength of the source distribution along the x-axis in the expression
of outer solution in the EUT.

This source strength is determined as a solution of an integral equation to be obtained
through matching between the inner and outer solutions. The integral equation thus ob-
tained can be expressed as:

Qj(x) +
i

2π

(σ3
σ∗
3

− 1
)∫

L

Qj(ξ)f(x− ξ) dξ = σj(x) +
U

iω
σ̂j(x) for j = 1, 3, 5 (11)

for the radiation problem (where the asterisk in superscript means the complex conjugate)
and:

Q7(x) +
1

π
σ7(x)

{
Q7(x)hC(β)−

∫
L

Q7(ξ)f(x− ξ) dξ
}
= σ7(x) e

iℓx (12)

hC(β) = csc(β) cosh−1(| secβ|)− ln(2| secβ|)

for the symmetric part of the diffraction problem.
The kernel function f(x− ξ) in Eqs. 11 and 12 includes 3D corrections and forward-speed

effects, whose detailed expression for f(x − ξ) may be found in Newman and Sclavounos
(1980). σj(x) and σ̂j(x) in Eq. 11 represent 2D Kochin functions computed from the partic-
ular solution of the inner problem, which are essentially identical to the Kochin functions
used in the strip-theory method.

The inner solution in the EUT can be given in the form:

ϕj(x; y, z) =φj(y, z) +
U

iω
φ̂j(y, z)

+Cj(x)
{
φ3(y, z)− φ∗

3(y, z)
}

for j = 1, 3, 5 (13)

for the radiation problem and

ϕ7(x; y, z) =− e−k0z+iℓx cos(k0y sinβ)

+C7(x)
{
ψ2D(y, z) + e−k0z cos(k0y sinβ)

}
eiℓx (14)

for the symmetric part of the diffraction problem.
The first line on the right-hand side of Eqs. 13 and 14 represents the particular solu-

tion, and the second line represents a homogeneous solution with coefficient Cj(x) to be
determined through matching between the inner and outer solutions.
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We note that the particular solution in the radiation problem is identical to the solution
in the strip theory, and ψ2D in the homogeneous component in the diffraction problem is
sought to satisfy the body boundary condition of the form:

∂ψ2D

∂n
= k0 e

−k0z
{
(n3 + in1 cosβ) cos(k0y sinβ)

+n2 sinβ sin(k0y sinβ)
}

on SH(x) (15)

where nj denotes the j-th component of the unit normal vector, and SH(x) is the sectional
contour at station x.

Here it should be emphasized that a contribution of the n1-term is retained in Eq. 15, with
which the wave diffraction from the bow in the ship’s longitudinal direction is taken into
account in an approximate manner. Retaining this term in the body boundary condition
provides a big difference in the pressure distribution near the bow and the resulting wave-
exciting force in surge and the added resistance in waves.

The 2D Kochin function σ7(x) appearing in Eq. 12 is computed in terms of ψ2D. Hence,
the effect of bow wave diffraction as well as 3D and forward-speed effects are incorporated
in the source distribution Q7(x) as a solution of integral equation Eq. 12 for the diffraction
problem. In terms of the source distribution thus obtained, the Kochin function and then
the added resistance are computed as shown by Eqs. 10, 9 and 5.

The complex amplitude of the j-th mode of motion Xj , which is needed in computing
Eq. 9, is a solution of the coupled motion equations among surge, heave and pitch for the
symmetric component. In the EUT, the solution for surge is also given in a form of Eq. 13,
including 3D and forward-speed effects through the coefficient of homogeneous component.
The hydrodynamic forces (added mass, damping force and exciting force) needed in the
motion equations are computed with the inner solution, and thus various effects ignored in
the strip theory are also included implicitly through the complex amplitude of ship motion.
From these calculation procedures, it may be understood that the added resistance to be
computed by EUT is markedly different (at least theoretically) from that to be computed
by the strip-theory method.

Unlike a conventional method based on the strip theory, the source distribution is placed
just on z = 0 as explicitly written by Eq. 10. In this case, it has been believed that the
semi-infinite integral with respect to k in Eq. 5 causes a problem in numerical convergence.
However, no difficulty arises by using a semi-analytical calculation method proposed by
Kashiwagi (1992), and in fact that calculation method is adopted in this study for evaluating
the integrals in Eq. 5.

Lastly, for convenience in subsequent discussions, the added resistance to be computed
from Eq. 5 is written as a summation of 2 components as follows:

RAW = R
(d)
AW +R

(m)
AW , (16)

where R
(d)
AW denotes the added resistance computed only with the diffraction solution

(namely, the ship motions are completely fixed), and R
(m)
AW denotes all other contributions

concerned with ship motions. We note that R
(m)
AW involves terms which are quadratic in the

radiation wave and cross terms between the radiation and scattering waves.

3. EXPERIMENT

In the experiment which measures the wave-induced ship motions and added resistance, we
employed a modified Wigley model which is represented mathematically by the following
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equation:
η = (1− ζ2)(1− ξ2)(1 + a2ξ

2 + a4ξ
4) + ζ2(1− ζ8)(1− ξ2)4, (17)

where ξ = x/(L/2), η = y/(B/2), and ζ = z/d, with L, B, and d the length, breadth, and
draft, respectively. a2 and a4 are bluntness coefficients, which are taken as a2 = 0.6 and
a4 = 1.0 in the tested model. Table 1 shows other principal particulars of the model.

Table 1 Principal particulars of modified Wigley model and values used in the experiment

Length: L (m) 2.500

Breadth: B (m) 0.500

Draft: d (m) 0.175

Displacement: ∇ (m3) 0.13877

Gyrational radius: κyy/L 0.236

Center of gravity: OG (m) 0.031

Froude number: Fn 0.0, 0.1, 0.15, 0.2

Wavelength: λ/L 0.3 ∼ 2.0

We note that this modified Wigley model is rather blunt (L/B = 5) and of realistic ship
geometry, although it has longitudinal symmetry and no bulbous bow. The experiment was
conducted at the towing tank (100m long, 7.8m wide, and 4.35m deep) of Osaka University.

In order to investigate the effect of forward speed, measurements were carried out at
several Froude numbers; Fn = 0.0, 0.1, 0.15 and 0.2. In the measurements, ship motions
were free in surge, heave and pitch, while the model was towed with constant torque exerted
by a servomotor so as to keep the model at a time-averaged constant location. The force
acting on the model was measured by a dynamometer mounted on the lowest part of the
heaving rod. In addition, the heave and pitch motions were measured by a potentiometer,
the surge motion was measured by a laser displacement meter, and the incident wave was
measured by an ultrasonic wave sensor installed far ahead of the ship model in the towing
carriage.

Generated waves were all regular head waves (i.e. β = 180 deg). Accordingly the en-
counter circular frequency is given by ω = ω0+k0U with k0 = ω2

0/g = 2π/λ. The wavelength
was varied in the range of 0.3 ≤ λ/L ≤ 2.0. The amplitude of the incident wave was chosen
such that ζw/λ is about 1/60 for λ/L ≤ 0.7 and ζw is about 0.03m for λ > 0.7.

Measured data were Fourier-analyzed, and the first-harmonic quantities of the wave fre-
quency were expressed in terms of the amplitude and the phase difference with time reference
t = 0 taken when the trough of the incident wave was midship. The added resistance in
measurement (RAW ) is defined as the difference between the time-averaged steady compo-
nent of the wave-induced unsteady force expressed with Fourier-series expansion (F0) and
the resistance measured in still water (RS), that is:

RAW = F0 −RS . (18)

4. RESULTS AND DISCUSSIONS

4.1 Case of Zero Forward Speed

In the preceding study on the added resistance based on the strip-theory method, the added
resistance (referred to as the drift force for the zero-speed case) due to wave reflection from
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the bow part has been evaluated by a practical formula such as

R
(d)
AW =

1

2
ρgζ2w α1BBf , (19)

which was proposed by Fujii and Takahashi (1975) as a modification of the result of Havelock
(1940) for the drift force on a bottom-mounted vertical cylinder in very short waves. Bf

in Eq. 19 is called the bluntness factor, which can be computed only with the shape of the
water plane of a body concerned. Coefficient α1 is the so-called finite-draft effect, and it is
given from the reflection-wave coefficient (Ursell, 1947) by a vertical plate of draft d in the
form:

α1 =
π2I21 (k0d)

π2I21 (k0d) +K2
1 (k0d)

. (20)

where I1(k0d) andK1(k0d) denote the first kind and second kind of modified Bessel functions
of order one, respectively.

Today, at least for the case of zero forward speed, 3D panel methods can be applied with
high reliability to predict the drift force irrespective of the wavelength and body geometry.
Furthermore, it is relatively easy to compute not only the component of the drift force due
to wave diffraction but also other components related to a ship’s wave-induced motions.
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Fig. 2 Surge motion of modified Wigley
model in head waves at zero forward
speed

On the other hand, numerical compu-
tations in this paper are based on the
EUT and thus it is informative to check
to what extent the drift force predicted by
the EUT, agrees with that by a 3D panel
method. If good agreement exists, there
is no need to use a classical formula like
Eq. 19, and no need to introduce a cor-
rection factor like Eq. 20, at least for the
zero-speed case.

In this paper, to maintain good ac-
curacy, the HOBEM described in Kashi-
wagi (1995b) was employed as a 3D panel
method. In this HOBEM, the body
surface is discretized into a large num-
ber of quadrilateral panels, and both the
body surface and velocity potential on
each panel are represented with 9-point
quadratic shape functions. The normal
vector is computed by using differentia-
tion of the shape function and the coordi-
nates of a panel under consideration, and
the velocity potential on the body surface
is determined directly by solving an inte-
gral equation for that. The irregular fre-
quencies are removed by considering a few
additional field points on the interior free
surface of a floating body. The Kochin function needed in applying Maruo’s formula is
evaluated in terms of the velocity potential and its normal derivative on the body surface.
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Fig. 3 Heave motion of modified Wigley
model in head waves at zero forward
speed

Fig. 4 Pitch motion of modified Wigley
model in head waves at zero forward
speed
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Fig. 5 Wave drift force on modified
Wigley model in head waves at
zero forward speed

Comparisons of surge, heave, and pitch
motions are shown in Figs. 2, 3 and 4, re-
spectively, for the nondimensional ampli-
tude and the phase lead with reference to
the incident wave. The results of the 3D
HOBEM and the EUT are indicated by
thin and thick solid lines, respectively. For
reference, the results by the NSM (New
Strip Method) for heave and pitch are in-
dicated by a broken line. By comparison,
we can see favorable agreement between the
EUT and 3D HOBEM and also with mea-
sured values shown by open circles.

Figure 5 shows the result of compari-
son for the drift force (the added resis-
tance at Fn = 0.0). Although the drift
force is a 2nd-order quantity with respect
to the incident-wave amplitude, the agree-
ment between the EUT and 3D HOBEM
and also with measured results is good from a practical point of view.

From these comparisons, we can confirm that the EUT provides almost the same degree
of accuracy as the 3D HOBEM in the prediction of not only 1st-order but also 2nd-order
quantities for the zero-speed case.
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4.2 Case of Nonzero Forward Speed

Because 3D panel methods for the case of nonzero forward speed are generally time-
consuming and still not reliable, in this paper computed results by EUT are compared
with measured results in the experiment.
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Fig. 6 Added resistance on modified Wigley
model in head waves at Fn = 0.10

Fig. 7 Added resistance on modified Wigley
model in head waves at Fn = 0.15
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Fig. 8 Added resistance on modified
Wigley model in head waves at
Fn = 0.20

The results of comparison at Fn = 0.1,
0.15, and 0.2 are shown in Figs. 6, 7 and 8,
respectively. For reference, computed re-
sults by the NSM are also shown with a
broken line in each figure. Note that for
the case of Fn = 0.1, a special wavelength
corresponding to τ = Uω/g = 1/4 exists
within the range of the wavelength tested,
specifically at λ/L = 1.465.

We can see that the maximum value of
the added resistance increases with increas-
ing forward speed of a ship and the wave-
length at which the added resistance takes
a maximum becomes longer as the forward
speed of a ship increases. (This is because
the resonance frequency in ship motions
shifts to a longer wavelength as the forward
speed increases on account of a Doppler
effect.) These characteristics are well ac-

counted for by the EUT, and the degree of agreement with measured values looks good
except in the range of short wavelengths. It should be noted that the amount of discrepancy
in this short-wavelength range is not so large for the case of Fn = 0.1 but tends to increase
as the Froude number increases.

Considering that the agreement of the results of the EUT with those of 3D HOBEM and
experiment is favorable for the zero-speed case, this discrepancy at short wavelengths must
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be attributed to some forward-speed effects associated with diffraction of an incident wave
near the bow, such as the energy dissipation due to wave breaking which is not taken into
account in Maruo’s theory for the added resistance and cannot be accounted for by a linear
theory like the EUT.

Notwithstanding a discrepancy mentioned above, it is obvious from a comparison with
computed results by NSM that the results of the EUT can partially account for the effect
of wave reflection at the bow simply by retaining a contribution of the x-component of the
normal vector in the body boundary condition for the diffraction problem.

4.3 Correction of Forward-Speed Effect

In the Fujii-Takahashi formula for the component of added resistance due to wave diffraction,
a correction for the forward-speed effect is incorporated with coefficient α2 in the form:

R
(d)
AW =

1

2
ρgζ2w α1

(
1 + α2

)
BBf

α2 = 5.0
√
Fn

 (21)

This coefficient α2 represents the effect of forward speed, but the dependency on Fn (func-
tion form and its coefficient) may change depending on ship-hull forms. In fact, Takahashi
(1987) modified slightly the coefficients in α1 and α2 after checking existing experimental
data, and some other data (e.g. Kuroda et al., 2008) seem to support a linear dependency
in Fn, that is, α2 ∝ Fn at least at smaller Froude numbers.

A close look at the present results (Figs. 6–8) for a modified Wigley model reveals that, as
already described, discrepancy can be seen only in a shorter-wavelength region where ship
motions are small. The amount of discrepancy is small at a lower Froude number and tends
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Fig. 9 Components in the added resistance and comparison between computed results by
EUT with correction and measured results for modified Wigley model in head waves
at Fn = 0.10
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Fig. 10 Components in the added resistance and comparison between computed results by
EUT with correction and measured results for modified Wigley model in head waves
at Fn = 0.15.
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Fig. 11 Components in the added resistance and comparison between computed results by
EUT with correction and measured results for modified Wigley model in head waves
at Fn = 0.20.

to increase and then approach a constant value with increasing the forward speed. Further,
this discrepancy attenuates rapidly as the effects of ship motions become dominant.

Taking account of these tendencies, we consider a correction only for the component of
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added resistance due to wave diffraction R
(d)
AW and propose the following correction formula:

RAW =
(
1 + f

)
R

(d)
AW +R

(m)
AW (22)

where
f = 4 tanh(Fn) exp

{
− 0.02

(λ/L)10

Fn3

}
(23)

The coefficients and the order of polynomials appearing in Eq. 23 are determined by trial
and error such that the result of Eq. 22 matches the measured results in this study.

The results obtained by Eq. 22 are shown by thick, solid lines in Figs. 9, 10 and 11 for
Fn = 0.1, 0.15 and 0.2, respectively. The original results by EUT are indicated by a broken

line. For reference, the original component due to wave diffraction R
(d)
AW is indicated by a

dash-dotted line, and the sum of all contributions related to ship motions R
(m)
AW is indicated

by thin solid line.
We can see from Figs. 9∼11 that corrected values according to Eq. 22 agree very well with

measured ones. (This is natural, because the correction factor in Eq, 23 is determined in that
fashion.) However, it should be pointed out that the coefficients in Eq. 23 are determined
only from the experimental data for a modified Wigley model and basic computations for

the components in Eq. 22, R
(d)
AW and R

(m)
AW , are performed using the EUT. Therefore, if a

correction is considered on the basis of computations by the NSM or equivalent methods
like the Fujii-Takahashi formula, the resulting correction factor will be obviously different
from Eq. 23. However, it may be worth noting that, as seen in Figs 5∼8, computed results
by the NSM for a modified Wigley model are different from the measured ones not only
at short wavelengths but also at longer wavelengths. This implies that the Fujii-Takahashi
formula combined with the strip-theory method may not conform to the experimental results
presented in this paper.

5. CONCLUSIONS

In order to investigate applicability of the EUT to the prediction of the added resistance,
particularly for short waves, we have conducted experiments using a modified Wigley model
at a number of forward speeds (including zero speed), and the measured results were com-
pared with computed ones by the EUT. For the zero-speed case, a 3D HOBEM which can
give an exact solution in the framework of linearized potential theory has also been applied,
and its computed results were compared with corresponding ones by the EUT. The results
obtained in this study may be summarized as follows:

• For the zero-speed case, good agreement was confirmed between the EUT and 3D
HOBEM and also with measured results not only for the 1st-order ship motions but
also for the 2nd-order wave drift force (the added resistance at zero forward speed).
No correction is then needed for the prediction of the added resistance by the EUT.

• As the forward speed of a ship increases, the maximum value of the added resistance
increases, and the wavelength at which the added resistance takes a maximum becomes
longer on account of a Doppler effect.

• At shorter wavelengths where ship motions are small, discrepancy in the added resis-
tance could be observed between computed results by the EUT and measured results.
The amount of this discrepancy is small at a lower speed and tends to increase and
then approach a constant value with increase of the forward speed. As the ship-motion
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effects become dominant, the discrepancy observed at shorter wavelengths becomes
small rapidly.

• A correction factor for this discrepancy was proposed as a function of Fn and λ/L
and applied to the diffraction component computed by the EUT for the case of fixed
ship motions. The results corrected with this correction factor are naturally in good
agreement with measured results in this study.

The applicability of the correction formula presented in this paper to other hull forms
must be confirmed and modified if necessary, which is left to future work.
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Abstract

It is known that the added resistance in waves can be computed from ship-generated un-
steady waves through the unsteady wave analysis method. To investigate the effects of
nonlinear ship-generated unsteady waves and bluntness of the ship geometry on the added
resistance, measurements of unsteady waves, wave-induced ship motions, and added re-
sistance were carried out using two different (blunt and slender) modified Wigley models.
The ship-generated unsteady waves are also produced by the linear superposition using the
waves measured for the diffraction and radiation problems and the complex amplitudes of
ship motions measured for the motion-free problem in waves. Then a comparison is made
among the values of the added resistance by the direct measurement using a dynamometer
and by the wave analysis method using the Fourier transform of measured and superposed
waves. It is found that near the peak of the added resistance where ship motions become
large, the degree of nonlinearity in the unsteady wave becomes prominent, especially at
the forefront part of the wave. Thus, the added resistance evaluated with measured waves
at larger amplitudes of incident wave becomes much smaller than the values by the di-
rect measurement and by the wave analysis with superposed waves or measured waves at
smaller amplitude of incident wave. Discussion is also made on the characteristics of the
added resistance in the range of short incident waves.

Keywords: Added resistance, unsteady wave analysis, Fourier transform, linear superpo-
sition, nonlinear effects.

1. Introduction

When a ship navigates in waves, the resistance on the ship increases compared with that in
calm water. This increase of resistance is called added resistance. Because accurate estima-
tion of the added resistance is important and essential for evaluating the ship performance
in actual seas, a large number of work has been made so far on this topic. It is well known
by virtue of Maruo’s (1960) work that the dominant component in the added resistance is
the one resulting from unsteady disturbance waves generated by a ship and their interac-
tion with incident waves. Maruo’s theory is based on what we call the far-field method
considering the energy and momentum flux of diffracted and radiated waves at a large dis-
tance from the ship. With the same approach, Gerritsma and Beukelman (1972) proposed
a simpler calculation method in terms of strip-theory results, which has been applied by
many other researchers using different versions of the strip-theory method; e.g., by Salvesen
(1974) using the STF strip theory (Salvesen et al. 1970). The added resistance can also be

∗ Reprinted from Journal of Ship Research, Vol. 57, No. 4, pp. 220–240, 2013 (December)
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computed by the near-field method as the time-averaged second-order force in the incident-
wave amplitude by direct pressure integration on the wetted surface of a ship. For instance,
Faltinsen et al. (1980) introduced the near-field method together with a simplified formula
for the added resistance to be applied in a short-wave length region. Theoretically, computed
results by the near- and far-field methods must be identical as long as the potential-flow
formulation is used assuming the inviscid flow with irrotational motion. However, generally
some discrepancies may exist between the two methods because of numerical inaccuracy
and approximations in each method. In an actual fluid, there must be a difference, because
the results by the near-field method based on the direct pressure integration must include
other components related to the energy loss resulting from fluid viscosity and wave break-
ing. However, it has not been made clear how much in the added resistance is associated
with the energy loss resulting from fluid viscosity and wave breaking. Furthermore, even
for the wave-making component, details in the hydrodynamic relation between the added
resistance and ship-generated unsteady waves seem to be still unclear, because in most of
the past work, e.g., Kashiwagi et al. (2010), computed values by the potential-flow theory
for the wave-making component in the added resistance have been compared with the total
value of the added resistance measured directly by a dynamometer.

On the other hand, Ohkusu (1977, 1980, 1984) proposed a method for measuring ship-
generated unsteady waves and then evaluating the wave amplitude function (known as the
Kochin function) and the added resistance. This analysis method enables us to compare the
wave profile and to take out only the wave-making component from the total added resistance
and thus may provide us with deeper understanding on hydrodynamic relations. However,
accurate measurement of unsteady waves including higher-order nonlinear components is
not so easy and subsequent analyses for the Fourier transform of the wave elevation and for
the added resistance have not been made in an accurate and convincing manner.

The present study is intended to evaluate the magnitude of unsteady wave-making compo-
nent in the added resistance, to understand hydrodynamic relations of the added resistance
with ship disturbance waves (for instance, which component or which part of unsteady
waves is dominant in the added resistance), to elucidate nonlinear effects in ship-generated
unsteady waves on the added resistance, to investigate the effect of bluntness in the ship
geometry, and so on. For that purpose, experiments are conducted for measuring ship-
generated unsteady waves (including second-order second-harmonic components) for three
canonical cases of the diffraction problem (where all modes of ship motions are fixed except
for the steady translation) in regular head waves, the forced oscillation problem in heave and
pitch (where surge is fixed) in otherwise calm water, and the motion-free problem (where
surge, heave, and pitch are free) in regular head waves. The added resistance is measured
directly using a dynamometer for all three cases and also measured are the wave-exciting
forces in the diffraction problem and wave-induced ship motions in the motion-free problem.
To see the degree of nonlinearity, measurements related to the incident wave are performed
with two different incident-wave amplitudes. Furthermore, two different (relatively blunt
and slender) modified Wigley models are adopted in the experiments, and all of the mea-
surements mentioned are implemented for both modified Wigley models. In fact, it was
revealed in our preliminary experiment (Kashiwagi 2010; Wakabayashi et al. 2010) that
a large discrepancy exists between the results of added resistance by the direct measure-
ment and by the unsteady wave analysis method, particularly near the peak of the added
resistance where wave-induced ship motions become large.

To study possible reasons of this discrepancy, the linear superposition in ship-generated
unsteady waves is made using measured waves in the diffraction and radiation problems and
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the complex amplitudes of heave and pitch motions measured in the motion-free problem.
Through comparisons of superposed waves with directly measured waves in the motion-free
condition in incident waves of two different amplitudes, the amount of nonlinearity on the
added resistance is investigated. A comparison of the values of the added resistance measured
for the diffraction and motion-free problems provides information on the characteristics of
added resistance in short incident waves and on the importance of steady sinkage and trim
on the added resistance.

In this article, Section 2 outlines the theory on the unsteady wave analysis and its relation
with the added resistance. In Section 3, an analytical investigation is made on the funda-
mental feature of the Fourier transform of wave components and then which component of
progressive waves is dominant in the added resistance. Experiments, analysis methods for
unsteady waves, and tested ship models are described in Section 4. Obtained results are
shown in Section 5, and discussions are made on nonlinear effects in the unsteady wave and
bluntness effects of ship geometry on the added resistance by comparing the results for two
different modified Wigley models. Conclusions are summarized in Section 6.

2. Theory for Unsteady Wave Analysis

We consider a ship advancing at constant forward speed, U , into a regular incident wave
of amplitude, A, circular frequency ω0. The depth of water is assumed infinite; thus the
wave number of incident wave is given by k0 = ω2

0/g, with g the acceleration resulting
from gravity. Corresponding to the experiment, only the head wave is considered, and the
analysis is made with a right-handed Cartesian coordinate system O-xyz with the origin
placed at the center of a ship and on the undisturbed free surface, which translates with the
same constant speed as that of a ship along the positive x-axis. The positive z-axis is taken
upward. The unsteady responses of ship and associated ambient flow of fluid are assumed
to be periodic with circular frequency of encounter ω = ω0 + k0U .

By assuming the flow inviscid with irrotational motion, the velocity potential is introduced
and written in the form

Φ(x, t) = U
{
− x+ ϕS(x)

}
+Re

[ {
ϕ0(x) + ϕ(x)

}
eiωt

]
, (1)

where x = (x, y, z) and ϕS(x) denotes the steady disturbance potential; ϕ0(x) and ϕ(x) are
the spatial part of the incident wave and unsteady disturbance potentials, respectively. By
linear assumption, the disturbance potential ϕ(x) is decomposed as follows:

ϕ(x) =
igA

ω0
φ7(x) +

∑
j=1,3,5

iωXj ℓjφj(x) . (2)

Here φ7(x) denotes the scattering potential and φj(x) the radiation potential due to the
j-th mode of motion (j = 1, 3, 5 for surge, heave, and pitch, respectively) with Xj its

k3 k4 k
1

k2

x

z

U

O

Fig. 1 Coordinate system and schematic illustration of wave components
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complex amplitude. Symbol ℓj is adopted to express the length dimension for pitch; that is,
ℓ5 = L/2 and ℓj = 1 for surge and heave.

At a distance from a ship, the elevation of ship-generated unsteady wave may be computed
by neglecting the contribution from the steady disturbance in the form

ζ(x, y) = − 1

g

(
iω − U

∂

∂x

)
ϕ(x, y, 0) (3)

and each component of the unsteady disturbance potentials in Eq. (2) can be expressed by
the far-field representation in the slender-ship theory as follows:

φj(x, y, 0) =

∫
L

Qj(ξ)G(x− ξ, y, 0) dξ , (4)

whereQj(x) denotes the source strength along the x-axis andG(x, y, z) is the Green function,
equivalent to the velocity potential resulting from an oscillating and translating source with
unit strength. By substituting Eq. (2) and Eq. (4) into Eq. (3) and neglecting the local wave
term in the Green function, the elevation of progressive wave can be computed from

ζ(x, y) =
i

2π

[
−
∫ k1

−∞
+

∫ k3

k2

+

∫ ∞

k4

]
C(k)

(ω + kU)

ω0

κ√
κ2 − k2

e−ikx−iϵk|y |
√
κ2−k2

dk, (5)

where
κ =

1

g

(
ω + kU

)2
= K + 2kτ +

k2

K0

K =
ω2

g
, τ =

Uω

g
, K0 =

g

U2
, ϵk = sgn(ω + kU)

 (6)

k1
k2

}
= −K0

2

(
1 + 2τ ±

√
1 + 4τ

)
, (7)

k3
k4

}
=

K0

2

(
1− 2τ ∓

√
1− 4τ

)
, (8)

C(k) = A

[
C7(k) +

ωω0

g

∑
j=1,3,5

Xj ℓj
A

Cj(k)

]
, (9)

Cj(k) =

∫
L

Qj(ξ) e
ikξ dξ. (10)

Here Cj(k) is known as the Kochin function (wave amplitude function) resulting from each
component in the disturbance potential, and C(k) in Eq. (9) is the total Kochin function
for the motion-free case. The complex amplitude of the j-th mode of ship motion, Xj (j =
1, 3, 5), must be determined from the coupled motion equations.

In accordance with Eq. (9) for the Kochin function, the spatial part of ship-generated
progressive wave ζ(x, y) can be written as the linear superposition of scattering wave ζ7(x, y)
and radiation waves ζj(x, y) by surge (j = 1), heave (j = 3), and pitch (j = 5) motions in
the form

ζ(x, y) = A

[
ζ7(x, y) +

∑
j=1,3,5

Xj ℓj
A

ζj(x, y)

]
. (11)
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Noting that the wave numbers kj (j = 1 ∼ 4) appearing as the limits of integration in
Eq. (5) are the roots of κ2 = k2 and ϵk = sgn(ω + kU) = −1 for −∞ < k < k1 and ϵk = 1
for k2 < k <∞, we can write the elevation of progressive wave, Eq. (5), in the form

ζ(x, y) =
i

2π

∫ ∞

−∞
u(κ2 − k2)C(k)

√
κ

k0

κ√
κ2 − k2

e−ikx−iϵk|y |
√
κ2−k2

dk, (12)

where u(κ2 − k2) is the unit step function, equal to 1 for κ2 > k2 and zero otherwise.
Let us consider the Fourier transform of ζ(x, y) with respect to x, defined by the following

integral:

ζ∗(ℓ, y) =

∫ ∞

−∞
ζ(x, y) eiℓx dx. (13)

Substituting Eq. (12) in Eq. (13) and using an integral representation of Dirac’s delta
function

1

2π

∫ ∞

−∞
ei(ℓ−k)x dx = δ(ℓ− k), (14)

we can obtain with relative ease the following relation:

ζ∗(k, y) = i C(k)

√
κ

k0

κ√
κ2 − k2

e−iϵk|y |
√
κ2−k2

. (15)

According to Maruo’s (1960) theory, the added resistance in head waves can be computed
in terms of the Kochin function by the following formula:

RAW =
ρg

4πk0

[
−
∫ k1

−∞
+

∫ k3

k2

+

∫ ∞

k4

] ∣∣C(k)∣∣2 κ√
κ2 − k2

(k + k0) dk. (16)

Therefore, substituting Eq. (15) in Eq. (16) provides a formula for computing the added
resistance with the Fourier transform of ship-generated unsteady waves in the form

RAW =
ρg

4π

[
−
∫ k1

−∞
+

∫ k3

k2

+

∫ ∞

k4

] ∣∣ ζ∗(k, y)∣∣2√κ2 − k2

κ2
(k + k0) dk. (17)

Here we should note a few things regarding the wave numbers kj (j = 1 ∼ 4) appearing
in Eq. (17). First, for τ > 1/4, k3 and k4 become complex as is obvious from Eq. (8), and the
integration range in Eq. (17) must be treated as continuous for k2 < k. Next, ω = ω0 + k0U
holds in head waves, which gives the following relations:

ω0 =
g

2U

(
− 1 +

√
1 + 4τ

)
k0 =

ω2
0

g
=
K0

2

(
1 + 2τ −

√
1 + 4τ

)
= −k2 = |k2|

 (18)

On the other hand, it can be proven that the relation between the ship’s speed U and the
phase velocity c of a wave with wave number kj (j = 1, 3, 4) along the x-axis is given by

0 < U <
c

2
for k3-wave

c

2
< U < c for k4-wave

c < U for k1-wave

 (19)
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Because c/2 is equal to the group velocity with which the energy of progressive wave is
transported, we can understand the location of existence, the relative wavelength, and the
propagation direction when viewed from a ship moving at forward speed U for each of the
kj-waves (j = 1 ∼ 4); these are schematically shown in Fig. 1. It is noteworthy that at
τ = 1/4, k3 becomes equal to k4 and U becomes equal to the group velocity of progressive
wave. For τ > 1/4, no wave exists ahead of the ship.

3. Weight Function in Added Resistance

In reality, there are various progressive-wave components with different wave numbers over
the integration range with respect to k shown in Eq. (17). To see which component of
progressive waves contributes predominantly to the added resistance, we will investigate the
values of the integrand of Eq. (17), by rewriting Eq. (17) in the form

RAW =
ρg

4π

[∫ k1

−∞
+

∫ k3

k2

+

∫ ∞

k4

]
W1(k)W2(k) dk, (20)

where
W1(k) =

∣∣ ζ∗(k, y)∣∣2 , (21)

W2(k) =

√
κ2 − k2

κ2
ϵk
(
k + k0

)
. (22)

It should be noted again that W2(k) = 0 at k = kj (j = 1 ∼ 4) because of κ2 = k2, and
W2 ≥ 0 over the integration range because k + k0 = k − k2 > 0 for k > k2 by Eq. (18) and
ϵk < 0 and (k + k0) < 0 for k < k1. Needless to say, W1 ≥ 0 but its value strongly depends
on the wave number k of progressive wave as will be analytically shown below.

To see qualitatively dominant wave components and general characteristics in the Fourier
transform of progressive waves, it may be informative to consider a simplified wave profile.
For that purpose, let us consider a wave component, propagating in the positive x-axis with
wave number kℓ and amplitude of the following form:

ζ(x, y) = α
u(xs − x)√
|x− xs|

e−ikℓx , (23)

where α denotes the amplitude coefficient, xs the starting point of wave existence along a
line parallel to the x-axis (thus may depend on y), and u(xs − x) the unit step function
which is nonzero at the downstream side from x = xs.

The Fourier transform of this wave may be expressed as

ζ∗(k, y) =

∫ ∞

−∞
ζ(x, y) eikx dx = α

√
π

|k − kℓ|
ei(k−kℓ)xs ei

π
4 sgn(k−kℓ) . (24)

Therefore, it is obvious that the value of W1(k) becomes very large at k = kℓ and decays
in proportion to 1/|k − kℓ|.

For larger values of k (i.e. shorter waves), W2(k) becomes small with order of O(1/k)
and the amplitude coefficient α must be small in reality. As already noted, kj (j = 1 ∼ 4) is
a root of κ2 − k2 = 0, and k+ k0 = k− k2. Hence, dominant wave components in the added
resistance may be relatively longer waves with smaller value of k satisfying k2 < k. We note
that if k2 < k < 0, the wave propagates in the negative x-axis like k2-wave in Fig. 1, and if
0 < k, the wave propagates in the positive x-axis like k3- and k4-waves in Fig. 1.
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4. Experiments

4.1 Wave measurement and analysis

Experiments were carried out, measuring the added resistance in head waves by a dynamome-
ter, ship-generated unsteady waves using a larger number of wave probes of capacitance type
and also wave-induced ship motions in the motion-free case. The measurement of unsteady
waves was performed with the multifold method developed by Ohkusu (1977). In this
method, as shown in Fig. 2, N wave probes (N = 12 in the present study) were fixed in
space and positioned with almost equal interval over the distance of ship’s movement in one
period of encounter along a longitudinal line parallel to the x-axis (at constant y).

t1

1

t2

x

y

X

U

O O

X 2X 3X NX

Y

t2

t1

Wave Probes

Ship Model

Incident Wave

w0(    )

Trigger

t=t   +t    =t   +X /Ui iii
'

'

'

(N=12)

Fig. 2 Schematic illustration for arrangement of wave probes in the unsteady-wave mea-
surement

In the coordinate system O-xy moving at constant speed U with a ship, the ship-generated
wave is expressed as the sum of steady and unsteady waves in the form

ζw(x, y; t) = ζ0(x, y) + ζc(x, y) cosωt+ ζs(x, y) sinωt

+ζ(2)c (x, y) cos 2ωt+ ζ(2)s (x, y) sin 2ωt+ · · · (25)

For brevity in the explanation subsequently, higher harmonic components will be omit-

ted (although the second-order second-harmonic components, ζ
(2)
c (x, y) and ζ

(2)
s (x, y), are

included in actual analyses).
Rewriting Eq. (25) with the space-fixed coordinate system O-XY in terms of the relation

X = x+ U t, Y = y, (26)

it follows that

ζw(X − Ut, y) = ζ0(X − Ut, y) + ζc(X − Ut, y) cosωt+ ζs(X − Ut, y) sinωt. (27)

Like in Fig. 2, let us denote the location of i-th wave probe as X = Xi (i = 1 ∼ N), the
time instant when the ship’s bow reaches the i-th wave probe as t = t′i = Xi/U , and the
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time from this moment as ti. Then we can write

t = ti + t′i = ti +Xi/U . (28)

Substituting this relation into Eq. (27) gives

ζw(−Uti, y) = ζ0(−Uti, y) + ζc(−Uti, y) cosω
(
ti +Xi/U

)
+ζs(−Uti, y) sinω

(
ti +Xi/U

)
. (29)

Because x = −U t, the wave record in time by the i-th wave probe, which will be denoted
as ζiw(t, y), can be written as

ζiw(t, y) = ζ0(x, y) + ζc(x, y) cosω
(
t+Xi/U

)
+ ζs(x, y) sinω

(
t+Xi/U

)
, (30)

where ti is rewritten as t and x = −Ut.
This equation implies that three unknowns (steady component ζ0(x, y) and unsteady

cosine and sine components ζc(x, y) and ζs(x, y)) can be determined from the wave data
ζiw measured at different time instants with phase difference of ωXi/U (i = 1 ∼ N) using
N wave probes. In the present experiment, N = 12 wave probes were used and thus the
unknowns can be determined with the least squares method (which is true even for the case
where second-order second-harmonic components are included in the analysis).

The Fourier transform of the measured unsteady wave written as a complex form of
ζ(x, y) = ζc(x, y)− i ζs(x, y) was computed as follows. Suppose that the range of x in actual
measurement is from b to a and the number of total data points isM+1. Then by assuming
linear variation between adjacent data points ( ζn ∼ ζn+1 ), we integrate analytically with
respect to x over each segment of data points. The result of this analytical integration can
be expressed as

ζ∗(k, y) ≃
∫ a

b

ζ(x, y) eikx dx =
M∑
n=2

Γn(k) ζn(y), (31)

where

Γn(k) =
1

k2

[
eikxn − eikxn−1

xn − xn−1
− eikxn − eikxn+1

xn − xn+1

]
(32)

=
1

2

(
xn+1 − xn−1

)
as k → 0

4.2 Tested ship models

To see the effect of bluntness of the ship model, two modified Wigley models with different
bluntness were used in the experiments: one is a blunt model with wider breadth (L/B = 5.0)
and the other is a slender model with L/B = 6.67. For convenience, these ship models are
called “blunt” and “slender” modified Wigley models, respectively, in the present study.
These modified Wigley models can be expressed mathematically as

(1) Blunt modified Wigley model:

η = (1− ζ2)(1− ξ2)(1 + 0.6ξ2 + ξ4) + ζ2(1− ζ8)(1− ξ2)4 (33)

(2) Slender modified Wigley model:

η = (1− ζ2)(1− ξ2)(1 + 0.2ξ2) + ζ2(1− ζ8)(1− ξ2)4 (34)
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Table 1 Principal dimensions of ‘blunt’ and ‘slender’ modified Wigley models

Item Blunt Slender

Length L(m) 2.5 2.0

Breath B(m) 0.5 0.3

Draft d(m) 0.175 0.125

Displacement ∇ (m3) 0.13877 0.04205

Water-plane area Aw (m2) 1.005 0.416

Gyrational radius κyy/L 0.236 0.248

Center of gravity KG (m) 0.145 0.0846

λ L λ L λ L

E A1 ρg BL E A3 ρg BL E A5
2ρg BL

Fig. 3 Wave-exciting surge force, heave force and pitch moment on the blunt modified
Wigley model at Fn = 0.2

X A1 X A3 X A5 k0

λ L λ L λ L

Fig. 4 Wave-induced surge, heave and pitch motions of the blunt modified Wigley model
at Fn = 0.2
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where ξ = x/(L/2), η = y/(B/2), and ζ = z/d. The principal dimensions of these two
models are shown in Table 1.

To see also the degree of contribution of each component wave ζj(x, y) defined in Eq. (11)
in the linear superposition of ship-generated unsteady waves to the added resistance, the
experiments were conducted for the cases of wave diffraction (where ship motions are com-
pletely fixed), forced oscillations in heave and pitch (where incident waves are absent), and
free response in waves (where surge, heave, and pitch are free to respond to waves). These
experiments were implemented for the two modified Wigley models in the same way.

The lateral distance of a longitudinal line used for the wave measurement from the center-
line of a ship (x-axis) was set equal to y = B/2+ 0.1 m. The Froude number was Fn = 0.2
in all measurements in the present study.

The incident waves were generated basically with target amplitude set equal to A = 3.0
cm for the blunt modified Wigley model and A = 2.5 cm for the slender modified Wigley
model (because the model size is different as shown in Table 1). When the wave steepness
2A/λ becomes larger than 1/30, the target value of incident wave amplitude was determined
to satisfy 2A/λ = 1/30.

In the present study, it is important to see the validity of linear superposition in the
unsteady wave and associated nonlinear effects on the added resistance. Thus, all experi-
ments in waves were performed for A = 1.0 cm as well. In the forced oscillation tests, the
oscillation amplitude was set equal to X3 = 1.0 cm for heave and X5 = 1.364◦ for pitch to
ensure satisfaction of the linear assumption in the wave generation.

λ/L

Fn=0.20, β=180 deg.

/ρ
g
Α

2
2 (B

/
L

)
R
A
W

Fig. 5 Added resistance on the blunt modified Wigley model at Fn = 0.2 in the motion-
free case
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5. Results and Discussions

5.1 Blunt modified Wigley model

First, the results of linear quantities of the wave-exciting forces and wave-induced motions
in surge, heave, and pitch are shown in Figs. 3 and 4. In these results, the phase lead
is defined as positive with reference to the time instant when the crest of incident wave
is at midship. Computed results by Enhanced Unified Theory (EUT), New Strip Method
(NSM), and Rankine Panel Method (RPM) are also included in these figures for comparison.
The readers are referred to Kashiwagi (1995, 1997) and Iwashita and Ito (1998) for the
details of EUT and RPM, respectively, both of which are frequency-domain linear calculation
methods, and the steady disturbance potential ϕS(x) is simply ignored in EUT, whereas
it is computed numerically as double-body flow in RPM and its effects on the body and
free-surface boundary conditions are properly taken into account. We can see from Figs. 3
and 4 that the linearity is well preserved in the first-order quantities of wave-exciting forces
and wave-induced motions; that is, the difference in nondimensional results measured at
A = 1.0 cm and A = 3.0 cm is small.

Next, various results on the added resistance are shown in Fig. 5. The results of direct
measurement by a dynamometer are shown with closed circle for A = 3.0 cm and open
circle for A = 1.0 cm. Corresponding results obtained by the unsteady wave analysis using
measured waves at A = 3.0 cm and A = 1.0 cm are shown with a closed triangle and open
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Fig. 6 Wave profiles generated by the blunt modified Wigley model at Fn = 0.2 in a
regular wave of λ/L = 0.9. (a) Superposed wave, (b) Measured wave at A = 1.0
cm, (c) Measured wave at A = 3.0 cm
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Fig. 7 Wave profiles generated by the blunt modified Wigley model at Fn = 0.2 in a
regular wave of λ/L = 1.1. (a) Superposed wave, (b) Measured wave at A = 1.0
cm, (c) Measured wave at A = 3.0 cm

triangle, respectively. In addition, computed results by EUT are shown with a solid line. We
can see a large discrepancy between the results by the direct measurement and the unsteady
wave analysis, particularly near the peak, but the results by the wave analysis at A = 1.0
cm are obviously larger than those by the wave analysis at A = 3.0 cm and approach the
values of direct measurement and potential-flow computation by EUT.

To see and confirm the linearity in the unsteady wave, the wave profile was computed
by the linear superposition according to Eq. (11), using the component waves obtained by
the experiments of wave diffraction (j = 7), forced heave (j = 3), and forced pitch (j = 5),
together with complex amplitudes of heave and pitch motions (shown in Fig. 4) measured
in the motion-free experiment. (The surge mode is not included, because the forced oscil-
lation test in surge could not be conducted.) For the scattering wave and complex motion
amplitudes in the linear superposition, the results measured at A = 1.0 cm are used. The
superposed wave profile was Fourier-transformed and the added resistance was computed
from Eq. (17). Obtained results from this linear superposition using component waves and
complex amplitudes are also shown in Fig. 5 with diamond symbol. It is remarkable that
these results are much closer to the results of direct measurement (especially at A = 3.0 cm)
and computed ones by EUT. Furthermore, except near the peak, the results with superposed
wave are very close to the ones with measured wave at A = 1.0 cm.

To see the difference at the level of wave profile, a comparison is shown among the
superposed wave, measured wave at A = 1.0 cm and measured wave at A = 3.0 cm in Fig. 6
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Fig. 8 Component waves in the linear superposition generated by the blunt modified
Wigley model at Fn = 0.2 in a regular wave of λ/L = 1.1. (a) Scattering wave, (b)
Heave radiation wave, (c) Pitch radiation wave, (d) Heave radiation wave with mo-
tion complex amplitude multiplied, (e) Pitch radiation wave with motion complex
amplitude multiplied.

for λ/L = 0.9 and in Fig. 7 for λ/L = 1.1 as two typical examples. From these comparisons,
we can see that the overall appearance of the wave profile is very similar between superposed
and directly measured waves. However a prominent difference exists near the forefront part
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Fig. 9 Wave profiles of the 0th-, first-, and second-order components generated by the
blunt modified Wigley model at Fn = 0.2 and in a regular wave of λ/L = 0.6 and
A = 3.0 cm.
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Fig. 10 Wave profiles of the 0th-, first-, and second-order components generated by the
blunt modified Wigley model at Fn = 0.2 and in a regular wave of λ/L = 1.1 and
A = 3.0 cm.
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of the wave; particularly in the wave measured at A = 3.0 cm, the forefront part looks
collapsed (or probably the wave-breaking occurs) and the amplitude becomes small. At
λ/L = 0.9 the superposed wave and measured wave at A = 1.0 cm are very similar and thus
the resultant added resistances are almost the same. On the other hand, at λ/L = 1.1, the
superposed wave is still larger than the measured wave at A = 1.0 cm in the forefront part
and the component of short wave length is more conspicuous; these differences are reflected
in the results of the added resistance shown in Fig. 5.

The main source of difference in the forefront part seems to come from the wave by the
pitch motion. To show this fact visually, each wave profile of the component waves in the
linear superposition is shown in Fig. 8 for the case of λ/L = 1.1 corresponding to the top
figure in Fig. 7. From the top, (a), (b), and (c) are the scattering wave, heave radiation

λ L λ L λ L

E A1 ρg BL E A3 ρg BL E A5
2ρg BL

Fig. 11 Wave-exciting surge force, heave force and pitch moment on the slender modified
Wigley model at Fn = 0.2.

X A1 X A3 X A5 k0

λ L λ L λ L

Fig. 12 Wave-induced surge, heave and pitch motions of the slender modified Wigley model
at Fn = 0.2.
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wave, and pitch radiation wave, respectively; these are normalized with unit amplitude.
Furthermore, (d) and (e) are the heave and pitch component waves obtained after the
measured complex amplitude of each mode is multiplied. Therefore, the summation of (a),
(d) and (e) provides the result of superposed wave shown as the top figure in Fig. 7. From
these figures we can see that each component wave contributes to a large amplitude in the
forefront part but the most dominant component is the pitch radiation wave. We should note
that the forced oscillation tests were performed with relatively small amplitude (X3 = 1.0
cm and X5 = 1.36◦) within the range of linear theory being valid. Therefore, when the
amplitude of ship motions becomes large, linearity in the amplitude of generated wave near
the ship’s bow or shoulder part is violated as a result of large pitch motion. Consequently,
some nonlinear higher-order local waves with energy dissipation may be generated.

To provide some information on the nonlinear wave effects, the 0th-, first-, and second-
order terms in the Fourier-series expansion are shown in Fig. 9 and Fig. 10 for λ/L = 0.6
and λ/L = 1.1, respectively; these were measured at incident-wave amplitude A =3.0 cm. A
comparison with steady Kelvin wave for the 0th-order term is also included in these figures.
It is obvious that the relative magnitude of the second-order nonlinear terms is small at
λ/L = 0.6 even for the case of A = 3.0 cm but it is large at λ = 1.1. It is noteworthy
that the 0th-order component in the measured wave at λ/L = 1.1 and A = 3.0 cm is
largely different from the steady Kelvin wave, especially near the forefront part, implying
the possibility of wave-breaking and nonlinear interaction between steady and unsteady
waves.

λ/L

Fn=0.20, β=180 deg.

/ρ
g
Α

2
2 (B

/
L

)
R
A
W

Fig. 13 Added resistance on the slender modified Wigley model at Fn = 0.2 in the motion-
free case.
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5.2 Slender modified Wigley model

In the same order as for the blunt modified Wigley model, the results of linear quantities
are shown first in Fig. 11 for the wave-exciting forces and in Fig. 12 for the wave-induced
ship motions. We can see that the linearity holds well in these linear quantities except near
the resonant peak in the heave motion; it is shown in Kashiwagi et al. (2000) that this peak
value is sensitive to the cross-coupling radiation forces between heave and pitch.

The results of the added resistance are shown in Fig. 13, where the results of direct
measurement by a dynamometer are indicated with a closed circle for A = 2.5 cm and an
open circle for A = 1.0 cm; the results by the unsteady wave analysis using measured waves
are indicated with a closed triangle for A = 2.5 cm and an open triangle for A = 1.0 cm;
the results obtained from superposed waves are indicated with a diamond symbol. The
linear superposition of unsteady wave has been made exactly in the same manner as that
for the blunt modified Wigley model using the scattering wave and heave and pitch motions
measured at A = 1.0 cm and the radiation waves obtained by the forced heave (X3 = 1.0
cm) and pitch (X5 = 1.364 deg) oscillations. For reference, computed results by EUT are
also shown by a solid line.

We can see a prominent discrepancy in the results obtained by the unsteady wave analysis
between at A = 2.5 cm and at A = 1.0 cm near the peak, which is the same tendency as
that in the blunt modified Wigley model. The values of the added resistance obtained from
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Fig. 14 Wave profiles generated by the slender modified Wigley model at Fn = 0.2 in a
regular wave of λ/L = 0.9. (a) Superposed wave, (b) Measured wave at A = 1.0
cm, (c) Measured wave at A = 2.5 cm
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Fig. 15 Wave profiles generated by the slender modified Wigley model at Fn = 0.2 in a
regular wave of λ/L = 1.1. (a) Superposed wave, (b) Measured wave at A = 1.0
cm, (c) Measured wave at A = 2.5 cm

superposed waves are further larger and almost the same as directly measured values and
in good agreement with computed results by EUT (except for a slight shift in the peak
wavelength).

To see the difference in the wave profile, two examples are shown at λ/L = 0.9 and
λ/L = 1.1 in Figs. 14 and 15, respectively, for a superposed wave, measured waves at A = 1.0
cm and A = 2.5 cm. Obviously the wave measured at A = 2.5 cm is different from the others
in the profile, especially near the forefront part of the wave and in the magnitude of short-
wave length component. We can see also a difference in the amplitude of the forefront part
even between the superposed wave and measured wave at A = 1.0 cm. These differences in
the wave profile are reflected in the result of the added resistance shown in Fig. 13. This fact
implies that higher-order nonlinear waves or nonlinear interactions with steady disturbance
may exist and ship-generated waves actually break when the ship motions are large.

To support this conjecture, the 0th-, first-, and second-order terms in the Fourier-series
expansion at λ/L = 1.1 are shown in Fig. 16 for A = 1.0 cm and in Fig. 17 for A = 2.5
cm. Noticeable magnitude in the second-order second-harmonic terms (about 25% of the
1st-order term) can be seen, and the unsteady wave at A = 2.5 cm breaks near the forefront
part as can be seen from a comparison between the 0th-order term and the steady Kelvin
wave. (It should be noted, however, that in most cases, the 0th-order wave obtained in the
unsteady wave analysis is confirmed to be very much similar to the steady Kelvin wave.)

By the way, the wave profile ζ(x, y) can be reproduced by the inverse Fourier transform
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Fig. 16 Wave profiles of the 0th-, first-, and second-order components generated by the
slender modified Wigley model at Fn = 0.2 and in a regular wave of λ/L = 1.1 and
A = 1.0 cm

x / L/2(      )

x / L/2(      )

x / L/2(      )

/LFn=0.2, β=180 deg.  λ    =1.1, 

/LFn=0.2, β=180 deg.  λ    =1.1, 

/LFn=0.2, β=180 deg.  λ    =1.1, 

/A
ζ
(x

,y
)

/A
ζ
(x

,y
)

ζ
(x

,y
) K

0

Fig. 17 Wave profiles of the 0th-, first-, and second-order components generated by the
slender modified Wigley model at Fn = 0.2 and in a regular wave of λ/L = 1.1 and
A = 2.5 cm
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with respect to k of the Fourier-transformed wave data ζ∗(k, y). In this computation, we
can extract the wave in a specified wavenumber range (say, β < k < α) from the following
calculation:

ζβ<k<α(x, y) =
1

2π

∫ α

β

ζ∗(k, y) e−ikx dk (35)

In the present study, the superposed or measured wave is decomposed into the wave groups
in the following four different wavenumber ranges:

Range-1 : −50 < k < k1 ,
Range-2 : k1 < k < 0 ,
Range-3 : 0 < k < kC ,
Range-4 : kC < k < 50

 (36)

where kC = ω/U = K0τ and k1 is given by Eq. (7). It should be noted here that the
wave groups in Range-1 and Range-4 have been neglected conventionally in computation
of the added resistance (e.g. Ohkusu 1980) as short-wave length components giving less
contribution.

In the case of λ/L = 1.1 and slender modified Wigley model shown in Fig. 15, computed
results from the superposed wave are shown in Fig. 18 and corresponding ones from the
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Fig. 18 Wave components extracted from superposed wave for the slender modified Wigley
model at Fn = 0.2 and λ/L = 1.1
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Fig. 19 Wave components extracted from measured wave for the slender modified Wigley
model at Fn = 0.2 and in a regular wave of λ/L = 1.1 and A = 2.5 cm

measured wave at A = 2.5 cm are shown in Fig. 19. It can be seen from Fig. 18 that the
wave around the forefront part includes various wave components and especially short-wave
length components are not necessarily small. On the contrary, Fig. 19 obtained from the
measured wave at A = 2.5 cm tells us that short-wave length components are very small
even at the forefront part and longer-wave length components are almost the same as those
in Fig. 18. These results suggest that a difference in prediction of the added resistance
originates from relatively short wave length components around the forefront part and thus
higher resolution for those wave components in the numerical computation is a key for
enhancement in the prediction of the added resistance.

5.3 Added resistance at short incident waves

Up to the preceding subsection, attention has been focused on the difference near the
peak of the added resistance. However, as seen in Fig. 5, directly measured results of added
resistance on the blunt modified Wigley model in the short-wave length region are obviously
larger than those obtained from the unsteady wave analysis. In this region, the dominant
component in the added resistance is the result of wave diffraction, because wave-induced
unsteady ship motions are generally negligible.

To see the magnitude and trend of the added resistance in the diffraction problem (where
ship motions are completely fixed), the results of the added resistance in this case are plotted
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and compared in the same manner as in the motion-free case. Fig. 20 shows the result for
the blunt modified Wigley model, and Fig. 21 shows the corresponding result for the slender
modified Wigley model. (The results at A = 3.0 cm for the blunt modified Wigley model

λ/L
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Fig. 20 Added resistance on the blunt modified Wigley model at Fn = 0.2 in the diffraction
problem
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Fig. 21 Added resistance on the slender modified Wigley model at Fn = 0.2 in the diffrac-
tion problem
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were confirmed to be essentially the same as those obtained in the previous experiment,
Kashiwagi et al. 2011.) From these figures we can see that: 1) the added resistance is
almost constant irrespective of the incident-wave length; 2) the results obtained from the
wave analysis are in acceptable agreement with computed values by EUT; and 3) directly
measured values by a dynamometer are slightly larger than those by the wave analysis,
especially in the short-wave length region.

More importantly, from a comparison with the results of motion-free case (specifically a
comparison between Figs. 5 and 20), we can see that the added resistance in the motion-
free case is obviously larger than that in the diffraction case at short incident waves; this
tendency is prominent for the blunt modified Wigley model. In the range of short incident
waves, although wave-induced motions are negligibly small, the steady sinkage and trim in
the motion-free case are naturally nonzero. Because this is only the difference between the
motion-free and diffraction cases in short incident waves, this difference can be a reason of
the fact that the added resistance in the motion-free case is slightly larger than that in the
diffraction case. This means that there must be interactions between steady and unsteady
flows, and the effect of steady sinkage and trim should be taken into account in the prediction
of the added resistance, which may become more important for blunt ships.

6. Conclusions

To study the contribution of an unsteady wave-making component in the added resistance
and nonlinear effects in ship-generated waves on the added resistance, experiments were con-
ducted for measuring ship-generated unsteady waves, wave-induced ship motions, and the
added resistance by using two different modified Wigley models and two different incident-
wave amplitudes. The wave measurement was carried out for three canonical problems of
wave diffraction with ship motions fixed, forced oscillations in heave and pitch, and free
response of ship motions in waves. Then by using measured waves in the diffraction and
radiation problems, the ship-generated unsteady wave was produced by the linear superpo-
sition.

Through comparisons of superposed waves with directly measured waves in the motion-
free condition at two different incident-wave amplitudes, nonlinearity in the wave elevation
was studied and the effect of that nonlinearity on the added resistance has been investigated
by means of the unsteady wave-analysis method. The results obtained in this study can be
summarized as follows:

1) When ship motions become large near the peak of the added resistance, linearity in
the unsteady wave elevation is not satisfied especially at the forefront part of the wave.
Consequently, the added resistance obtained from the waves measured at larger ampli-
tude of incident wave becomes much smaller near the peak than those obtained from
superposed linear waves and measured directly by a dynamometer.

2) The added resistance evaluated using superposed waves is in fairly good agreement with
the result computed by the potential flow theory (EUT in the present paper) over the
range of wave length tested.

3) The unsteady wave around the forefront part consists of various wave components. In
fact, short-wave length components are not negligible in the linear waves and important
in precise prediction of the wave profile at the forefront part and hence of the added
resistance.

4) At short incident waves, there was prominent difference in the added resistance on the
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blunt modified Wigley model between the values by the direct measurement and by the
unsteady wave analysis. However, this difference is reduced in the diffraction problem
where ship motions are completely fixed. This fact implies that the steady sinkage and
trim should be taken into account in the prediction of the added resistance.

5) The added resistance in the diffraction problem is almost constant irrespective of the
wave length of incident wave, and the values of direct measurement by a dynamometer
are almost the same as those obtained from the wave analysis. However, as the incident
wave becomes short, directly measured values tend to be larger than the results of the
wave analysis. This difference should be attributed to nonlinear effects, which are not
accounted for in the potential flow theory.
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Abstract

Wave-induced added resistance, steady sway force, and steady yaw moment, which are
of second order in the incident-wave amplitude, are studied for the forward-speed case
using the far-field method based on the principles of momentum and energy conservation.
The Kochin functions representing ship-disturbance waves, important input data in the far-
field method, are evaluated by means of both enhanced unified theory (EUT) and new strip
method (NSM) to see the difference due to bow wave diffraction, 3D and forward-speed
effects in the final results of second-order steady forces and moment. Special attention is
paid on the precise integration method to ensure convergence in semi-infinite integrals in
the calculation formulae, introducing no artificial decaying factor unlike conventional strip-
theory methods. Validation of the present calculation method is made through comparison
with the experiment conducted with a bulk-carrier model advancing in regular oblique
waves and motion-free condition. Good agreement between computed and measured results
and also superiority of EUT to NSM are confirmed for all modes of ship motion and the
steady forces and yaw moment in a wide range of wave frequency.

Keywords: Added resistance, Steady sway force, Steady yaw moment, Far-field method,
Kochin function, Oblique waves, Forward-speed effect, Enhanced unified theory.

1. Introduction

It is well known that the resistance of a ship will increase when the ship is advancing in
waves at constant forward speed. This increment is called the added resistance, which is
the longitudinal component of the wave-induced steady force of second order in the wave
amplitude. Since the prediction of ship resistance is crucial for the economic operation in
actual seas, many studies on the added resistance have been conducted so far.

In actual seaways, owing to the nature of the ocean, ships must sail obliquely to the
direction of wave propagation. In oblique waves, not only the added resistance but also the
same kind of steady sway force and yaw moment may be exerted. As an effect of these steady
sway force and yaw moment, the check helm and drift angle of the ship may be exerted to
attain equilibrium, which will induce another kind of resistance increase. Therefore, accurate
prediction of wave-induced steady force and moment becomes important in considering the
maneuvering motion of a ship in waves.

Early development of the theoretical formulation for the added resistance was provided
by Maruo [2] by means of the principles of momentum and energy conservation. In the cal-
culation formula derived, the Kochin function, equivalent to the amplitude of ship-generated

∗ Reprinted from Journal of Marine Science and Technology, Vol. 23, No. 4, pp. 767–781, 2018
(December), https://doi.org/10.1007/s00773-017-0510-6
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disturbance waves far from the ship, is needed as the input. Newman [3] studied the wave-
induced steady yaw moment on a floating body at zero speed, and derived a formula by using
the angular momentum conservation principle. Their analyses were based on the stationary-
phase method, which is expedient for the zero-speed problem, but becomes messy for the
case of forward speed present. In fact, Lin and Reed [4] succeeded in obtaining a formula
for the steady sway force using the stationary-phase method, but they found it difficult to
derive a formula for the steady yaw moment when the forward speed exists.

Kashiwagi [?] proposed an analysis method utilizing the Fourier-transform theory to
tackle the difficulty of stationary-phase method, and consequently derived the formulae
for the steady forces and yaw moment at forward speed. Kashiwagi [6] computed further
the Kochin function and then the added resistance, steady sway force, and steady yaw
moment for the forward-speed but motion-fixed cases by means of the unified theory of
Sclavounos [8]. Later Kashiwagi [9] proposed Enhanced Unified Theory (EUT) as an exten-
sion from the unified theory of Newman [10] and Sclavounos [8], and analyzed surge-related
problems by retaining the x-component of the normal vector in the body boundary condition
and also lateral motion modes in the same fashion as that for heave and pitch, with 3D and
forward-speed effects taken into account.

Compared to a large amount of work on the added resistance, few studies have been
made on the steady sway force and yaw moment. Naito et al. [11] measured the wave-
induced steady forces on a tanker model for motion-fixed cases. Iwashita et al. [12] compared
computed results by the 3D Green function method with measured results for the steady
sway force and yaw moment only for the diffraction problem, but agreement was not good
in shorter waves when the forward speed is present. Another measurement of wave-induced
steady forces was conducted by Ueno et al. [13] using a VLCC model at Froude number
Fn = 0.069 in a very short wave. Utilizing a time-domain 3D higher-order boundary
element method, Joncquez [14] evaluated the second-order forces and moments for all motion
modes at zero speed, but the ship was free to heave and pitch. When the forward speed is
considered, evaluation of forces and moment was done only for head-wave case.

For the ship maneuvering problem in waves, Skejic and Faltinsen [15] investigated the
time-averaged second-order wave loads utilizing several theories, and compared their com-
puted results for the sway force and yaw moment with available measured data for oblique
incident waves. Later Seo and Kim [16] incorporated computed results of wave-induced
horizontal forces (added resistance and sway force) and yaw moment into the equations of
maneuvering motion of a ship. In beam-sea case, the agreement between simulated and ob-
served results was found to be relatively poor due to considerable drift effects on the turning
direction. The discrepancy in the prediction of steady yaw moment was understood to be a
significant cause of the difference. Recently Zhang et al. [17] stressed the importance of the
wave-induced second-order quantities in the maneuvering motion through the time-domain
Rankine panel method, where the trailing vortex sheet is introduced to the double-body
flow.

In this paper, study is made on the wave-induced added resistance, steady sway force, and
steady yaw moment using the calculation formulae derived by Kashiwagi [5] for the general
forward-speed case. The Kochin functions for symmetric and antisymmetric components
of ship-disturbance waves are important input in those calculation formulae, and they are
computed by EUT and NSM. Special attention is paid on the precise integration method
to remove square-root singularities at the limits of integration range and to ensure the
convergence in semi-infinite integrals appearing in the calculation formulae not only for
the added resistance, but also for the steady sway force and yaw moment. Therefore,
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the calculation method in this paper is markedly different from conventional ones based
on the strip-theory methods in that the numerical integration in the formulae is exactly
implemented without introducing any artificial convergence factor and that the computation
method for the Kochin function is exact in the framework of the linear slender-ship theory
and applicable to all frequencies. In the effort to validate this computation scheme, numerical
computations are made for comparison with the experiment conducted by Yasukawa et
al. [18] using a bulk carrier model advancing in regular oblique waves with forward speed
and six-degree-of-freedom motions.

wave
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Fig. 1 Coordinate system and notations

2. Linearized Theory of a Ship in Waves

2.1 Formulation of boundary-value problem

For applying the principles of momentum and energy conservation, we need an expression
of the body-disturbance velocity potential valid at a distance from a ship, which advances
at constant forward speed U and oscillates with circular frequency ω in regular waves. For
subsequent analyses, a Cartesian coordinate system O-xyz is taken, with the origin placed
at the center of a ship and on the undisturbed free surface. As shown in Fig. 1, the x-axis is
directed to the ship’s bow and the z-axis is positive downward. The depth of water is assumed
infinite. A plane progressive incident wave incoming with angle χ relative to the x-axis is
considered, which has amplitude ζa and circular frequency ω0. In this case, the oscillation
of a ship occurs with the circular frequency of encounter given by ω = ω0−k0U cosχ, where
k0 is the wave number of incident wave and equal to ω2

0/g, with g the acceleration due to
gravity.

Under the assumption that the fluid is inviscid with irrotational motion and that the
amplitudes of incident wave and ship’s oscillation are small, the velocity potential can be
introduced and written as

Φ(x, y, z, t) = U
[
− x+ ϕs(x, y, z)

]
+ ℜ

[
ϕ(x, y, z) eiωt

]
, (1)

where ϕs represents the steady disturbance potential due to forward motion of a ship, which
will be ignored eventually in this paper with assumption of slenderness of a ship. The
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spatial part of the unsteady velocity potential ϕ(x, y, z) is given as a sum of the incident-
wave potential ϕ0 and the body-disturbance velocity potential ϕB . The latter component
consists of the scattering and radiation potentials. These are expressed in the form

ϕ(x, y, z) =
gζa
iω0

{
ϕ0(x, y, z) + ϕB(x, y, z)

}
, (2)

ϕ0(x, y, z) = exp
{
− k0z − ik0(x cosχ+ y sinχ)

}
, (3)

ϕB(x, y, z) = ϕ7(x, y, z)−
ωω0

g

6∑
j=1

Xj

ζa
ϕj(x, y, z). (4)

The first term ϕ7 in Eq. 4 is the scattering potential and the last term ϕj is the radiation
potential due to ship oscillation in six degrees of freedom (j = 1 ∼ 6) with complex amplitude
Xj in the j-th mode of motion. Symbol ℜ in Eq. 1 means the real part to be taken (likewise
ℑ will be used later to mean the imaginary part).

All of the velocity potentials are governed by Laplace’s equation and subject to the free-
surface boundary condition given by

[F ]

(
iω − U

∂

∂x

)2

ϕ− g
∂ϕ

∂z
= 0 on z = 0 (5)

and the condition of vanishing velocity as z → ∞. In addition, the disturbance potential
ϕB must satisfy the radiation condition in the far field, and each velocity potential in ϕB
can be characterized by the body boundary condition

∂ϕj
∂n

= nj +
U

iω
mj (j = 1 ∼ 6) (6)

= −∂ϕ0
∂n

(j = 7), (7)

where (n1, n2, n3) = n, (n4, n5, n6) = r × n

(m1,m2,m3) = − (n · ∇)V

(m4,m5,m6) = − (n · ∇) (r × V )

r = (x, y, z), V = ∇
[
− x+ ϕs(x, y, z)

]
 . (8)

Here nj denotes the j-th component of the unit normal vector directing into the fluid and
mj is the so-called m-term representing interactions between the unsteady and steady flows.
In the case of uniform-flow approximation for the steady flow field, it follows from Eq. 8 that
mj = 0 for j = 1 ∼ 4, m5 = −n3, and m6 = n2.

2.2 Far-field expression of the velocity potential

With Green’s theorem, the body-disturbance potential can be given by

ϕB(P ) =

∫∫
SH

(
∂ϕB
∂n

− ϕB
∂

∂n

)
G3D(P ;Q) dS(Q), (9)

where P = (x, y, z) is the field point and Q = (ξ, η, ζ) is the integration point on the wetted
ship hull surface SH ; ∂/∂n is the normal differentiation with respect to Q; G3D(P ;Q)
denotes the Green function satisfying all homogeneous boundary conditions except for the
body boundary condition.
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At a large distance far from the ship, the local-wave components decay and thus, we may
consider only the progressive wave terms in the Green function, which can be expressed as

G3D(P ;Q) ∼ i

2π

[
−
∫ k1

−∞
+

∫ k3

k2

+

∫ ∞

k4

]
κ√

κ2 − k2

× e−κ(z+ζ)−iϵk|y−η|
√
κ2−k2−ik(x−ξ) dk, (10)

where
κ =

1

g
(ω + kU)

2
= K + 2kτ +

k2

K0

K =
ω2

g
, τ =

Uω

g
, K0 =

g

U2
, ϵk = sgn (ω + kU)

 , (11)

k1
k2

}
= −K0

2

(
1 + 2τ ±

√
1 + 4τ

)
, (12)

k3
k4

}
= +

K0

2

(
1− 2τ ∓

√
1− 4τ

)
. (13)

Note that kj (j = 1 ∼ 4) are the limits of integration range, given from κ2 = k2, and the
integration range corresponds to the values satisfying κ2 ≥ k2. In the case of τ > 1/4, k3 and
k4 become complex and thus the limits of integration should be interpreted as continuous
for k2 < k. We also note that ϵk = −1 for k < k1 and ϵk = 1 for k2 < k. Therefore,
the integration range with respect to k may be written in terms of the unit step function
u(κ2 − k2) as follows:[

−
∫ k1

−∞
+

∫ k3

k2

+

∫ ∞

k4

]
−→

∫ ∞

−∞
ϵk u(κ

2 − k2)

Substituting Eq. 10 into Eq. 9, the far-field expression of the disturbance potential can be
obtained in the form

ϕB(P ) ∼
i

2π

∫ ∞

−∞
ϵk u(κ

2 − k2)H±(k)
κ√

κ2 − k2
e−κz∓iϵky

√
κ2−k2−ikx dk, (14)

where the upper or lower of the complex signs is to be taken according as the sign of y is
positive or negative, respectively. H±(k) is the Kochin function equivalent to the complex
amplitude of the far-field disturbance wave and expressed as

H±(k) = C(k)± iϵk S(k), (15)

C(k)

S(k)

}
=

∫∫
SH

(
∂ϕB(Q)

∂n
− ϕB(Q)

∂

∂n

)
e−κζ+ikξ

{
cos
(
η
√
κ2 − k2

)
sin
(
η
√
κ2 − k2

) } dS(Q). (16)

C(k) and S(k) stand for the symmetric and antisymmetric wave components, respectively,
with respect to the center plane of a symmetric ship about y = 0.

Since the disturbance potential is given in a linear superposition as in Eq. 4, the Kochin
functions can be written in the same way as follows:

C(k) = C7(k)−
ωω0

g

∑
j=1,3,5

Xj

ζa
Cj(k), (17)
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S(k) = S7(k)−
ωω0

g

∑
j=2,4,6

Xj

ζa
Sj(k), (18)

where j = 1, 3, 5 denote the longitudinal ship motions (surge, heave and pitch) and j = 2, 4, 6
the lateral ship motions (sway, roll, and yaw). Xj/ζa denotes the normalized complex
amplitude of jth mode of ship motion, which must be given by solving the ship-motion
equations.

3. Calculation Formulae for Wave-Induced Steady Forces and
Yaw Moment

It is well known that the calculation formulae for wave-induced steady force and moment
can be obtained from the principles of momentum and energy conservation, and associated
analyses can be done on the control surface far from the ship using the far-field expression
of the velocity potential, shown in the previous section.

Maruo [2] derived the formula for the added resistance (R ) but the analysis using the
stationary-phase method was complicated. Kashiwagi [5] showed a simpler analysis by use of
Parseval’s theorem in the Fourier transform, and by extending the analysis, he also derived
the formulae for the steady sway force (Y ) and yaw moment (N ). Those formulae can be
summarized as follows:

R

ρgζ2a
=

1

4πk0

∫ ∞

−∞
ϵku(κ

2 − k2)
{∣∣C(k)∣∣2 + ∣∣S(k)∣∣2} κ (k − k0 cosχ)√

κ2 − k2
dk, (19)

Y

ρgζ2a
=− 1

4πk0

∫ ∞

−∞
ϵku(κ

2 − k2)

[
ℑ
{
2C(k)S∗(k)

}
−
{∣∣C(k)∣∣2 + ∣∣S(k)∣∣2} k0 sinχ√

κ2 − k2

]
κ dk, (20)

N

ρgζ2a
=

1

4πk0

∫ ∞

−∞
ϵku(κ

2 − k2)ℜ
{
C ′(k)S∗(k)− S ′(k)C∗(k)

}
κ dk

− sinχ

2
ℜ
[
H ′(k0, χ) +

1

k0

(
τ +

k0 cosχ

K0

)
H(k0, χ)

]
. (21)

Here C ′(k) and S ′(k) in Eq. 21 denote differentiation with respect to k and the asterisk in
the superscript stands for the complex conjugate. H(k0, χ) are the values of the Kochin
function evaluated at k = k0 cosχ and ±ϵk

√
κ2 − k2 = k0 sinχ. Thus, from Eqs. 15 and 16,

we can write as

H(k0, χ) =

∫∫
SH

(
∂ϕB(Q)

∂n
− ϕB(Q)

∂

∂n

)
e−k0ζ+ik0(ξ cosχ+η sinχ) dS(Q)

= C(k0, χ) + i S(k0, χ). (22)

We must realize from these formulae that the Kochin function is an important input and
the numerical integration with respect to k must be performed accurately.

4. Overview of Enhanced Unified Theory

In the present study, the EUT is used to provide the body-disturbance velocity potential
valid at a distance from the ship and consequently an expression of the Kochin function. The
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EUT and its results have been explained by Kashiwagi [9, 19] and thus only the overview
and some key equations will be given in this section.

The EUT for the radiation problem is basically the same as the unified theory developed
by Newman [10]. However, the surge mode (j = 1) is analyzed in the same fashion as that
for heave and pitch and its motion is computed from the coupled motion equations among
surge, heave, and pitch. Furthermore, unlike the original unified theory, similar analyses are
also made for lateral-motion modes (j = 2, 4, 6), which can be found in Kashiwagi [20] and
Appendix-1 of Kashiwagi [21].

The diffraction problem in EUT is basically the same as the unified theory described
in Sclavounos [8], but the effects of wave diffraction near the bow are taken into account
by retaining the x-component (n1) of normal vector in the body boundary condition for
the inner problem. These bow diffraction effects are incorporated together with 3D and
forward-speed effects in the outer solution through matching between the inner and outer
solutions. In fact, the effect of n1 term in the body boundary condition is crucial near
the ship ends, giving an important contribution to the surge exciting force and the added
resistance. Analyses for the antisymmetric component of the scattering potential are also
made, as shown in Appendix-1 of Kashiwagi [21].

In the slender-ship theory, the outer solution valid far from the ship can be expressed
with line distributions of 3D sources for the symmetric flow and of 3D doublets for the
antisymmetric flow along the x-axis. Thus the disturbance velocity potential may be written
in the form

ϕ
(o)
j (x, y, z) =

∫
L

Qj(ξ)G
C
3D(x− ξ, y, z) dξ +

∫
L

Dj(ξ)G
S
3D(x− ξ, y, z) dξ. (23)

Here GC
3D is the 3D Green function considered in Eq. 9 with η = ζ = 0, physically equivalent

to the velocity potential due to the source with unit strength. Qj denotes its strength, which
is unknown but can be determined through matching with the inner solution. Likewise, GS

3D

is the velocity potential due to the doublet with unit strength and axis parallel to the y-axis,
which is given by

GS
3D(x, y, z) ≡ − ∂

κ∂y
G3D(x, y, z). (24)

Dj in Eq. 23 is the unknown strength of the doublet and can be determined through the
matching procedure. The range of integration in Eq. 23 is assumed to be from the stern end
to the bow end of a ship along the x-axis.

By substituting the asymptotic expression of the Green function Eq. 10 into Eq. 23, we
can obtain the expressions for the symmetric and antisymmetric Kochin functions in the
following form:

Cj(k) =

∫
L

Qj(ξ) e
ikξ dξ, (25)

Sj(k) =

√
κ2 − k2

κ

∫
L

Dj(ξ) e
ikξ dξ ≡

√
κ2 − k2

κ
Ŝj(k). (26)

In the EUT, as a result of matching between the inner and outer solutions, Qj and Dj

are determined by solving the integral equations, whose kernel functions include 3D and
forward-speed effects. For instance, for the radiation problem (j = 1 ∼ 6), the integral
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equations are given in the form

Qj(x) +
i

2π

(
1− σ3/σ

∗
3

)∫
L

Qj(ξ) f(x− ξ) dξ = σj(x) +
U

iω
σ̂j(x)

for j = 1, 3, 5, (27)

Dj(x) +
i

2π

(
1− σ2/σ

∗
2

)∫
L

Dj(ξ)h(x− ξ) dξ = σj(x) +
U

iω
σ̂j(x)

for j = 2, 4, 6. (28)

Here σj(x) and σ̂j(x) on the right-hand side of Eqs. 27 and 28 are 2D Kochin functions
which can be computed with the particular solutions in the inner problem considered in the
transverse y-z plane at station x.

The solution in the inner problem is sought to satisfy the 2D Laplace equation, the free-
surface boundary condition of Eq. 5 with U = 0, and the body boundary condition of Eqs. 6
and 7 on the contour of transverse section at station x, which will be denoted as B(x). Its
solution for the radiation problem can be written in the form

ϕ
(i)
j (x; y, z) = φj(y, z) +

U

iω
φ̂j(y, z) + CH

j (x)φH(y, z), (29)

where φj and φ̂j are the particular solutions satisfying the following body boundary condi-
tions:

∂φj

∂n
= nj ,

∂φ̂j

∂n
= mj . (30)

Namely the particular solution in Eq. 29 is exactly the same as the solution in the strip
theories. The last term in Eq. 29 stands for a homogeneous solution, which can be given by
φH = φj − φ∗

j (j = 3 for symmetric problems and j = 2 for antisymmetric problems), and

its coefficient CH
j (x) can be determined by the matching with outer solution.

In terms of φj , the Kochin function σj is computed from

σj(x) =

∫
B(x)

(
∂φj

∂n
− φj

∂

∂n

)
e−Kz

{
cosKy
sinKy

}
dℓ(y, z), (31)

where the upper term (cosKy) in braces should be taken for j = 1, 3, 5 and the lower term
for j = 2, 4, 6. Likewise σ̂j(x) is computed in terms of φ̂j in place of φj in Eq. 31.

The kernel functions f(x − ξ) and h(x − ξ) in the integral equations of Eqs. 27 and 28
represent the 3D and forward-speed effects. Their explicit expressions are given in Newman
and Sclavounos [22] for f(x− ξ) and in Kashiwagi [20] for h(x− ξ). We can see from Eqs. 27
and 28 that if the 3D and forward-speed effects become small, the strengths of source Qj

and doublet Dj may approach the 2D values on the right-side side; which is the case for
higher frequencies.

Corresponding expressions for the diffraction problem are provided in Kashiwagi [21].
Expressions for the symmetric and antisymmetric Kochin functions are formally the same
as those in Eq. 25 and Eq. 26, respectively, although the integral equations corresponding
to Eqs. 27 and 28 are different in form. However, the numerical solutions method for the
integral equations can be the same.
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5. Numerical Integration Methods

Once the Kochin function has been obtained as a function of k, the accuracy in computed
values of the wave-induced steady forces (R and Y ) and yaw moment (N ) depends on the
numerical integration with respect to k. To be considered for correct numerical integration
are the following two issues: (1) Removal of square-root singularity at the limit of integration
range kj (j = 1 − 4), and (2) precise treatment of semi-infinite integrals to ensure the
convergence.

5.1 Removal of singularity at integration limits

We will have to consider two types of integral:

J23 ≡
∫ k3

k2

F (k)√
κ2 − k2

dk, J4 ≡
∫ ∞

k4

F (k)√
κ2 − k2

dk. (32)

The square-root singularity exists in these integrals because of
√
κ2 − k2 = 0 at kj (j =

2, 3, 4). To explain the variable transformation method for this issue, let us consider the
following two integrals in general:

A =

∫ b

a

f(x)√
(x− a)(b− x)

dx

B =

∫ ∞

b

f(x)√
(x− a)(x− b)

dx

 . (33)

For integral A, we will use the following transformation of variable:

x =
b+ a

2
+
b− a

2
ξ, ξ = sin θ. (34)

Then A can be transformed into the following form:

A =

∫ 1

−1

f(x)√
1− ξ2

dξ =

∫ π/2

−π/2

f(x) dθ, (35)

where x is given by Eq. 34 with θ. We can see no singularity in the last integral with respect
to θ, hence the numerical integration can be done in a straightforward manner.

Next, for integral B, similar idea can be applied and the following variable transformation
is used

x =
b+ a

2
+
b− a

2
ξ, ξ =

√
u2 + 1. (36)

Then we can obtain the result as follows:

B =

∫ ∞

1

f(x)√
ξ2 − 1

dξ =

∫ ∞

0

f(x)√
u2 + 1

du, (37)

which contains again no singularity at the integration limit (u = 0) so that the numerical
integration can be performed with conventional schemes. In the present study, the Gauss
quadrature has been used to successive integrals with finite integration range.
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5.2 Semi-Infinite Integral

Many studies using the strip theory have been made so far for computing the Kochin function
and then the added resistance based on Eq. 19. Most of those studies usually multiply the
integrand by an artificial convergence factor, like exp(−κzs), to ensure the convergence as
k → ∞, and the value of zs is tuned to see reasonably fast convergence and relatively good
agreement with experiments. However, this treatment implies that the depthwise position
of the line distribution of singularities in the outer solution is not on z = 0 and hence
inconsistent in the context of slender-ship theory. Kashiwagi [6, 7] settled this problem
by showing no difficulty in convergence of the integral in Eq. 19 for the added resistance,
even if the sources are placed exactly on z = 0. In this paper, the calculation method in
Kashiwagi [6, 7] is extended to the integrals for Y and N , and an analytical mistake in
Kashiwagi [6, 7] is corrected.

As an example for explaining the calculation method, let us consider the following semi-
infinite integral:∫ ∞

k4

∣∣C(k)∣∣2κ (k − k0 cosχ)√
κ2 − k2

dk =

∫ ∞

k4

∣∣C(k)∣∣2 (1−√1− k2/κ2
)
(k − k0 cosχ)√

κ2 − k2
dk

+R4 − T4 k0 cosχ, (38)

where R4 ≡
∫ ∞

k4

∣∣C(k)∣∣2 k dk, T4 ≡
∫ ∞

k4

∣∣C(k)∣∣2 dk. (39)

Note that the first term on the right-hand side of Eq. 38 arises no problem in convergence,
because 1 −

√
1− k2/κ2 in the numerator becomes rapidly zero as k increases. Therefore,

our attention will be focused on how to evaluate the integrals denoted as R4 and T4.
At first, with the assumption that k and x are non-dimensionalized with half the ship

length L/2, the Kochin function C(k) is written in the form

C(k) =

∫ 1

−1

Q(x) eikx dx. (40)

After partial integration, it follows that

C(k) =
i

k

∫ 1

−1

Q′(x) eikx dx, (41)

where we have used the assumption of Q(±1) = 0, that is, both ship ends are closed, which
is plausible in the potential-flow problem. Substituting these into Eq. 39, we have

R4 = i

∫ 1

−1

Q′(x) dx

∫ 1

−1

Q∗(ξ) I4(ξ − x) dξ

T4 =

∫ 1

−1

Q(x) dx

∫ 1

−1

Q∗(ξ) I4(ξ − x) dξ

 , (42)

where
I4(ξ − x) ≡

∫ ∞

k4

eik(x−ξ) dk = πδ(ξ − x)− i
e−ik4(ξ−x)

ξ − x
, (43)

and δ(ξ − x) denotes Dirac’s delta function, which is obtained from the following relations:

lim
k→∞

cos k(ξ − x)

ξ − x
= 0, lim

k→∞

sin k(ξ − x)

ξ − x
= π δ(ξ − x) (44)
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Substituting Eq. 43 in Eq. 42 gives the following results:

R4 = iπ

∫ 1

−1

Q′(x)Q∗(x) dx+

∫ 1

−1

Q′(x) eik4x dx

∫ 1

−1

Q∗(ξ) e−ik4ξ

ξ − x
dξ, (45)

T4 =π

∫ 1

−1

∣∣Q(x)
∣∣2 dx− i

∫ 1

−1

Q(x) eik4x dx

∫ 1

−1

Q∗(ξ) e−ik4ξ

ξ − x
dξ. (46)

The first terms on the right-hand side of Eqs. 45 and 46 are missing in the analysis of
Kashiwagi [6, 7]. However, we note that these terms have nothing to do with k4, and they
will cancel out with corresponding terms to be obtained from the integral for −∞ < k < k1.
In order to show this, let us consider the integral for −∞ < k < k1 in the same way. Namely

−
∫ k1

−∞

∣∣C(k)∣∣2 κ (k − k0 cosχ)√
κ2 − k2

dk

=

∫ −∞

k1

∣∣C(k)∣∣2 (1−√1− k2/κ2
)
(k − k0 cosχ)√

κ2 − k2
dk

+R1 − T1 k0 cosχ, (47)

where
R1 ≡

∫ −∞

k1

∣∣C(k)∣∣2 k dk, T1 ≡
∫ −∞

k1

∣∣C(k)∣∣2 dk. (48)

Following the same procedure as that for R4 and T4, we come across an integral correspond-
ing to Eq. 43, which can be written by use of Eq. 44 in the form

I1(ξ − x) ≡
∫ −∞

k1

eik(x−ξ) dk = −πδ(ξ − x)− i
e−ik1(ξ−x)

ξ − x
. (49)

It can be seen that the first term on the right-hand side of Eq. 49 is opposite in sign to that
of Eq. 43. Thus, in the end after summing up, there is no contribution from the first terms
in Eqs. 45 and 46.

Regarding the singular integral with respect to ξ in Eqs. 45 and 46, the analytical in-
tegration method shown in Kashiwagi [6, 7] can be applied, using the Fourier-series repre-
sentation for the line distribution of sources. The resulting singular integral is the same in
form as Glauert’s integral popular in the wing theory and thus can be evaluated analytically.
Specifically, introducing the variable transformation of x = cos θ and ξ = cosφ, we have the
following: ∫ 1

−1

Q∗(ξ) e−iνξ

ξ − x
dξ =

∞∑
n=1

c∗n

∫ π

0

sinnφ sinφ

cosφ− cos θ
dφ = −π

∞∑
n=1

c∗n cosnθ, (50)

where
Q(x) eiνx =

∞∑
n=1

cn sinnθ

cn =
2

π

∫ π

0

Q(cos θ) eiν cos θ sinnθ dθ

 (51)

and ν must be understood as k4 or k1.
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Using these results and performing resultant integrals with respect to θ, Rj and Tj (j = 4
or 1) defined in Eq. 39 and Eq. 48 can be expressed as

Rj = (−1)j iπ

∫ 1

−1

Q′(x)Q∗(x) dx+
π2

2

∞∑
n=1

[
kj ℑ

(
cn c

∗
n+1

)
+ n |cn|2

]
, (52)

Tj = (−1)jπ

∫ 1

−1

∣∣Q(x)
∣∣2 dx+

π2

2

∞∑
n=1

ℑ
(
cn c

∗
n+1

)
. (53)

As already mentioned, the first terms on the right-hand side of Eqs. 52 and 53 do not
contribute to the final result because of cancellation after summing up the terms of j = 1
and j = 4. Needless to say, the same calculation method will be used to the integrals related
to the antisymmetric component of the Kochin function S(k) in Eq. 19.

The same technique can be applied to the integrals for the steady sway force Y in Eq. 20
and for the steady yaw moment N in Eq. 21. Let us start with the steady sway force. We
will have to consider the following integral:∫ ∞

ν

κℑ
{
C(k)S∗(k)

}
dk =

∫ ∞

ν

κ
(√

1− k2/κ2 − 1
)
ℑ
{
C(k)Ŝ∗(k)

}
dk

+

∫ ∞

ν

κℑ
{
C(k)Ŝ∗(k)

}
dk, (54)

where Ŝ(k) is defined in Eq. 26.
It should be noted again that no problem exists in convergence for the first term on the

right-hand side of Eq. 54, because
√
1− k2/κ2 → 1 rapidly as k → ∞. Thus we consider

the last integral.
Since κ = K + 2kτ + k2/K0, we should evaluate analytically the following integrals:

Yn ≡
∫ ∞

ν

kn ℑ
{
C(k)Ŝ∗(k)

}
dk, n = 0, 1, 2. (55)

With these results, the last term in Eq. 54 can be computed from∫ ∞

ν

κℑ
{
C(k)Ŝ∗(k)

}
dk = K Y0 + 2τ Y1 +

1

K0
Y2 . (56)

The analysis for Eq. 55, using the Fourier-series representation for the line distribution of
sources and doublets, are rather lengthy and thus, their transformation and results are shown
in Appendix of this paper.

Likewise, the semi-infinite integral in the steady yaw moment can be written as follows:∫ ∞

ν

κℜ
{
C ′(k)S∗(k)−S ′(k)C∗(k)

}
dk

=

∫ ∞

ν

κ
(√

1− k2/κ2 − 1
)
ℜ
{
C ′(k)Ŝ∗(k)− Ŝ ′(k)C∗(k)

}
dk

+

∫ ∞

ν

κℜ
{
C ′(k)Ŝ∗(k)− Ŝ ′(k)C∗(k)

}
dk. (57)

The first term on the right-hand side of Eq. 57 can be numerically integrated without any
difficulty. For evaluating the last term in Eq. 57, we consider analytically the following
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integrals:

Nn ≡
∫ ∞

ν

kn ℜ
{
C ′(k)Ŝ∗(k)

}
dk, n = 0, 1, 2, (58)

Ñn ≡
∫ ∞

ν

kn ℜ
{
Ŝ ′(k)C∗(k)

}
dk, n = 0, 1, 2. (59)

With the results of these integrals, we can readily evaluate the last integral in Eq. 57 from∫ ∞

ν

κℜ
{
C ′(k)Ŝ∗(k)− Ŝ ′(k)C∗(k)

}
dk

= K(N0 − Ñ0) + 2τ (N1 − Ñ1) +
1

K0
(N2 − Ñ2). (60)

The analytical procedure for computing Eqs. 58 and 59 is essentially the same as that for
Yn (n = 0, 1, 2), and we note that the calculation of Ñn can be done easily from the result of

Nn simply by exchanging C(k) and Ŝ(k). The final expressions for Nn and Ñn (n = 0, 1, 2)
are summarized in Appendix of this paper.

6. Experiment and Tested Ship Model

Experiments measuring the wave-induced steady forces (added resistance and sway force)
and yaw moment have been conducted at the seakeeping and maneuvering model basin of
Nagasaki R&D Center, Mitsubishi Heavy Industries, and some of the results are reported by
Yasukawa et al. [18]. These experimental data are used for comparison with computations
in the present paper.

The ship model used in the experiment is a bulk carrier named JASNAOE-BC084 in full-
load condition, which is a modified version from KVLCC2 and its body plan and principal
particulars are shown in Yasukawa et al. [23]. Some of the important values in the principal
particulars are listed in Table 1, and the length-wise projection of the body is illustrated in
Fig. 2.

In this experiment conducted by Yasukawa et al. [18], wave-induced ship motions and
steady forces were measured at 4 different forward speeds; they are 0, 4, 8, and 13.5 knots in
real-ship scale. For each speed, measurements were carried out at 4 different incident-wave

Table 1 Principal particulars of JASNAOE-BC084 hull

Item Value Unit

Length between perpendiculars (L) 320.00 m

Breadth (B) 58.00 m

Draft (d) 20.80 m

Block coefficient (CB) 0.84 −
Midship coefficient (CM ) 0.99 −
Waterplane coefficient (CW ) 0.93 −
Center of gravity (OG) 9.80 m

Roll gyrational radius (κxx/B) 0.35 −
Pitch gyrational radius (κyy/L) 0.25 −
Yaw gyrational radius (κzz/L) 0.25 −
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angles (χ) as shown in Fig. 3. In the highest speed case (13.5 knot), the measurement was
done only in head waves (χ = 180 deg). The range of wavelengths (the ratio of wavelength
to ship length λ/L) is λ/L = 0.4 – 1.5, but the wavelength λ/L = 0.4 was not used in oblique
waves of χ = 30◦ and 90◦.

X

Y

Z

Fig. 2 Length-wise projection of body plan

Stern (30 )
o

Beam (90 )
o

Bow (150 )o

Head (180 )
o

U

Fig. 3 Ship-waves encountering angles

In all cases, the ship model
was set to be free in all modes
of ship motion, but coil springs
were used to constrain loosely
the surge, sway, and yaw mo-
tions. According to the report,
the incident-wave amplitude
was measured by two differ-
ent wave probes; one is near-
field probe installed on the
running carriage, upstream of
the ship model, and the other
is far-field probe fixed spa-
tially near the side wall of the
towing tank. At the wave-
lengths where interaction is in-
tense, for instance where the
peaks of forces are measured
(λ/L = 1.0 ∼ 1.2), a large
difference was observed in the
incident-wave amplitude mea-
sured by these two different
probes. This phenomenon
can be understood, since the
record by the near-field probe
may include the ship distur-
bance waves. On the other hand, the record by the far-field probe must contain only
negligibly small, or not at all, waves generated by the ship. For this physical reason, the
non-dimensional values in terms of the far-field incident-wave amplitudes will be used as the
experimental data in this paper.

The amplitude ζa and maximum slope k0ζa of the incident wave are used for non-
dimensional values of the translational and rotational motions, respectively. Time-averaged
wave-induced steady forces (added resistance R and sway force Y ) and yaw moment N are
non-dimensionalized with ρgζ2a(B

2/L) and ρgζ2aLB, respectively, where ρ is the density of
water; g the acceleration of gravity; L the ship length; and B the ship breadth.

7. Results and Discussion

Precise prediction of the Kochin functions is of vital importance for computations of the
wave-induced steady forces and moment. As shown in Eqs. 17 and 18, the complex amplitude
of ship motions, Xj/ζa (j = 1– 6) must be given for the motion-free case. Therefore,
a comparison is made first for the amplitude of ship motions. In oblique waves where
antisymmetric motions arises, we observed that the linear computation (considering only the
wave-making component for the damping) gives overpredicted roll motion and its coupling,
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Fig. 4 Ship motions in bow oblique waves (χ = 150 deg) at 4 knots (Fn = 0.037)

particularly near the resonant peak in roll. Therefore, we introduced an equivalent damping
coefficient taking account of viscous effects, based on the component analysis method as
formulated by Himeno [23].

Figure 4 shows the non-dimensional amplitudes of wave-induced motions of bulk carrier
advancing at 4 knot (Fn = 0.037) in bow oblique waves (χ = 150 deg). Computed results
by EUT and NSM are compared with the experimental data non-dimensionalized by the
incident-wave amplitude measured with far-field wave probe (which are denoted as EXP).
We can observe remarkable agreement between computed and measured results as well as the
superiority of EUT to NSM on certain modes of motion, like heave and roll. Nevertheless,
the computed wavelength where the roll motion takes a peak due to its resonance is slightly
different from the measured one, which may be attributed to an error in the measurement of
roll moment of inertia and vertical position of the center of gravity, although the uncertainty
level in the measurement cannot be described explicitly.

As representative examples, the wave-induced added resistance, sway force, and yaw
moment at 4 knot (Fn = 0.037) are presented in Fig. 5 (for χ = 150◦ and 180◦) and in Fig. 6
(for χ = 30◦ and 90◦). Overall, computed values are in favorable agreement with measured
data. EUT is in general better than NSM due to inclusion of 3D and forward-speed effects.
In shorter waves, EUT is also prominently superior to NSM, mainly because the effect of
n1 term is retained in the body boundary condition for the diffraction problem. It should
be noted that the values of Y and N must be zero in head waves, but as shown in Fig. 5,
nonzero values can be observed, which indicates a possible degree of experimental error or
noise.
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Fig. 5 R, Y and N in bow (χ = 150 deg) and
head (χ = 180 deg) waves at 4 knot
(Fn = 0.037)

Fig. 6 R, Y and N in stern (χ = 30 deg)
and beam (χ = 90 deg) waves at 4
knot (Fn = 0.037)

At higher forward speed of 13.5 knot (Fn = 0.124), the measurement was done only for
head waves, in which obviously the steady sway force (Y ) and yaw moment (N) are very
small, hence only the added resistance (R) is depicted in Fig. 7. We note that the peak value
of the added resistance tends to be sensitive to the accuracy in the incident-wave amplitude
and also to nonlinear effects in ship motion.

As examined previously by Skejic and Faltinsen [15] and Seo and Kim [16], the horizontal
steady forces and moment show its large influence on the ship maneuvering trajectory, with
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horizontal forces and moment

emphasis put on the difficulty in computa-
tion of steady yaw moment. In maneuver-
ing motions, the amplitude of these second-
order quantities in wave amplitude changes
at every time step in numerical simulations,
depending on varying values of U and χ.
Therefore, we checked the steady forces and
moment in increasing the forward speed at
crucial frequencies in oblique wave condi-
tion, and the results of which are shown in
Fig. 8.

In relatively short waves (λ/L = 0.6), the
superiority of EUT to NSM is evident in the
prediction of R and Y . One of the notewor-
thy points is a significant value of the added
resistance even in zero speed due to realis-
tic ship geometry. In contrast, for a fore-aft
symmetric ship (e.g. Wigley hull), it is clear
that this quantity will be essentially zero.

On the other hand, for the steady yaw
moment (N), we suspect potential difficulty
in the computation due to its sensitivity
to several parameters. However, relatively
good agreement can be confirmed between
computed and measured results at λ/L =
1.0.

After all, more validation and improve-
ment of the computation method should be made for higher Froude numbers and other
distinct ship geometries.
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8. Conclusions

Investigation on the wave-induced steady forces (added resistance and sway force) and yaw
moment acting on an advancing ship in oblique waves has been made. We employed en-
hanced unified theory (EUT) and new strip method (NSM) for solving the radiation and
diffraction problems, computing the ship motions in waves and the symmetric and an-
tisymmetric components of the Kochin function equivalent to the complex amplitude of
ship-generated disturbance waves at a distance from the ship. These Kochin functions are
important input data in the formulae for computing the steady forces and moment based
on the principles of momentum and energy conservation. Special attention was paid on the
precise computation method ensuring convergence in the semi-infinite integrals appearing
in those formulae not only for the added resistance, but also for the steady sway force and
yaw moment. The analytical integration method shown in this paper is exact and distinctly
different from conventional ones which introduce an artificial convergence factor. For valida-
tion of the computation method, we used the experimental data conducted by Yasukawa et
al. [18] with a bulk carrier model in the motion-free case with forward speed under several
incident-wave angles.

Through a comparison between computed and measured results, we observed that EUT
can predict the steady horizontal forces and yaw moment better than NSM. When the
wavelength is much small compared to the ship length, the wave diffraction near the ship
ends becomes dominant and important for accurate computations of wave-induced steady
forces, especially for the added resistance and sway force. The EUT is superior in accounting
for the effect of bow wave diffraction, because the x-component of the normal vector is
retained in the body boundary condition.

For wavelengths longer than λ/L ≈ 1.0, contribution of the radiation Kochin function
becomes important and the radiation Kochin function was found to be rather sensitive to
the ship’s forward speed. Therefore, forward-speed effects must be taken into account in a
reasonable way for the wave-induced steady horizontal forces and yaw moment.
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Appendix

A1. Analytical Integration for Yn, Nn, and Ñn

For computing the wave-induced steady sway force and yaw moment, the following integrals
are needed to integrate analytically:

Yn ≡
∫ ∞

ν

kn ℑ
{
C(k)Ŝ∗(k)

}
dk, n = 0, 1, 2, (61)

Nn ≡
∫ ∞

ν

kn ℜ
{
C ′(k)Ŝ∗(k)

}
dk, n = 0, 1, 2, (62)

Ñn ≡
∫ ∞

ν

kn ℜ
{
Ŝ ′(k)C∗(k)

}
dk, n = 0, 1, 2, (63)

where ν must be understood as a value equal to or larger than k4 or |k1|.
We consider Yn first. By substituting the definition of the Kochin functions C(k) and Ŝ(k)

shown in Eqs. 25 and 26 and performing partial integration with assumption of Q(±1) = 0
and D(±1) = 0, we have

Y0 = ℑ
[ ∫ 1

−1

Q(x) dx

∫ 1

−1

D∗(ξ) dξ

∫ ∞

ν

eik(x−ξ) dk

]
, (64)

Y1 = ℑ
[
i

∫ 1

−1

Q′(x) dx

∫ 1

−1

D∗(ξ) dξ

∫ ∞

ν

eik(x−ξ) dk

]
, (65)

Y2 = ℑ
[ ∫ 1

−1

Q′(x) dx

∫ 1

−1

D∗′(ξ) dξ

∫ ∞

ν

eik(x−ξ) dk

]
. (66)

The semi-infinite integral with respect to k can be given by the formula of Eq. 43, but as
explained in the analysis for the added resistance, there is no need to consider the contri-
bution from Dirac’s delta function in the final result for the steady sway force as well. To
evaluate singular integrals with respect to ξ to be obtained from the last term in Eq. 43, we
prepare the following Fourier series:

D∗(ξ) e−iνξ =
∞∑

n=1

s∗n sinnφ

D∗′(ξ) e−iνξ = − 1

sinφ

∞∑
n=1

s∗n
{
− iν sinφ sinnφ+ n cosnφ

}
s∗n =

2

π

∫ π

0

D∗(cosφ) e−iν cosφ sinnφdφ


. (67)
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Then the singular integrals with respect to ξ can be analytically integrated like Eq. 50, and
the results are written as∫ 1

−1

D∗(ξ) e−iνξ

ξ − x
dξ = −π

∞∑
n=1

s∗n cosnθ, (68)

∫ 1

−1

D∗′(ξ) e−iνξ

ξ − x
dξ = −π

∞∑
n=1

s∗n

{
iν cosnθ + n

sinnθ

sin θ

}
, (69)

where x = cos θ has been used. Then after substituting Eq. 51, resulting integrals with
respect to x can be evaluated as the integrals with respect to θ, for which the following
formulae will be used:∫ π

0

cosmθ sinnθ sin θ dθ =
π

4

{
δm+1,n − δm,n+1

}
(70)∫ π

0

cosmθ cosnθ dθ =

∫ π

0

sinmθ sinnθ dθ =
π

2
δm,n (71)∫ π

0

sinmθ cosnθ

sin θ
dθ =

{
π for m > n
0 otherwise

(72)

where δm,n denotes Kroenecker’s delta symbol, equal to 1 when m = n and zero otherwise.
Performing integration by using these formulae, we can obtain the following results:

Y0 = ℑ
[
− i

∫ 1

−1

Q(x) eiνx dx

∫ 1

−1

D∗(ξ) e−iνξ

ξ − x
dξ

]
=
π2

4
ℜ

∞∑
n=1

{
cn+1 s

∗
n − cn s

∗
n+1

}
, (73)

Y1 = ℑ
[ ∫ 1

−1

Q′(x) eiνx dx

∫ 1

−1

D∗(ξ) e−iνξ

ξ − x
dξ

]
=
π2

4
ℜ

∞∑
n=1

[
ν
{
cn+1 s

∗
n − cn s

∗
n+1

}
− i
(
2n cn s

∗
n

)]
, (74)

Y2 = ℑ
[
− i

∫ 1

−1

Q′(x) eiνx dx

∫ 1

−1

D∗′(ξ) e−iνξ

ξ − x
dξ

]
=
π2

4
ℜ

∞∑
n=1

[
ν2
{
cn+1 s

∗
n − cn s

∗
n+1

}
− iν

(
4n cn s

∗
n

)
+2n

∞∑
ℓ=1

(n+ 2ℓ− 1)
{
cn+2ℓ−1 s

∗
n − sn+2ℓ−1 c

∗
n

}]
(75)

where the Fourier-series coefficient cn is given in Eq. 51.
Next we consider Nn and Ñn. We note that Ñn can be computed from the results of Nn,

simply by replacing cn and s∗n with sn and c∗n, respectively, in the Fourier-series coefficients.
In the calculation for Nn and Ñn, the derivatives of the Kochin functions with respect to

k are needed, which can be given simply as

C ′(k) =

∫ 1

−1

ixQ(x) eikx dx, Ŝ ′(k) =

∫ 1

−1

ixD(x) eikx dx (76)
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Since the analytical procedure is almost the same as that for Yn (n = 0, 1, 2), only the final
results for Nn (n = 0, 1, 2) are written below.

N0 = −π
2

8
ℜ

∞∑
n=1

(
cn+2 s

∗
n − cn s

∗
n+2

)
, (77)

N1 = −π
2

8
ℜ

∞∑
n=1

[
ν
(
cn+2 s

∗
n − cn s

∗
n+2

)
− i 2

{
n cn+1 s

∗
n + (n+ 1) cn s

∗
n+1

}]
, (78)

N2 = −π
2

8
ℜ

∞∑
n=1

[
ν2
(
cn+2 s

∗
n − cn s

∗
n+2

)
− i ν4

{
n cn+1 s

∗
n + (n+ 1) cn s

∗
n+1

}
−4n cn

∞∑
ℓ=1

{
(n+ 2ℓ) s∗n+2ℓ + (n+ 2ℓ− 2) s∗n+2ℓ−2

}]
. (79)
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Abstract

The enhanced unified theory (EUT) has been used as a core theory in the integrated
system developed at RIOS (Research Initiative on Oceangoing Ships) of Osaka University
for predicting the propulsion and seakeeping performance of a ship in actual seas. In
this study, the EUT is modified by adopting partially the solution method in the rational
strip theory of Ogilvie and Tuck as a particular solution in the inner problem, thereby a
forward-speed effect in the convection term of the free-surface condition is incorporated in
the inner solution. This forward-speed effect is analytically shown to contribute only to the
cross-coupling radiation forces. Some other forward-speed and 3D effects important in a
low-frequency range are also included in the homogeneous component of the inner solution
through matching with the outer solution in a similar manner to the unified theory of
Newman. Numerical computations are implemented for a slender modified Wigley model
and the RIOS bulk carrier model. Good agreement is confirmed in a comparison with
experimental data for the cross-coupling added mass and damping coefficients between
heave and pitch and also for the resulting ship motions, particularly in heave near the
resonant frequency. The added resistance around the motion-resonant wavelength is found
to be improved but sensitive to a slight change in heave and pitch motions. Thus, it
is stressed that accurate prediction of the ship motions and resultant Kochin function is
critical for more accurate prediction of the added resistance in waves.

Keywords: Enhanced unified theory, rational strip theory, cross-coupling radiation force,
ship motion, added resistance, forward-speed effect, seakeeping.

1. Introduction

Although the design of the ship hull form has been based mainly on the propulsion perfor-
mance in still water, recently, prediction and onboard data analysis for the propulsion and
seakeeping performance of a ship in actual irregular waves have been attracting attention
of the researchers (Orihara & Tsujimoto 2018; Minoura et al. 2019). In fact, real ships nav-
igate mostly in rough seas, and thus, the so-called short-term and long-term predictions of
ship response in actual seas must be made to guarantee the performance and safety of a
ship. This trend to study the seakeeping performance of a ship is partly because the Energy
Efficiency Design Index regulation was introduced by International Maritime Organization
(IMO) to reduce greenhouse gas emission from the ships in operation. Thus, it becomes

∗ Reprinted from Journal of Ship Research, Published on 11 December, 2020, Paper Number:
SNAME-JSR-04200028, https://doi.org/10.5957/JOSR.04200028
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important to predict with sufficient accuracy the wave-induced ship motions, the added re-
sistance, and the resultant speed loss of a ship in irregular waves represented by a directional
wave spectrum (Kashiwagi 2009; Kim et al. 2017) even in the initial stage of ship design,
necessitating computations for various profiles of a candidate ship.

However, in the ship-building community, strip methods have been used for a quick initial
prediction of the seakeeping performance with recognition that several shortcomings exist in
the theory used. On the other hand, some advanced calculation methods like Computational
Fluid Dynamics (CFD) are available at present (ITTC 2017), but practically, CFD methods
are time-consuming despite a fact that they allow studying all nonlinear effects related to
large-amplitude motions and fluid viscosity. Moreover, because all physical phenomena are
included altogether, it may be hard to understand which components are influential and
how and why they are important. El Moctar et al. (2017) studied the added resistance using
CFD methods, but they conclude that predicting the wave-induced resistance of ships in
waves remains challenging. In the framework of linear potential flow with forward speed,
Rankine Panel Methods (RPM) are popular these days (Kim & Kim 2011; Shao & Faltinsen
2012; Söding et al. 2014 to name a few), but most studies using RPM have been made for
regular head waves, and they are still unreliable for low-frequency stern quartering waves
and time-consuming if we would compute for all wave directions and frequencies needed
for predicting ship responses to irregular waves. Particularly, for the short-term prediction
in irregular waves in terms of the spectrum method, the frequency response functions for
hydrodynamic quantities concerned must be obtained over a wide range of frequencies and
incident-wave angles at various ship speeds. Therefore, the calculation method to be used
must be fast in computation, reliable in accuracy, and able to deal with practical geometries
such as the bulbous bow. These requirements may be satisfied by the enhanced unified theory
(EUT) developed by Kashiwagi (1995). With this background, the Research Initiative on
Oceangoing Ships (RIOS) at Osaka University has adopted the EUT as a core theory in the
integrated prediction and analysis system, in which almost all physical quantities relevant
to the seakeeping performance of ships can be computed.

What is important in this prediction system is not only fast computation for various
conditions but also we must be able to understand semianalytically whether obtained results
are reasonable and which components in the boundary conditions or governing equations
are essential for further improvement in the results obtained. This kind of understanding
is of critical importance from an academic viewpoint. In that sense, slender-ship theories
are still valuable and worth revisiting for understanding a relationship particularly between
forward-speed term in the free-surface condition and hydrodynamic-force components in the
ship-motion equations.

The EUT is based on the slender ship theory and is enhanced from the original unified
theory (UT) initiated by Newman (1978) which has brought in 3D effects important for
lower frequencies and some forward-speed effects to the 2D strip-theory solution. Sclavounos
(1984) extended Newman’s UT for the radiation problem to the diffraction problem, but
the effect of bow-wave diffraction was not taken into account. The EUT can analyze the
surge-mode radiation problem in the same fashion as that for heave and pitch and also
the wave-scattering problem near the ship bow at short waves by retaining the nx term in
the body boundary condition. Consequently, the added resistance can be computed with
reasonable accuracy using this EUT. However, notwithstanding relatively good agreement
with measured results, it is known as one of the deficiencies that the forward-speed effects in
cross-coupling added mass and damping coefficients (particularly between heave and pitch)
are not properly accounted for in the EUT (Kashiwagi et al. 2000).
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Regarding this deficiency, Ogilvie and Tuck (1969) developed a rational strip theory (RST)
in which the free-surface boundary condition in the inner problem close to the ship hull
retains not only the zero-speed leading term but also the second leading term that is speed-
dependent and proportional to the parameter τ = Uω/g (where U and ω are the forward
speed and oscillation circular frequency, respectively, and g is the gravitational acceleration).
After comprehensive analysis, it was proven that the solution representing the forward-speed
effect linearly proportional to U in the inner free-surface condition contributes eventually
only to the cross-coupling added mass and damping coefficients. Numerical computations
based on this RST had been implemented by Faltinsen (1974) and very impressive agreement
with measured results was found in the cross-coupling terms between heave and pitch. These
findings and proof could be achieved for the first time with analytical study, and they are
useful information for understanding the physics in computed results to be obtained with
large-scale time-consuming computations.

Recalling these results, we recognized that the analysis in the RST of Ogilvie and Tuck
(1969) must be adopted as the particular solution in the UT in place of the conventional
strip theory solution, and then 3D effects in a low-frequency range must be incorporated
through the homogeneous solution as in the original UT. With this idea, the present paper
proposes a new slender ship theory while keeping the basic theoretical framework of the
EUT, and its validity is confirmed by comparison with experiments for the cross-coupling
added mass and damping coefficients in heave and pitch; the resulting ship motions in surge,
heave, and pitch; and the added resistance in the motion-free condition in head waves. The
ship models used for numerical computations and comparison with experiments are a slender
modified Wigley model with longitudinal symmetry and the RIOS bulk carrier model with
block coefficient Cb = 0.8.

In this article, Section 2 outlines the formulation, the concept of slender ship theory,
resulting outer and inner solutions, and their matching to take account of the forward-speed
effect in the inner free-surface boundary condition. In Section 3, the calculation method is
described for the cross-coupling radiation forces originating from the forward-speed term in
the inner free-surface condition and also briefly for the ship motions and added resistance.
Computed results are compared in Section 4 with measured results in the experiment, and
discussion is made on the degree of improvement in the ship motions and added resistance by
taking account of the forward-speed effect in the inner free-surface condition. Conclusions
are written in Section 5.

2. Theory

2.1 Formulation

A ship is assumed to advance at constant forward speed U and oscillate with circular fre-
quency ω in deep water. The right-handed Cartesian coordinate system moving with the
ship is chosen, with the x-axis pointing in the direction of forward motion and the z-axis
downward. Because there is no outstanding deficiency in the EUT for the diffraction prob-
lem, only the radiation problem is considered in this study under the assumption of inviscid
fluid with irrotational motion. Then, the velocity potential is introduced and expressed as
follows:

Φ(x, y, z, t) = UΦB(x, y, z) + ℜ
6∑

j=1

iωXj ϕj(x, y, z) e
iωt . (1)
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Here ΦB = −x + ϕS(x, y, z) denotes the steady component of the velocity potential due to
ship’s steady forward motion at U (thus ϕS is the steady perturbation potential). In this
article, ΦB is taken as the double-body velocity potential, satisfying the rigid-wall condition
on z = 0. The spatial part ϕj(x, y, z) in the unsteady component in Eq. (1) is the radiation
potential due to oscillatory motion in the j-th mode with unit velocity, thus Xj denotes the
complex amplitude, where in particular j = 1 for surge, j = 3 for heave, and j = 5 for pitch.
Symbol ℜ in Eq. (1) means the real part to be taken.

Assuming small amplitude in the oscillatory motion of a ship, the linearized theory can
be used. Then, the body boundary condition to be satisfied by the radiation potential ϕj is
expressed in the form given as follows:

∂ϕj
∂n

= nj +
U

iω
mj on SH , (2)

where (n1, n2, n3) = n, (n4, n5, n6) = r × n

(m1,m2,m3) = − (n · ∇)V

(m4,m5,m6) = − (n · ∇) (r × V )

r = (x, y, z), V = ∇ΦB = ∇
[
− x+ ϕS(x, y, z)

]
 . (3)

Here SH denotes the mean wetted surface of ship hull, n is the normal vector defined as
positive when pointing into fluid region from the boundary surface, r is the position vector,
and V is the velocity vector of steady flow induced by the double-body velocity potential
ΦB.

The linearized free-surface boundary condition to be satisfied by the radiation potential
ϕj is written as follows:

−g ∂ϕj
∂z

+ (iω)
2
ϕj + 2iω U∇ΦB · ∇ϕj

+U2∇ΦB · ∇
(
∇ΦB · ∇ϕj

)
+

1

2
U2∇

(
∇ΦB · ∇ΦB

)
· ∇ϕj

+
(
U∇2

ΦB + µ
)(
iω + U∇ΦB · ∇

)
ϕj = 0 on z = 0, (4)

where g is the acceleration due to gravity, ∇ denotes the gradient operator only in the hor-
izontal plane (x, y), and µ is Rayleigh’s artificial viscosity coefficient ensuring the radiation
condition be satisfied at infinity.

2.2 Note on the slender ship theory

The aforementioned 3D boundary-value problem may be solved with a sophisticated nu-
merical solution method like RPM. However, it is of engineering importance to consider a
simplified and fast computation method while keeping sufficient accuracy and making it eas-
ier to understand hydrodynamic implication and importance of each term in the boundary
conditions. It may be possible for slender ships by introducing the slenderness parameter ϵ
as a guide, which is usually taken as B/L or d/L, with B, d, L being ship’s breadth, draft,
and length, respectively. In the limit of ϵ → 0, the ship will be viewed as a segment in the
x-axis, and then the body boundary condition cannot be imposed, but the 3D wave pattern
is important on the free surface (which is called the outer problem). On the other hand, in
the near field close to the body surface, the y- and z-axes may be stretched by the variable
transformation of y = ϵY and z = ϵZ. Then, the body boundary condition can be satisfied
in the magnified Y -Z plane. On the contrary, however, a proper behavior of outgoing waves
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cannot be detected in the inner problem, and hence, no radiation condition is imposed. In
this inner problem, the free-surface boundary condition may be simplified depending on the
order of oscillation frequency ω and forward speed U relative to the rate of change of the
velocity potential in the transverse and longitudinal directions. To assume the orders of ω
and U are equivalent to consider the relative length of the waves generated by the harmonic
oscillation 2πg/ω2 and the steady translation 2πU2/g, respectively, although the entire wave
pattern of real 3D waves changes with ω and U (Becker 1958).

In both outer and inner problems, a unique solution cannot be obtained because of the lack
of certain boundary condition, and hence, a homogeneous solution may be allowed in each
problem. The unknown coefficients of these homogeneous components will be determined
later through matching between outer and inner solutions in an overlap region.

Before describing details of the outer and inner solutions, let us focus our attention on the
free-surface condition by assuming the relative orders of ω and U in terms of the slenderness
parameter ϵ. For brevity of explanation, we adopt the uniform-flow approximation for the
steady velocity potential ΦB ≃ −x and omit Rayleigh’s artificial viscosity µ in Eq. (4). Then,
the free-surface boundary condition takes the following form:

∂ϕj
∂z

− 1

g

(
iω − U

∂

∂x

)2

ϕj = 0 on z = 0. (5)

This is valid in the outer filed far from the ship and represents 3D wave systems changing
with ω and U .

For convenience in subsequent analyses, the Fourier transform with respect to x will be
used with the following definition:

F ∗(k) =

∫ ∞

−∞
F (x) eikx dx

F (x) =
1

2π

∫ ∞

−∞
F ∗(k) e−ikx dk

 . (6)

Because the Fourier transform of ∂ϕj/∂x is given by −ikϕ∗j , the Fourier transform of Eq. (5)
with respect to x can be expressed as follows:

∂ϕ∗j
∂z

+ κ(k)ϕ∗j = 0 on z = 0, (7)

where
κ(k) =

1

g

(
ω + kU

)2
= K + 2τ k +

k2

K0
, (8)

K =
ω2

g
, τ =

Uω

g
, K0 =

g

U2
. (9)

We note that κ(k) defined by Eq. (8) is the 3D wave number including both ω and U and
that appearance of the Fourier-transform variable k implies the 3D effect and at the same
time, the forward-speed effect related to differentiation with respect to x multiplied by U .

Like conventional strip theories, by assuming the orders of ω and U as ω = O(ϵ−1/2) and
U = O(1), the relative order of each term in Eq. (7) can be evaluated in the inner region of
z = O(ϵ) given as follows:

∂ϕ∗j
∂z

+K ϕ∗j + 2τ k ϕ∗j +
k2

K0
ϕ∗j = 0 on z = 0. (10)

O(1) O(1) O(
√
ϵ) O(ϵ)
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Therefore, we can see that the leading-term equation comprises the first two terms and can
be written as follows:

∂ϕ∗j
∂z

+K ϕ∗j = 0 on z = 0, (11)

which is the boundary condition for k = 0, namely for the 2D and zero-speed case.
It has been argued that the strip theory satisfying Eq. (11) is valid only in a high-frequency

range of ω = O(ϵ−1/2), which is not true. As long as U = 0, Eq. (11) is valid even for low
frequencies including the limit of ω → 0. However, because the third and fourth terms
in Eq. (10) are neglected as higher orders from the outset, the forward-speed effect in the
free-surface condition cannot be incorporated in the strip theory solution, no matter how
we manipulate. In fact, for the forward-speed case, if we would consider ω = O(1) or O(ϵ),
the third and fourth terms become more dominant than the second term, and hence, not
only the second term but also the third and fourth terms should be taken into account in
some way. We should emphasize that the difference in the order of the third term from the
leading term is simply O(

√
ϵ) even in the high-frequency regime.

One smart method for taking account of 3D and forward-speed effects (i.e. the terms
including variable k) in Eq. (10) in the framework of 2D solution is the UT by Newman
(1978). As will be shown later, those effects included in the outer solution typically ex-
pressed with 3D wave number κ(k) are incorporated into the inner solution through the
coefficient of homogeneous component, which could be realized by matching with the outer
solution at lower frequencies. Hence, the homogeneous coefficient is given as a function of
k and 3D wave number κ(k). However the free-surface condition satisfied by the particu-
lar and homogeneous solutions remains Eq. (11). Probably, because of this treatment for
the forward-speed effects, computed results by the UT for cross-coupling radiation forces
between heave and pitch are not in good agreement with measured results (Kashiwagi et
al. 2000). Nevertheless, effectiveness of including a homogeneous component in the inner
solution to account for 3D effects prominent at low frequencies can be well recognized from
an article of Kashiwagi & Ohkusu (1991) on tank-wall interference effects on an oscillating
ship with forward speed.

Another smart method for taking account of the forward-speed effect in the free-surface
condition under the assumption of ω = O(ϵ−1/2) and U = O(1) is the RST by Oglivie and
Tuck (1969). To incorporate the third term proportional to τ in Eq. (10) into the particular
solution of the inner problem, they adopted a systematic perturbation analysis and expressed
the unsteady velocity potential in a power series of increasing order

√
ϵ as follows:

ϕ∗j = ϕ
(1)
j +

√
ϵ ϕ

(2)
j + · · · . (12)

Then, the leading-order forward-speed correction in Eq. (10) was considered in the following
perturbation procedure:

∂ϕ
(1)
j

∂z
+K ϕ

(1)
j = 0 on z = 0

∂ϕ
(2)
j

∂z
+K ϕ

(2)
j = −2τ k ϕ

(1)
j on z = 0

 . (13)

Exactly speaking, as will be shown later, there exist some other nonhomogeneous terms to

be included on the right-hand side for ϕ
(2)
j which are contributions from interactions between

the steady perturbation and unsteady flows and are the same order proportional to τ in a
systematic analysis with slender ship assumption.
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Because the left-hand side of Eq. (13) is the same as Eq. (11), the solution method for
satisfying Eq. (13) can be essentially the same as that for the 2D problems. Although the

analysis for ϕ
(2)
j in the RST is rather complicated, the final results for computing hydro-

dynamic forces are simple, contributing only to the cross-coupling terms in proportion to

τ , and can be computed only with information of the leading term ϕ
(1)
j in Eq. (13). How-

ever, unlike UT, no homogeneous component is allowed in the inner solution. Thus, in a
low-frequency range where the second and third terms become smaller in order than the
4th term in Eq. (10), the analysis of RST may be invalid, despite a fact that there are no
numerical difficulties even when ω and U become small.

To circumvent aforementioned deficiencies in UT and RST, we should consider a hybrid
method combining important ideas in both UT and RST. Namely the RST analysis will
be used to incorporate the forward-speed effect (proportional to τ) of the free-surface con-
dition into the particular inner solution, and the idea of UT will be used to incorporate
3D and forward-speed effects (which become important in a low-frequency range) into the
coefficient of homogeneous inner solution through matching with the outer solution. This
hybrid analysis method in the framework of slender ship theory is newly proposed in this
article and notable in that the free-surface forward-speed effect proportional to τ can be
taken into account in the inner particular solution, and other 3D and forward-speed effects
can be incorporated in the inner homogeneous solution.

One may say that satisfaction of the free-surface condition with 3D wavenumber κ(k) kept
in Eq. (7) is possible within the 2D Laplace equation by using a numerical solution method
like 2D+T theory (Chapman 1976, Yeung & Kim 1981, Faltinsen & Zhao 1991, to name
a few). However, computation methods for that formulation are much more complicated
and time-consuming than the strip theory-type solution method. Hence, if we would seek
a solution satisfying the 3D forward-speed free-surface condition, it may be better to use a
fully 3D numerical solution method like RPM, rather than 2D+T theory. The method newly
proposed in this study keeps the framework of 2D strip theory for an engineering purpose
and improves the EUT, particularly in the accuracy of cross-coupling radiation forces due
to the free-surface forward-speed effect proportional to τ = Uω/g.

2.3 Outer solution and its expansion

In the outer region far from the ship, the steady disturbance described by ϕS decays, and
thus an approximation of ΦB ≃ −x is acceptable. In this case, the free-surface boundary
condition, Eq. (4), can be simplified as Eq. (5). The velocity potential of hydrodynamic
point source with unit strength satisfying Eq. (5) together with a proper radiation condition
and 3D Laplace’s equation is known as the 3D Green function (which will be subsequently
denoted as G3D ). Because the ship may be viewed as a segment along the x-axis in the
outer region, the outer solution can be described by a line distribution of 3D sources, in the
form given as follows:

ϕ
(o)
j (x, y, z) =

∫ ∞

−∞
Qj(ξ)G3D(x− ξ, y, z) dξ

=
1

2π

∫ ∞

−∞
Q∗

j (k)G
∗
3D(k; y, z) e−ikx dk, (14)

where Qj is the unknown source strength along the x-axis, and thus, the outer solution
expressed by Eq. (14) is a so-called homogeneous solution. The asterisk in superscript in
Eq. (14) stands for the Fourier transform with respect to x, defined by Eq. (6).



428 Masashi KASHIWAGI

The Fourier transform of the 3D Green function has been well studied. Referring to the
result in Kashiwagi (1997), its expansions at higher and lower frequencies may be expressed
as follows:

G∗
3D(k; y, z) ∼ iϵk e

−κ(k)(z+iϵk|y|)

≃ i e−K(z+i|y|)
{
1− 2τ k(z + i|y|)

}
+O

(
(κR)−1, k2/κ2

)
for KR≫ 1, (15)

G∗
3D(k; y, z) ∼ G2D(y, z)− 1

π

(
1−Kz

)
f∗(k)

+O
(
K2R2, (κ−K)R, k2R2

)
for KR≪ 1, (16)

where R =
√
y2 + z2 and the 3D wave number κ(k) is defined in Eq. (8). Symbol ϵk is

defined as ϵk = sgn(ω + kU), which is equal to 1.0 at higher frequencies. Function f∗(k) in
Eq. (16) accounts for 3D and forward-speed effects in a low frequency range, which is given
by the following equation:

f∗(k) = ln
2K

|k|
+ πi−


κ√

κ2 − k2

{
πi ϵk + cosh−1

( κ
|k|

)}
κ√

k2 − κ2

{
− π + cos−1

( κ
|k|

)}
 , (17)

where the upper and lower expressions in the brackets apply to κ > |k| and κ < |k|,
respectively.

We note that Eq. (15) includes the leading two different orders under the assumption of
ω = O(ϵ−1/2) and U = O(1), adopted in the RST, which is obtained by taking the first two
terms in the expansion of κ(k) shown in Eq. (8). In the original EUT, an approximation of
κ(k) ≃ K is used in Eq. (15). We also note that G2D(y, z) = G∗

3D(0; y, z) in Eq. (16). All
terms containing valuable k are related to the x-dependency (i.e. 3D effects) through the
Fourier transform. It is worth mentioning that the 3D wave number κ(k) is kept in Eq. (17)
without any simplification.

Substituting these results in Eq. (14) and using some formulae in the inverse Fourier
transform, we can obtain the expansion of the outer solution, necessary for matching with
the inner solution in an overlap region, in the form given as follows:

ϕ
(o)
j (x, y, z) ≃ i e−K(z+i|y|)

{
Qj(x)− i2τ (z + i|y|)Q′

j(x)
}

for KR≫ 1, (18)

ϕ
(o)
j (x, y, z) ≃ Qj(x)G2D(y, z)− 1

π

(
1−Kz

) ∫ ∞

−∞
Qj(ξ)f(x− ξ) dξ

for KR≪ 1. (19)

Detailed expression for the kernel function f(x− ξ) in Eq. (19), used in numerical computa-
tions, can be found in Newman and Sclavounos (1980).

2.4 Inner solution and its expansion

In the inner region close to the ship hull, the governing equation for the velocity potential
can be the 2D Laplace equation because of variable stretching in the y- and z-axes with
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the slenderness parameter ϵ. Furthermore, from the body boundary condition, the order
of ϕS for the steady disturbance flow can be estimated as ϵ2. Then, under the assumption
of ω = O(ϵ−1/2) and U = O(1) as in the RST, the two-term expansion of the body and
free-surface boundary conditions given by Eqs. (2)–(4) may take the following form:

[H]
∂ϕj
∂n

= Nj +
U

iω
Mj on SH(x), (20)

[F ]
∂ϕj
∂z

+K ϕj = − iω U
g

{
2
∂ϕj
∂x

− 2
∂ϕS
∂y

∂ϕj
∂y

− ∂2ϕS
∂y2

ϕj

}
on z = 0, (21)

where Nj and Mj are slender-body approximations of nj and mj defined in Eq. (3), and the
order of magnitude of both terms is the same and O(ϵ) for j = 1 and O(1) for j = 3 and
5. Therefore, with assumption of ω = O(ϵ−1/2) and U = O(1), the speed-dependent terms
proportional to U in both Eqs. (20) and (21) are smaller than the zero-speed leading terms,
with relative difference in the order of

√
ϵ, namely, the radiation potential ϕj is expected to

be a power series of increasing order
√
ϵ, with the leading term being of zero-speed case and

its order being ϕ1 = O(ϵ2), ϕ3 = O(ϵ) and ϕ5 = O(ϵ).
By taking account of this order estimation and the knowledge learned from the UT

(Newman 1978) regarding the existence of a homogeneous solution in the case of no radiation
condition, we can construct the inner solution in the following form:

ϕ
(i)
j (x; y, z) = φj(y, z) + Cj(x)φH(y, z) +

U

iω

{
φ̂j(y, z) + (iω)2ψj(y, z)

}
, (22)

where φj and φ̂j are the particular solutions satisfying the following boundary conditions:

∂φj

∂n
= Nj on SH(x)

∂φj

∂z
+Kφj = 0 on z = 0

 , (23)

∂φ̂j

∂n
=Mj on SH(x)

∂φ̂j

∂z
+Kφ̂j = 0 on z = 0

 . (24)

φH(y, z) in Eq. (22) is a homogeneous solution which is permitted in the inner problem
because of no radiation condition. The solution satisfying homogeneous body and free-
surface boundary conditions can be obtained as φH(y, z) = φ3(y, z) − φ3(y, z), where the
overbar denotes the complex conjugate, and Cj(x) in Eq. (22) is the coefficient of homoge-
neous solution which is unknown at this stage and to be determined from matching. The
last term ψj(y, z) in Eq. (22) is supplemented to account for the forward-speed effect on the
right-hand side of the free-surface condition given by Eq. (21).

Taking the same order terms after substituting Eq. (22) into Eqs. (20) and (21), the body
and free-surface conditions for the supplementary term ψj can be of the following form:

∂ψj

∂n
= 0 on SH(x)

∂ψj

∂z
+Kψj = −1

g

{
2
∂φj

∂x
− 2

∂ϕS
∂y

∂φj

∂y
− ∂2ϕS

∂y2
φj

}
on z = 0

 . (25)
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We note that the order of ψj must be the same as ϵ×O(φj) i.e. ψj = O(ϵ2) for j = 3 and
5; thus, (iω)2ψj in Eq. (22) is of O(ϵ), which is the same as that of φ̂j .

For matching with the outer solution in an overlap region, let us consider an asymptotic
expression of Eq. (22) at a far field for larger values of KR. Because evanescent waves may
be neglected, the following results can be readily obtained:

φj ∼ iσj(x) e
−K(z+i|y|)

φ̂j ∼ i σ̂j(x) e
−K(z+i|y|)

}
, (26)

where σj(x) and σ̂j(x) are the 2D Kochin functions computed from φj and φ̂j , respectively.
Specifically, they can be computed as follows:

σj(x) =

∫
SH(x)

(
∂φj

∂n
− φj

∂

∂n

)
e−Kz+iKy dℓ (27)

σ̂j(x) =

∫
SH(x)

(
∂φ̂j

∂n
− φ̂j

∂

∂n

)
e−Kz+iKy dℓ (28)

The inhomogeneous free-surface condition for ψj shown in Eq. (25) implies that the flow
is the same as that induced by the following pressure distribution on the free surface

P (x; y) = − ρ

iω

{
2
∂φj

∂x
− 2

∂ϕS
∂y

∂φj

∂y
− ∂2ϕS

∂y2
φj

}
z=0

∼ −2ρ

ω
σ ′
j(x) e

−iK|y| + pF (x; y), (29)

where pF (x; y) represents a regular pressure distribution due to decaying behavior of ϕS as
|y| → ∞.

Using the analysis in terms of the Fourier transform and neglecting evanescent-wave
terms, the asymptotic expression for ψj originating from the first term on the right-hand
side of Eq. (29) takes the form as follows:

ψj(y, z) = − 2

gπ
σ ′
j(x) lim

µ→0

∫ ∞

−∞

K e−|m|z+imy

(m2 −K2)(|m| −K + iµ)
dm

∼ −2

g
iσ ′

j(x)
(
z + i|y|

)
e−K(z+i|y|) . (30)

Therefore, by collecting the results shown previously, the expansion of the inner solution
valid for KR≫ 1 can be obtained, which is essentially the same as that in the RST. On the
other hand, the expansion for KR≪ 1 can be the same as that in the UT. To sum up, the
results of the inner solution expansion can be written as follows:

ϕ
(i)
j (x; y, z) ≃ i e−K(z+i|y|)

{
σj(x) +

U

iω
σ̂j(x)− i2τ

(
z + i|y|)σ ′

j(x)
}

for KR≫ 1, (31)

ϕ
(i)
j (x; y, z) ≃

[
σj(x) +

U

iω
σ̂j(x) + Cj(x)

{
σ3(x)− σ3(x)

} ]
G2D(y, z)

+ i2Cj(x)σ3(x) e
−Kz cosKy for KR≪ 1. (32)
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By comparing these results with Eqs. (18) and (19), we can realize that the matching for
determining two unknowns, Qj(x) and Cj(x), is possible, and the results are essentially the
same as those in the UT (Kashiwagi 1997). The only difference is that the inner solution
contains a new supplementary component ψj(y, z) which represents a contribution from
the speed-dependent convection term in the inner free-surface condition and is physically
of critical importance as a correction to the UT. This term eventually contributes only to
the cross-coupling added mass and damping coefficients as will be shown in the following
section.

3. Hydrodynamic Forces

3.1 Added mass and damping coefficients

Once the inner solution has been determined, the analyses for computing the hydrodynamic
force can be a merger of both RST and UT. For the radiation problem, after applying the
so-called Tuck’s theorem (Ogilvie & Tuck 1969) to the integral of linearized pressure on
the ship hull surface, the result can be expressed with the added mass (Ajk) and damping
coefficient (Bjk) in the j-th direction due to the k-th mode of motion, in the form given as
follows:

Ajk +
1

iω
Bjk =− ρ

∫
L

ds

∫
SH(x)

(
Nj −

U

iω
Mj

){
φk +

U

iω
φ̂k

}
dℓ

− ρ

∫
L

dxCk(x)

∫
SH(x)

(
Nj −

U

iω
Mj

){
φ3 − φ3

}
dℓ− ρ i2τ Zjk . (33)

Here Zjk represents the additional term accounting for the forward-speed effect proportional
to τ , to be computed from the new term ψj(y, z) in the inner solution. Although the
analytical transformation for this term is the same as shown in the study of Ogilvie and
Tuck (1969), it is summarized in Appendix of this article for self-confirmation. From this
transformation, we can see that Zjk = 0 for the case of j = k, and hence, the forward-speed
effect in the free-surface condition contributes only to the cross-coupling terms of j ̸= k.
Specifically, the final result for the case of j = 3 and k = 5 (or j = 5 and k = 3) can be
expressed as follows:

Z35 = −Z53 =

∫
L

I(x) dx

I(x) =

∫ ∞

y0(x)

{
φ2
3(y, 0) + σ2

3 e
−i2Ky

}
dy +

i

2K
σ2
3 e

−i2Ky0(x)

 , (34)

where y0(x) denotes the half breadth of the transverse section SH(x) at station x.
Once the solution of φ3 for heave has been obtained, the 2D Kochin function σ3 and the

value of φ3(y, 0) on the free surface necessary for computing Eq. (34) can be computed from
the following expressions:

σ3 =

∫
SH(x)

(
∂φ3

∂n
− φ3

∂

∂n

)
e−Kζ+iKη dℓ, (35)

φ3(y, 0) =

∫
SH(x)

(
∂φ3

∂n
− φ3

∂

∂n

)
G2D(y, 0; η, ζ) dℓ, (36)

where G2D(y, z; η, ζ) denotes the 2D free-surface Green function used in Eqs. (16) and (32)
and its computation method is well established.
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It is noteworthy that the relation of Z35 = −Z53 means that the Timman-Newman
relation for the forward-speed effect (Timman & Newman 1962) is also satisfied in this
additional term and that the analysis for the cross-coupling between sway (j = 2) and yaw
(j = 6) can be performed in a similar manner.

In the slender ship analysis for the heave and pitch modes, we may approximate as
N5 = −xN3, M5 = N3 for pitch. Thus, we have relations of φ5 = −xφ3, φ̂5 = φ3 for the
particular solutions and σ5 = −xσ3, σ̂5 = σ3 for the 2D Kochin functions. The particular
solution of the radiation potential φ3 for an arbitrary 2D body shape can be obtained using
the boundary element (or Green function) method.

3.2 Ship motions and added resistance

After computing hydrodynamic forces (not only in the radiation problem but also in the
diffraction problem), the complex motion amplitude Xj (j = 1, 3, 5) can be obtained by
solving the coupled motion equations of the form given as follows:∑

k=1,3,5

[
(iω)2 {mjkδjk +Ajk}+ iωBjk + Cjk

]
Xk = ζaEj (37)

among the modes of surge (j = 1), heave (j = 3), and pitch (j = 5), where ζa denotes the
amplitude of regular incident wave with circular frequency ω0 (which is related to ω with
ω = ω0 + Uω2

0/g in head wave), and Ej denotes the wave-exciting force in the j-th mode
by the unit amplitude of incident wave. mjk and δjk are the mass matrix coefficient and
Kroenecker’s delta function, respectively; hence, mjk is the ship’s mass for j = k = 1 or 3,
and the moment of inertia for j = k = 5. Cjk denotes the restoring force coefficient.

In terms of the complex motion amplitude computed, the 3D Kochin function for the term
symmetric in the port and starboard sides can be computed from the linear superposition
of the following form:

H(k) = H7(k)−
ωω0

g

∑
j=1,3,5

Xj

ζa
Hj(k)

Hj(k) =

∫
L

Qj(ξ) e
ikξ dξ

 , (38)

where Qj(x) is the strength of source distribution along the x-axis in the outer solution.
Once the 3D Kochin function could be computed, as well known as Maruo’s formula

(Maruo 1960), the added resistance in head waves can be computed from

RAW

ρgζ2a
=

1

4πk0

[
−
∫ k1

−∞
+

∫ k3

k2

+

∫ ∞

k4

] ∣∣H(k)
∣∣2 κ√

κ2 − k2
(k + k0) dk . (39)

where
k1
k2

}
= −K0

2

(
1 + 2τ ±

√
1 + 4τ

)
, (40)

k3
k4

}
=

K0

2

(
1− 2τ ∓

√
1− 4τ

)
. (41)

We note that the wave numbers kj (j = 1 ∼ 4) are given as the roots of κ2 = k2; for τ > 1/4,
k3 and k4 become complex and the integration range in Eq. (39) must be continuous for
k2 < k; k0 = ω2

0/g is the wave number of incident wave in deep water; κ(k) and K0 = g/U2
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are defined in Eqs. (8) and (9). There are a couple of points to be cautious in the numerical
integration of Eq. (39), for which the readers are referred to Wicaksono and Kashiwagi
(2018).

4. Results and Discussions

To validate the present theory taking account of the forward-speed effect in the free-surface
condition of the inner problem, computed results for the added mass and damping coef-
ficients, particularly cross-coupling terms between heave and pitch, and also for the wave-
induced ship motions (surge, heave, and pitch) in head waves are compared with correspond-
ing values measured in the experiment.

The values to be computed by Eq. (33) may be divided into three components: the first
term on the right-hand side is the same as the result of the strip method (which is referred
to as New Strip Method (NSM) in subsequent comparisons), the second term on the right-
hand side is the contribution from the homogeneous solution in the enhanced unified theory
(Kashiwagi 1997) and thus, the sum of the first and second terms is referred to as the EUT,
and the third term is a newly added correction accounting for the forward-speed effect in the
free-surface boundary condition in the inner problem. Therefore, the results including this
correction term in the NSM and EUT are denoted as modified NSM (which is essentially
the same as the RST) and modified EUT, respectively.

4.1 Slender modified Wigley model

The first comparison is made for a slender modified Wigley model, the geometry of which
is expressed mathematically as follows:

y =
B

2

{
(1− ζ2)(1− ξ2)(1 + 0.2ξ2) + ζ2(1− ζ8)(1− ξ2)4

}
, (42)

where ξ = 2x/L and ζ = z/d. The principal dimensions of this model used in the experiment
by Kashiwagi et al. (2000) are shown in Table 1.

Table 1 Principal dimensions of a slender modified Wigley model

Length: L (m) 2.000

Breadth: B (m) 0.300

Draft: d (m) 0.125

Block coefficient: Cb 0.5607

Displacement volume: ∇ = CbLBd (m3) 0.04205

Midship coefficient: Cm 0.9091

Water-plane Area: Aw (m2) 0.4160

Center of gravity: OG (m) 0.0404

Gyrational radius: κyy/L 0.248

The cross-coupling added mass coefficients A53 and A35 (nondimensionalized with ρ∇L)
and damping coefficients B53 and B35 (nondimensionalized with ρ∇L

√
g/L) are shown in

Fig. 1 for Fn = 0.2, with abscissa taken as KL. As indicated in the legend, thin solid
and dotted lines are original EUT and NSM, respectively; thick solid and broken lines are
modified EUT and modified NSM, respectively, which contain the forward-speed correction
term. We note that all these values in the cross-coupling terms are induced by the forward-
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Fig. 1 Cross-coupling added mass and damping coefficients between heave and pitch for a
slender modified Wigley model, at Fn = 0.2
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Fig. 2 Wave-induced ship motions (surge, heave, and pitch) of a slender modified Wigley
model at Fn = 0.2 in head waves

speed effect only because the modified Wigley model considered is longitudinally symmetric,
and hence, the values at zero forward speed must be exactly zero.

The agreement between experiment and modified EUT is good enough over the range
where experimental data are available, including the critical frequency τ = Fn

√
KL = 0.25

(which corresponds toKL = 1.56 at Fn = 0.2). The modified NSM is also good in agreement
except in the very low-frequency range less than τ < 0.25. We can see from these results
that the additional term in the cross-coupling radiation forces, linearly proportional to
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Fig. 3 Added resistance on a slender modified Wigley model at Fn = 0.2 in the motion-free
condition in head waves

the forward speed U and originating from the inner free-surface condition, is of critical
importance for better agreement with experimental data in a low frequency range. Although
the additional term ψj(y, z) in the inner solution of Eq. (22) is regarded as the second leading
term under the assumption of ω = O(ϵ−1/2) and U = O(1), this term is the same in order as a
particular solution φ̂j(y, z) and computed with the leading-order solution φj(y, z), as shown
in Eq. (25) and Eq. (34). Thus, as inferred from Eqs. (22) and (33), the contribution from
this additional term becomes practically important even in lower frequencies as a forward-
speed effect proportional to τ originating from the free-surface condition. In a low-frequency
range, other forward-speed and 3D effects may become more important, which are taken
into account through the homogeneous component of the inner solution.

Figure 2 shows the nondimensional amplitude and phase in surge, heave, and pitch mo-
tions. In the surge motion, only the results by the EUT are shown, and slight improvement
can be observed by virtue of forward-speed correction in the heave-pitch coupling terms
which is because the surge is computed from coupled motion equations among surge, heave,
and pitch. More prominent improvement in agreement with the experiment can be observed
in heave around the resonant frequency of λ/L ≃ 1.1. This prominent improvement indicates
that the accuracy of cross-coupling added mass and damping coefficients between heave and
pitch is of critical importance for predicting accurately the ship motions, particularly in
heave, around the resonant frequency, because the diagonal components in the inertial force
and restoring force coefficients almost cancel at the resonant frequency. In this case, the off-
diagonal components become important, despite the magnitude of cross-coupling coefficients
itself is relatively small as shown in Fig. 1. Similar observation regarding the importance of
cross-coupling radiation forces around the motion-resonant wavelength was demonstrated
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experimentally in Kashiwagi et al. (2000).
The added resistance computed with these complex motion amplitudes in surge, heave,

and pitch is shown in Fig. 3, in which the experimental data for comparison are taken from
Kashiwagi (2013). It can be seen that the prediction of added resistance, especially near
its peak, is sensitive to a change in the complex motion amplitude, which is also the case
in the experiment. By incorporating the linear forward-speed effect term in the heave-pitch
cross-coupling radiation forces, the peak wavelength in the added resistance tends to shift
slightly to a longer wavelength, agreeing with the experiment. However, the predicted values
at longer wavelength region are obviously larger than the measured values, which may be
attributed to overprediction of the pitch motion amplitude as observed in Fig. 2. A possible
reason of this overprediction of the pitch motion is a slight discrepancy in the pitch damping
coefficient and the pitch exciting moment as indicated in Kashiwagi et al. (2000), but more
careful check should be made for confirming this conjecture.

4.2 RIOS bulk carrier

The RIOS at Osaka University provided a bulk carrier model which can be open to the
public for experiments and numerical computations with research purpose. The principal
dimensions of this model are shown in Table 2, and its body plan is also shown in Fig. 4.

Table 2 Principal dimensions of RIOS bulk carrier model

Length between perpendiculars: Lpp (m) 2.400

Breadth: B (m) 0.400

Draft: d (m) 0.128

Block coefficient: Cb 0.800

Displacement volume: ∇ = CbLBd (m3) 0.09830

Midship coefficient: Cm 0.9950

Water-plane Area: Aw (m2) 0.8354

Center of gravity: OG (m) 0.0205

Gyrational radius: κyy/L 0.256
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Fig. 4 Body plan of RIOS bulk carrier

Measured and computed results for the cross-coupling added mass and damping coeffi-
cients between heave and pitch are shown in Fig. 5 in the same fashion as that for the slender
modified Wigley model, but the Froude number in this comparison is Fn = 0.18. Clearly
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Fig. 5 Cross-coupling added-mass and damping coefficients between heave and pitch for
RIOS bulk-carrier model, at Fn = 0.18

P
h
a
se

 (
d
eg
.)

P
it

ch
 A

m
p

li
tu

d
e
k

0
ζ
a

P
h
a
se

 (
d
eg
.)

H
ea

ve
 A

m
p
li

tu
d
e

ζ
a

P
h
a
se

 (
d
eg
.)

RIOS Bulk Carrier RIOS Bulk Carrier RIOS Bulk CarrierFn=0.18, =180 deg.β Fn=0.18, =180 deg.β Fn=0.18, =180 deg.β

S
u
rg

e 
A

m
p
li

tu
d
e
ζ
a

λ L λ L

λ Lλ L

λ L

Cal by EUT

Experiment

Cal by Modified EUT

Cal by EUT

Cal by NSM

Cal by Modified EUT

Cal by Modified NSM

Experiment

Cal by EUT

Cal by NSM

Cal by Modified EUT

Cal by Modified NSM

Experiment

Fig. 6 Wave-induced ship motions (surge, heave, and pitch) of RIOS bulk-carrier model
at Fn = 0.18 in head waves

the degree of agreement is improved by adding the linear forward-speed correction term
originating from the forward-speed effect in the inner free-surface condition. Around the
critical frequency equal to τ = Fn

√
KL = 0.25 (KL = 1.93 at Fn = 0.18), computed results

show rapid change, which looks also observed in the experiment but a little exaggerated in
the computation based on the linear potential flow theory.

Figure 6 shows the nondimensional amplitude and phase of wave-induced ship motions.
We can see prominent improvement in the peak value of heave motion by the modified EUT
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Fig. 7 Added resistance on RIOS bulk-carrier model at Fn = 0.18 in the motion-free
condition in head waves

taking account of the linear forward-speed effect term in the inner free-surface condition.
We note that λ/L = 1.25 near the peak corresponds to KL = 9.902 at Fn = 0.18, where the
improvement from the original EUT can be observed mainly in the added mass coefficients
A53 and A35 rather than in the damping coefficients B53 and B35. Therefore, we can say
that the accuracy in the cross-coupling added mass coefficients is important for accurate
prediction of the peak amplitude, especially in heave.

A comparison for the added resistance on the RIOS bulk carrier model is shown in Fig. 7.
The degree of agreement between computed results by the modified EUT and measured
results is unexpectedly not so good, and we can see again that the prediction of added
resistance is sensitive to the complex amplitude of ship motions. The wavelength at which
the added resistance takes the maximum looks slightly different in the modified EUT. (Note
that λ/L = 1.1 and 1.2 correspond to KL = 11.684 and 10.437, respectively.) Looking at
the pitch motion RAO in Fig. 6 and the added resistance in Fig. 7, we can conjecture that
slight underprediction of pitch motion around λ/L = 1.1 ∼ 1.2 may be a reason of the
difference in the added resistance and slight overprediction of heave motion in the range of
λ/L > 1.25 may be a reason of overprediction in the added resistance.

As we have seen, obviously the prediction accuracy is improved in the cross-coupling radi-
ation forces and the resultant ship motions especially, in heave, but the prediction accuracy
in the added resistance is not necessarily improved, especially for RIOS bulk carrier model,
which suggests that the total balance in computing the Kochin function would be important
for accurate prediction of the added resistance.
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5. Conclusions

Within the framework of the EUT, a study has been conducted on the effect of forward speed
proportional to the parameter τ = Uω/g in the inner free-surface condition on hydrodynamic
radiation forces, wave-induced ship motions, and resultant added resistance. To compute
the additional radiation forces originating from the term proportional to the forward speed
of a ship in the inner free-surface condition, the solution method developed in Ogilvie and
Tuck’s RST has been adopted for the particular inner solution. The resultant contribution
from this forward-speed effect exists only in the cross-coupling added mass and damping
coefficients, specifically between heave and pitch in the present study, which satisfies the
Timman-Newman relation.

Numerical computations and comparison with measured results have been made for a
slender modified Wigley model with longitudinal symmetry and a real ship of the RIOS
bulk carrier with block coefficient Cb = 0.8. For both cases, prominent improvement in the
cross-coupling added mass and damping coefficients between heave and pitch could be con-
firmed. Furthermore, it was confirmed that the improvement in these cross-coupling terms
contributes to better agreement with measured results in the amplitude of ship motions
(particularly in heave) near the resonant frequency. This is because the diagonal compo-
nents in the inertial and restoring forces cancel, and hence, off-diagonal components become
important at the resonant frequency.

However, the degree of improvement in the added resistance was found to be not so much
as expected, and we realized that the prediction of added resistance is sensitive to slight
change in the cross-coupling radiation forces and resultant ship motions, especially around
the motion-resonant wavelength, because the added resistance takes the maximum near the
motion-resonant wavelength. For more accurate prediction of the wave-making component
in the added resistance, we should consider a computation method that is balanced in the
degree of accuracy for computing the ship-generated wave-amplitude function known as the
Kochin function over a wider range of wavelength.

Acknowledgment

A part of this study was supported by JSPS Grant-in-Aid for Scientific Research (Grant
number 17H01357) and also the subsidy for International Collaboration Promotion Program
at Osaka University, for which the author is thankful.

References

1. Becker, E. 1958: Das Wellenbild einer unter der Oberfläche eines Stromes Schwerer
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Appendix

A1. Analytical Transformation for Zjk

In terms of linearized Bernoulli’s pressure equation, the hydrodynamic force can be com-
puted and expressed as follows:

Fj =
6∑

k=1

TjkXk =
6∑

k=1

[
−(iω)2

{
Ajk +

1

iω
Bjk

}]
Xk . (A1)

Here Tjk is referred to as the transfer function for the force acting in the j-th direction due
to the k-th mode of motion, and the contribution from the velocity potential ψk in Eq. (22)
to the transfer function may be computed from the following equation:

T
(2)
jk ≡ ρ(iω)3U

∫
L

dx

∫
SH(x)

ψkNj dℓ. (A2)

Thus, we will consider the following integral along the sectional contour at station x.

Ijk(x) ≡
∫
SH(x)

ψkNj dℓ. (A3)

Taking account of the body boundary conditions for ψk and φj and applying Green’s
theorem, we have the following equation:

Ijk =

∫
SH(x)

{
ψk
∂φj

∂n
− φj

∂ψk

∂n

}
dℓ = −

[ ∫
CF

+

∫
C∞

]{
ψk
∂φj

∂n
− φj

∂ψk

∂n

}
dℓ. (A4)

On the free surface (CF ), dℓ = −dy and ∂
∂n = ∂

∂z . Hence, from the free-surface boundary
conditions for ψk and φj , it follows that
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JF ≡ −
∫
CF

{
ψk
∂φj

∂n
− φj

∂ψk

∂n

}
dℓ

= −2

g

∫ ∞

y0(x)

φj

{
2
∂φk

∂x
− 2

∂ϕS
∂y

∂φk

∂y
− ∂2ϕS

∂y2
φk

}
dy, (A5)

where y0(x) denotes the half breadth of the transverse section SH(x) at station x.
Performing the partial integration for the last terms gives the following equation:

JF =− 4

g

∫ ∞

y0(x)

φj
∂φk

∂x
dy

+
2

g

∫ ∞

y0(x)

∂ϕS
∂y

(
∂φk

∂y
φj − φk

∂φj

∂y

)
dy +

2

g

[
∂ϕS
∂y

φj φk

]∞
y0(x)

(A6)

Here we note that the second term in Eq. (A6) becomes zero for j = k. Even for the case
of j ̸= k, this term can be found equal to zero for the coupling between heave (j = 3) and
pitch (j = 5), because φ5 = −xφ3 holds in the slender ship approximation.

To ensure the convergence in the integral with respect to y in the first term of Eq. (A6),
the asymptotic expression of φj ∂φk/∂x will be subtracted from the integrand and added
after analytical integration. Then, because the asymptotic expression of φj is given by
Eq. (26), the result takes the following form:

JF =− 4

g

∫ ∞

y0(x)

{
φj
∂φk

∂x
+ σjσ

′
k e

−i2Ky

}
dy

− 2

g

[
∂ϕS
∂y

φj φk +
i

K
σjσ

′
k e

−i2Ky

]
y=y0(x)

+
2i

gK
σjσ

′
k lim
R→∞

e−i2KR . (A7)

On the other hand, the line integral along C∞ in Eq. (A4) (denoted as J∞) can be evaluated
analytically only with the asymptotic expressions given by Eq. (26) and Eq. (30). The result
with this transformation can be written as follows:

J∞ = 2

∫ ∞

0

{
ψk
∂φj

∂y
− φj

∂ψk

∂y

}
y=∞

dz

= − 4i

g
σjσ

′
k lim
y→∞

e−i2Ky

∫ ∞

0

e−2Kz dz. (A8)

We can see that this result exactly cancels out the last term in Eq. (A7), because the result
of the integral with respect to z in Eq. (A8) is 1/2K.

Because Ijk(x) in Eq. (A4) is given by the sum of JF and J∞, it follows that

Ijk(x) =− 4

g

∫ ∞

y0(x)

{
φj
∂φk

∂x
+ σjσ

′
k e

−i2Ky

}
dy

− 2

g

[
∂ϕS
∂y

φj φk +
i

K
σjσ

′
k e

−i2Ky

]
y=y0(x)

. (A9)

For further transformation, we will use the body boundary condition for the steady distur-
bance potential ϕS on z = 0 given by the following equation:

∂ϕS
∂y

= −y ′0(x) on z = 0 (A10)
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and the following identity:

d

dx

∫ ∞

y0(x)

{
φjφk + σjσk e

−i2Ky
}
dy =

∫ ∞

y0(x)

{
φj
∂φk

∂x
+ σjσ

′
k e

−i2Ky

}
dy

+

∫ ∞

y0(x)

{
φk
∂φj

∂x
+ σkσ

′
j e

−i2Ky

}
dy − y ′0(x)

{
φjφk + σjσk e

−i2Ky0(x)
}
. (A11)

In the above, we note that the left-hand side becomes zero after integrating it with respect
to x over the ship’s length, under the assumption that both ends of a ship smoothly close.
With these equations, first we consider the case of j = k.

In this case, from Eq. (A11), we have the following equation:

2

∫ ∞

y0(x)

{
φj
∂φj

∂x
+ σjσ

′
j e

−i2Ky

}
dy = y ′0(x)

{
φ2
j + σ2

j e
−i2Ky0(x)

}
. (A12)

Substituting this relation and Eq. (A10) into Eq. (A9), it follows the following equation:

Ijj(x) =− 2

g

[
y ′0(x)

{
φ2
j + σ2

j e
−i2Ky0(x)

}
− y ′0(x)φ

2
j +

i

K
σjσ

′
j e

−i2Ky0(x)

]
=− 2

g

d

dx

[
i

2K
σ2
j e

−i2Ky0(x)

]
. (A13)

Thus, this term becomes zero after integrating over the ship’s length, with the same reason as
for obtaining Eq. (A12). Therefore, we could prove that there is no component proportional
to the forward speed in the diagonal added mass and damping coefficients.

Next, we consider the case of j ̸= k, particularly the coupling between heave and pitch.
In this case, approximations of φ5 = −xφ3 and hence σ5 = −xσ3 can be used in the slender
ship theory. Thus, we can derive the following relation:

φ3
∂φ5

∂x
+ σ3σ

′
5 e

−i2Ky = φ5
∂φ3

∂x
+ σ5σ

′
3 e

−i2Ky −
{
φ2
3 + σ2

3 e
−i2Ky

}
. (A14)

By applying this relation to Eq. (A11) for (j, k) = (3, 5) and (j, k) = (5, 3), we can obtain
the following equation:

d

dx

∫ ∞

y0(x)

{
φjφk + σjσk e

−i2Ky
}
dy

=2

∫ ∞

y0(x)

{
φj
∂φk

∂x
+ σjσ

′
k e

−i2Ky

}
dy

±
∫ ∞

y0(x)

{
φ2
3 + σ2

3 e
−i2Ky

}
dy − y ′0(x)

{
φjφk + σjσk e

−i2Ky0(x)
}
, (A15)

where the upper (+) and lower (−) signs in the second line on the right-hand side of Eq. (A15)
must apply to (j, k) = (3, 5) and (j, k) = (5, 3), respectively.

As before, the left-hand side of Eq. (A15) becomes zero after integration over the ship’s
length. With this kept in mind, we substitute Eq. (A15) and Eq. (A10) into Eq. (A9), then
the result can be expressed as follows:

Ijk(x) = ±2

g

∫ ∞

y0(x)

{
φ2
3 + σ2

3 e
−i2Ky

}
dy − 2

g
e−i2Ky0(x)

{
i

K
σjσ

′
k + y ′0(x)σjσk

}
. (A16)
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Furthermore, we can prove the following relations:

d

dx

[ i

2K
σjσk e

−i2Ky0(x)
]
= e−i2Ky0(x)

{
i

K
σjσ

′
k + y ′0(x)σjσk

}
+ e−i2Ky0(x)

i

2K

(
σ ′
jσk − σjσ

′
k

)
, (A17)

σ ′
jσk − σjσ

′
k = ±σ2

3 , (A18)

where the meaning of the complex sign given earlier is the same as in Eq. (A15) and
Eq. (A16). Substituting Eq. (A17) and Eq. (A18) in Eq. (A16), it follows the following equa-
tion:

Ijk(x) = ±2

g

[ ∫ ∞

y0(x)

{
φ2
3 + σ2

3 e
−i2Ky

}
dy +

i

2K
σ2
3 e

−i2Ky0(x)

]
. (A19)

Because this is the result after transformation of Eq. (A3), we can obtain from Eqs. (A1)
and (A2) the expression for an additional contribution to the added mass and damping
coefficients for the case of (j, k) = (3, 5) and (j, k) = (5, 3) in the form given as follows:

Ajk +
1

iω
Bjk = −ρiωU

∫
L

Ijk(x) dx = ∓ρi2Uω
g

∫
L

I(x) dx, (A20)

where
I(x) ≡

∫ ∞

y0(x)

{
φ2
3(y, 0) + σ2

3 e
−i2Ky

}
dy +

i

2K
σ2
3 e

−i2Ky0(x) . (A21)

This result is the expression given as Eq. (34) in the present article.
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Abstract

Accurate prediction of wave loads on ships and floating structures is paramount in the
structural design stage. Use of a segmented ship model is a common method to quantify
the wave loads. Nevertheless, the value could be measured only at segmented sections. To
obtain the wave loads at any longitudinal position and to account for nonlinear features
in the wave loads more precisely, local quantities of the pressure on the whole ship-hull
surface need to be measured along with ship motions in waves. In this paper, an unprece-
dented experiment using a bulk carrier model has been carried out to measure the spatial
distribution of wave-induced unsteady pressure by means of a large number of Fiber Bragg
Gratings (FBG) pressure sensors affixed on the whole ship-hull surface, and at the same
time the wave-induced ship motions and ship-side wave profile have been measured. In or-
der to see hydrodynamic characteristics in nonlinear and forward-speed effects on measured
and analyzed results, some computations with the linear frequency-domain Rankine Panel
Method (RPM) and the nonlinear Computational Fluid Dynamics (CFD) method solving
the Reynolds-Averaged Navier-Stokes (RANS) equations are made. Favorable agreement
is found for the pressure distribution and resulting vertical bending moment between the
results of the experiment and corresponding numerical computations. Validation of the
measured pressure distribution has also been made through a comparison of the wave-
exciting force and moment between the two independent results obtained by integration of
the measured pressure over the entire wetted surface of a ship and by direct measurement
using a dynamometer. Very good agreement is confirmed in this case, too. As another
validation for the wave loads, a comparative study is made with the benchmark test data
of a 6750-TEU container ship used for the ITTC-ISSC joint workshop in 2014; which
also demonstrates remarkable agreement. The present study may provide a new research
technique, especially in the experiment, for predicting the waveload distribution and for
studying local hydrodynamic features in wave-related unsteady phenomena.

Keywords: Wave loads, Vertical bending moment, Nonlinearity, Pressure distribution,
Fiber bragg grating, Rankine panel method, CFD.
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1. Introduction

Prediction of wave-induced shearing force and bending moment as the wave loads on a ship is
of vital importance for evaluating the ship’s structural strength in waves, and hence accurate
prediction of wave loads on ships is required. In the analysis of fluid-structure interactions
especially for large ships, the so-called two-way coupling in the analysis is prerequisite to
account for the influence of flexible deformation of a ship. In fact, much work has been
made on ship hydroelasticity problems so far, thereby various methods have been developed
for both frequency- and time-domain problems [1–4]. However, the quasi-static response
analysis is still deemed as the practical method particularly in the early stage of structural
design rather than the direct calculation method involving the dynamic response analysis
which is more time-consuming. For that reason, evaluation of the bending moment taking
account of primarily rigid-body motions is a dominant part in the study on the wave loads.

Comprehensive reviews on the progress in the assessment of wave loads for ships and
offshore structures have been presented by the Loads Committee in the ISSC [5, 6] and also
by the Seakeeping Committee in the ITTC [7]. For instance, Hirdaris et al. [5] summarized
related papers published basically in the past three years up to 2011, and Temarel et al. [6]
reviewed the progress made in the next three years up to 2014 in the area of wave-induced
loads; in which the advantages and disadvantages of various computation methods including
relatively simpler potential-flow approaches and time-consuming CFD methods are discussed
with reference to accuracy, modeling nonlinear effects, ease of modeling and coupling with
structural assessment procedures, and so on. In particular, CFD methods making use of
RANS equations are promising for solving complicated seakeeping problems which include
various nonlinearities related to large-amplitude waves, resultant ship motions and ship’s
actual wetted surface, and also forward-speed effects on wave loads and other motion-related
hydrodynamic quantities. A good survey of the history in the application of CFD methods
to seakeeping problems at least up to 2012 is provided by Guo et al. [8]. Not only survey
but also computation was made of the wave-induced ship motions of and added resistance
on KVLCC2 tanker model especially in short waves by using the ISIS-CFD flow solver,
FINE/Marine V 2.2, and they also did careful grid-convergence and uncertainty analyses for
numerical results. Thanks to dramatic advances of computer technology and science, the
number of papers on seakeeping nonlinear problems with CFD methods is increasing over the
last decade. Among them, we can see recent work in Niklas et al. [9] computing the added
resistance using STAR-CCM+ and in Judge et al. [10] computing the slamming pressure
using CFDShip-Iowa V4.5. Use of OpenFOAM for seakeeping problems is also increasing
recently, such as Wang et al. [11] and Xu et al. [12] to name a few. However, most of them
are concerned with pressure-integrated global quantities like wave-induced ship motions
and added resistance, and few papers treat the unsteady spatial pressure distribution and
resultant wave loads.

Looking back at the work on the wave loads done in the 1980s in Japan [13–16], it was al-
ready noted principally with experimental work that the nonlinearity in the sagging and hog-
ging moments must be taken into account for sufficiently accurate prediction of the vertical
bending moment. However, in order to assess this kind of nonlinear effects on the wave loads
by numerical computations, the time-domain analysis methods must be used [17, 18, 19].
Recently some of the methods using nonlinear potential-flow approaches [20] or CFD meth-
ods employing RANS or even URANS models [21, 22] have been investigated. Nevertheless,
the examples of studies using CFD methods on the wave loads or local pressure histories
are fewer in number, e.g. [23, 24, 25]. Among them, it should be noted that Hänninen et
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al. [26] computed local pressure histories at ten locations around the still water line in the
bow area of a passenger ship using an interface-capturing CFD method ISIS-CFD. Then
as a validation, computed results were compared with measured results in the experiment
conducted by themselves. Notwithstanding advancement of computer performance, compu-
tation efficiency is still needed to consider from the practical viewpoint [27, 28] in the study
of wave loads and seakeeping problems.

On the other hand, to date, the wave loads computed by the potential-flow approaches or
CFD methods have been validated through comparisons with experiments featuring various
ship hulls with different level of nonlinearities at extreme seas [29–33]. Nonetheless, most of
the work focused only on integrated values such as hydrodynamic forces acting on the entire
ship hull and ship motions in waves. To attain more thorough understanding of hydrody-
namic features, local hydrodynamic quantities like spatial distribution of the pressure on the
hull surface of a ship should be checked. From a viewpoint of wave-load measurement con-
ducted so far in a towing tank, segmented ship models have been commonly used [34, 35] in
which the wave loads could be measured only at segmented sections with load cell installed.
However, we need to obtain the distribution of wave loads at any longitudinal position of
a ship with higher accuracy and to account for the nonlinearity in the wave loads; which
could be realized by measuring the spatial distribution of unsteady pressure on the whole
ship-hull surface and by properly integrating it in conjunction with the measurement of ship
motions and time-variant wetted surface of a ship in waves.

For that purpose, we have conducted an unprecedented experiment at Research Institute
for Applied Mechanics (RIAM), Kyushu University in 2018 using a bulk carrier ship model.
Measured in that experiment were the unsteady pressure distribution by means of a large
number of Fiber Bragg Gratings (FBG) pressure sensors [36, 37, 38] and simultaneously the
wave-induced ship motions and ship-side wave profile. As a matter of fact, the experiment
for measuring the unsteady pressure on a ship in head waves started in 2015, and the
measurement has been repeated with FBG pressure sensor improved year by year through
collaboration with the company manufacturing this sensor, CMIWS Co., Ltd, and then
repeatability and reliability in measured results have been confirmed [39, 40, 41]. Although
the number of FBG sensors used in 2015 was only 28, the total number of sensors affixed
to the ship model has been increased year by year to enhance the density of measurement
and to resolve the nonlinearity in the pressure above still waterline. In the experiment in
2018, we used version 6.0 of the FBG sensor and 333 FBG pressure sensors were affixed only
on the port side of a ship considering the symmetrical pressure field in head waves, among
which 70 sensors were placed above the still waterline to see nonlinearities. Using these
measured data, a study is made in this paper on the wave-load distribution. To figure out
nonlinear effects on the pressure distribution and resultant wave loads in a precise manner,
the analysis is commenced from the zero-speed case in which the responses of the pressure
and ship motions can be regarded as linear. Meanwhile, nonlinear responses of wave loads
are studied for a forward-speed case, where an asymmetric and hence nonlinear feature in
sagging and hogging moments is demonstrated by using the pressure distribution and wave-
induced ship motions measured at synchronized time instants. Some comparisons are made
by means of the linear potential theory of RPM developed by Iwashita et al. [42] as well
as a commercial CFD software FINE/Marine V 8.2 [48] solving the RANS equations to see
nonlinear effects and features in the vertical bending moment. A comparative study with the
benchmark data on wave-induced motions and loads of a 6750-TEU container ship adopted
for the ITTC-ISSC joint workshop in 2014 [43] is also made for further validation.

Although comparisons are made between measured and computed results, the main ob-
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jective of the present study is not the validation of the computation methods used but the
acquisition of the spatial distribution of wave-induced unsteady pressure only with experi-
mental measurement. The obtained data can be used for hydrodynamic study on the local
quantities like the distribution of wave loads and added resistance, particularly the longitu-
dinal distribution of the vertical bending moment in this paper. The obtained data can also
be used as the validation data for CFD methods, but more importantly, with CFD meth-
ods used as a guide in the analysis of measured data, we can establish a new experimental
technique to see the details in the wave-load distribution and consequently enhance the level
of our understanding of nonlinear and forward-speed effects on wave loads in terms of the
experimental data obtained.

2. Experimental Set-up

The experiment was conducted in the towing tank (its length, breadth, and depth are 65m,
5m, and 7m, respectively) of RIAM, Kyushu University. The tank has a plunger-type wave
maker with wedge inclination angle of 40 deg at one end and a wave-absorbing beach at
the other end. The wave maker can be activated remotely with the signal from a computer
specifying the amplitude and frequency of the driving motor. In the experiment in 2018,
we used the RIOS (Research Initiative on Oceangoing Ships) bulk carrier [42, 44, 45] whose
principal particulars are shown in Table 1. Fig. 1 shows the body plan and also the position
of pressure sensors, in which 333 FBG pressure sensors in total (including 70 sensors above
the still waterline) were affixed on the port side (see Fig. 1) and 19 strain-type pressure
sensors were embedded in the starboard side (only at ordinate numbers 5.0, 9.0 and 9.5,
indicated by green-color square symbol in Fig. 1) to check the measurement accuracy of
the FBG pressure sensors. Since the experiment was performed in regular head waves, the
pressures at the same symmetric points on both sides of a ship must take the same value;
with this principle, measured values by the FBG and strain-type pressure sensors can be
compared and the accuracy can be confirmed. The FBG pressure sensor used is ps1000A-V6
manufactured by CMIWS Co., Ltd and the strain-type pressure sensor used is P306V-05S
manufactured by SSK Co., Ltd.

Table 1 Principal particulars of RIOS bulk carrier model

Item Value

Length: Lpp (m) 2.400

Breadth: B (m) 0.400

Draft: d (m) 0.128

Block coefficient: Cb 0.800

Waterline coefficient: Cw 0.870

Horizontal center of gravity: xG (m) 0.0510

Vertical center of gravity: zG (m) −0.0200

Vertical center of buoyancy: zB (m) −0.0618

Gyrational radius in pitch: κyy/L 0.250

The ship model was free to surge, heave, and pitch. When the model was towed by the
carriage at a constant speed, the mean position of the model was controlled by pulling the
model (in fact the fore heaving rod mentioned later) with an adjusted force induced by a
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Fig. 1 RIOS bulk carrier model; (a) Body plan, (b) Position of pressure sensors
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Fig. 2 FBG sensor used in the experi-
ment [38]

servo motor, which was realized by adjust-
ing manually the electric current to a servo
motor while monitoring the mean position of
the model even in a wave that the ship model
would be oscillating in surge. Then the wave-
induced ship motions in surge, heave, and
pitch were measured by potentiometers and
the resistance was measured by strain gauges
installed at the bottom of fore and rear heav-
ing rods (see Figs. 3 and 5). These measure-
ments can be done at the same time with
measurement of the pressure (which will be
explained below) but these are independent
and there is no interference with each other.
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The mechanism and measurement principle of the FBG pressure sensor are explained by
Wakahara et al. [36] and Iwashita et al. [37]. The FBG is a type of distributed diffraction
grating etched into the optical fiber core that reflects a particular wavelength of light, called
Bragg wavelength, and transmits the remainder. If the spacing between reflectors changes
due to variation of pressure load or temperature, the Bragg wavelength also changes. Thus by
identifying a change in the Bragg wavelength in terms of the calibration coefficient obtained
beforehand, the pressure can be measured.

Reliability of the sensor has been improved year by year since 2015 by minimizing the
effect of temperature variation on the pressure to be measured and the size of the sensor
itself. Fig. 2 shows a schematic diagram of the FBG sensor Version 6.0 [38] used in the
experiment in 2018, with 9 mm in diameter, 15 mm in length, and 0.6 mm in thickness.
One sensor can measure the pressure and temperature at the same time, because two FBGs
with different spacings of Bragg grating are contained in one sensor and fixed in order not
to interfere with each other. Therefore, the effect of temperature variation on the pressure
measurement can be compensated in principle. It is also possible to arrange many (in the
order of 10 –15) FBG sensors with different spacing of Bragg grating along one optical fiber,
so that the simultaneous multipoint measurement can be made.

The calibration curve for FBG sensors can be written as

P (x, y, z; t) = Cp(∆λp − St∆λt)Cf (1)

where ∆λp and ∆λt denote the amount of change in the Bragg wavelength due to variation
of the pressure and temperature, respectively. St is the compensation factor to account
for the effect of temperature variation and its value is around 0.6 and less than 1.0. Cp

denotes the calibration coefficient proportional to a change in the Bragg wavelength. The
calibrated values of Cp and St are provided for each FBG sensor by CMIWS Co., Ltd based
on a laboratory test, but they tend to change and differ in actual measurement. Thus the
correction coefficient Cf must be obtained from the calibration measurement in situ, which
was done by providing several different hydrostatic pressures on the pressure sensors. In
order to alter the hydrostatic pressure, the vertical position of the ship model was changed

Rig for Calibration

Connection terminal 

for fiber cables

Fig. 3 Overview of ship model set to the towing carriage and measurement system, showing
connection terminal of optical fiber cables
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Fig. 4 Samples of calibration results for FBG pressure sensor

with the adjustable lifting and lowering rig attached to the ship model (see Fig. 3). Before a
calibration measurement, the ship model was pressed downward so that all the sensors were
in water. Then the ship model was lifted up and stopped step by step with 2.0mm each
and up to 2 cm in the end. The measurement in the inverse direction was also performed by
pressing down the model with 2.0mm each to confirm linearity and no hysteresis.

Figure 4 shows some samples of the calibration response at 4 typical positions taken
among 333 sensors. We could see a linear response at all positions and the values are

probeStrain gauge

Data acquisition system

Ship motionsResistance Pressures

Fig. 5 Data acquisition system in the RIOS bulk carrier experiment
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Table 2 Measurement channels of the experiment

Channel Item

Ch. 1 Trigger signal

Ch. 2 Wave-0 (carriage-fixed wave probe)

Ch. 3 Surge

Ch. 4 Heave

Ch. 5 Pitch

Ch. 6 Longitudinal force, Fx(f) (fore)

Ch. 7 Longitudinal force, Fx(a) (aft)

Ch. 8 Wave-1 (space-fixed wave probe)

Ch. 9-27 Strain-type pressure sensors

Ch. 28-360 FBG pressure sensors

virtually the same both when pressing down and lifting up the model (i.e. no hysteresis).
However, a difference from the theoretical value of hydrostatic pressure can be observed at
some positions, from which the correction coefficient Cf in Eq. (1) was determined in terms
of a least-squares method for all 333 sensors automatically with a personal computer (PC)
used in the in-situ analysis. This calibration measurement has been carried out, whenever
necessary, without removing any instrument in the experimental set-up.

The schematic arrangement of the data measurement and acquisition system is depicted
in Fig. 5 and the cannel number of each item is presented in Table 2. The pressure was
measured simultaneously by all FBG sensors connected to the optical interrogators. The
green-color part is the recording system for FBG pressure sensors and the orange-color
part for other electric equipments like wave probes, potentiometers, strain-type sensors and
so on. Data recorded on different computers (indicated as PC1 and PC2 in Fig. 5) were
synchronized with a trigger signal which came up when the fore perpendicular of the ship
went through the position of space-fixed wave probe. Because of large amount of data,
the data sampling frequency was set to 200Hz, which implies that 133,200 data of the
pressure and temperature were transferred to a PC per second. Recorded data were A/D
converted and Fourier-analyzed. More details for the Fourier analysis will be described in
the subsequent section.

The experiment was conducted at Fn = 0.0 and 0.18 in regular head waves at the
wavelength range of 0.3∼3.0 with motion-free condition, measuring not only the pressure
distribution but also hydrodynamic forces and wave-induced ship motions (surge, heave, and
pitch). In addition, the ship-side wave, i.e. the wave profile on the ship-hull surface, was
measured in advance using capacitance-type wave gauges which were installed on another
ship model made of urethane with the same geometry and dimensions. Since these wave
gauges were set along the girth with small separation gap from the hull surface and at the
same transverse sections as those for measuring the pressure, we can detect the correct
wetted surface of ship hull at each time instant, which is of critical importance for the
pressure integration over the ship-hull surface and for computing resultant hydrodynamic
forces.

The amplitude of incident wave in the motion-free test was set within the range of linear
theory (2ζa/λ ≤ 1/30). Furthermore, for a fundamental check whether the linear super-
position is satisfied, the measurement of pressure distribution has been performed for the
diffraction (with motion fixed in waves) and radiation (with prescribed motions in calm
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water) problems, together with direct measurement of the total force by a dynamometer.
The experiments for the diffraction and radiation problems were carried out by setting the
ship model to another equipment for the forced oscillation test.

One serious problem we realized during the experiment conducted in September of 2018
was that the repeatability in measured results tends to be influenced by the temperature
difference between water and air, especially when its value of the difference becomes larger
than 1.0 ◦C. Therefore we decided to perform the measurement during the midnight while
confirming the temperature difference, ∆t, satisfies an experience-based condition of ∆t <
1.0◦C. This issue on the effect of temperature variation on the accuracy of measured results
is now being improved by the sensor company and will be provided as version 7.0 of the
FBG pressure sensor.

3. Formulation and Computation Methods

The following subsections outline the potential flow theory and the CFD method used for the
purpose of comparison with measured results, and then present the analysis methods of ship-
side wave and pressure for evaluating the vertical bending moment by pressure integration
over the wetted surface of a ship.

3.1 Potential flow theory

For a comparison with measured results in the experiment, numerical computations based on
the linear potential-flow theory were implemented using the 3D frequency-domain Rankine
panel method (RPM) with the formulation as described in [42, 44] and [46]. Although this
RPM was basically developed for the forward-speed problems, we have applied RPM for
the zero-speed case in the present study by modifying a numerical method to satisfy the
radiation condition, as will be described below.

Because of zero forward speed, the velocity potential for harmonic oscillation problems
can be written as

Φ(x, y, z; t) = Re
[
ϕ(x, y, z) eiωt

]
(2)

where the time-dependent part is written with circular frequency ω, and ϕ(x, y, z) is the
spatial part of the velocity potential which is given in a form of linear superposition as

ϕ(x, y, z) =
igζa
ω

(
ϕ0 + ϕ7

)
+ iω

6∑
j=1

Xjϕj (3)

where ζa denotes the amplitude of incident wave, g the gravitational acceleration, Xj the
complex amplitude in j-th mode of six degree-of-freedom ship motions. Re in Eq. (2) means
only the real part of the expression must be taken. The velocity potential of incident wave
is denoted as ϕ0 which is given explicitly as

ϕ0 = eKz−iK(x cosχ+y sinχ) (4)

Here the coordinate system in the present analysis is taken such that the positive x- and
y-axes are in the bow and port directions of a ship, respectively, and the z-axis is positive
vertically upward with the origin taken on the undisturbed free surface z = 0 and at the
midship. The wavenumber of incident wave is given asK = ω2/g, and χ denotes the incident
angle of an incoming regular wave relative to the x-axis and hence χ = π means the head
wave.
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The unsteady velocity potential ϕj in Eq. (3) denotes the radiation (j = 1 ∼ 6) and scat-
tering (j = 7) velocity potentials; which is governed by the Laplace equation and expressed
by a source distribution over the body surface SH and the free surface SF , with Rankine
source used as the kernel function. Namely

ϕj(P ) =

∫∫
SH+SF

σj(Q)G(P,Q) dS(Q) (5)

where P = (x, y, z) denotes a field point in the fluid and Q = (x′, y ′, z ′) the integration
point on the boundary surface, and

G(P,Q) =

{
G0(P,Q) +G′

0(P,Q) when Q on SH

G0(P,Q) when Q on SF
(6)

G0(P,Q) = − 1

4πr
, G′

0(P,Q) = − 1

4πr ′
(7)

r

r ′

}
=
√

(x− x′)2 + (y − y ′)2 + (z ∓ z ′)2 (8)

Here σj(Q) in Eq. (5) denotes the strength of sources which is unknown. G′
0(P,Q) is the

mirror image of G0(P,Q) reflected in the undisturbed free surface (z = 0) and hence
G0(P,Q) +G′

0(P,Q) satisfies the rigid-wall boundary condition on z = 0.
In case of zero forward speed, the linearized free-surface boundary condition is given in

the form
∂ϕj
∂z

−Kϕj = 0 on z = 0 (9)

and the linearized body boundary condition on the wetted hull surface of a ship can be
expressed in the form

∂ϕj
∂n

= nj (j = 1 ∼ 6)

∂ϕ7
∂n

= −∂ϕ0
∂n

(j = 7)

 on SH (10)

where (n1, n2, n3) = n denotes the normal vector pointing into the fluid from the boundary
surface and (n4, n5, n6) = r×n, with r = (x, y, z) the position vector. The unknown source
strength σj(Q) must be determined such that the boundary conditions, Eqs. (9) and (10),
are satisfied. The procedure for obtaining an integral equation for the source strength is as
follows.

When the field point P is located on the boundary (SH or SF ), the normal derivative of
Eq. (5) can be written in the form

1

2
σj(P ) +

∫∫
SH+SF

σj(Q)
∂G(P,Q)

∂nP
dS(Q) =

∂ϕj(P )

∂nP
(11)

Specifically when P is on SH , the body boundary condition Eq. (10) must be specified as
the forcing term on the right-hand side, and when P is on SF (note that z = 0), the free-
surface boundary condition can be satisfied by substituting the following equation into the
right-hand of Eq. (11)

∂ϕj(P )

∂n
= −∂ϕj(P )

∂z
= −Kϕj(P ) (12)
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This free-surface boundary condition gives the following homogeneous form of integral equa-
tion:

1

2
σj(P ) +

∫∫
SH+SF

σj(Q)

{
∂G(P,Q)

∂z
−KG(P,Q)

}
dS(Q) = 0 (13)

The resulting equations on SH and SF can be expressed as a series of algebraic equations
by discretizing the boundary surfaces with appropriate smaller panels and assuming the
source strength σj(Q) to be constant on each panel. Integrations of the Rankine source and
its normal dipole over each panel are necessary, which are performed with analytical formulae
established by Newman [47]. Then we can obtain a solution by solving a linear system of
simultaneous equations for the source strength on SH and SF . Once the source strength is
determined, the velocity potential can be computed from Eq. (5), then the hydrodynamic
forces in the radiation and diffraction problems can be computed.

The wave radiation condition is satisfied numerically by the so-called panel shift tech-
nique [42], shifting the collocation points by one panel upstream on the free surface. In order
to avoid wave reflection from the outward boundary which can disturb the flow around a ship,
we use Rayleigh’s artificial friction which is equivalent to introducing a numerical damping
beach on the free surface. In this case, we can transform the wavenumber K in Eq. (9) into
a complex quantity with small negative imaginary part. Namely Eq. (9) is transformed as

∂ϕJ
∂z

−
(
K − iϵ

)
ϕj = 0 on z = 0 (14)

Here ϵ is a function of (x, y) on the free surface that may be specified as [31]

ϵ =
ω

g
α
{
1− e−β(R−1)

}
for R ≥ 1 (15)

where R =
√
x2 + y2 is the distance from the origin of the coordinate system and all length

dimensions are normalized with half length of a ship L/2. The values of α and β must be
tuned and are taken as α = 0.5 and β = 1.5 in the present study.

A computation mesh with quadrilateral-type panels of total number 5,032 on the ship
hull and 5,320 on the free surface is shown in Fig. 6. The number of panels on the free
surface was set with longitudinal and lateral lengths equal to −2L ≤ x ≤ 0.5L and 2L,
respectively, which was confirmed to be sufficient to prevent disturbance waves from the
outward boundary and to provide reasonable and converged results of hydrodynamic forces.

3.2 Computational fluid dynamics method

In order to discuss nonlinear and forward-speed effects to be seen in the wave-induced
unsteady pressure on the ship-hull surface, we have used a commercial CFD software,
FINE/Marine V 8.2 [48], which is based on the ISIS-CFD flow solver developed at Ecole
Centrale de Nantes (ECN), solving the incompressible RANS equations with an unstruc-
tured finite volume method and Volume-of-Fluid (VOF) type interface capturing method
for detecting the free surface between air and water. Mathematical details in the develop-
ment of ISIS-CFD are described by Queutey and Visonneau [49].

For simulating free-surface flows and their interactions with an advancing ship, the use of
interface capturing methods is effective. In order to enhance the sharpness of the interface,
many studies have been made. For a review of the development of various interface capturing
techniques, we can refer to Wackers et al. [50], which also describes the details of ISIS-
CFD flow solver together with validation results. Application of ISIS-CFD flow solver to
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Z

Fig. 6 Computational mesh of RPM for RIOS bulk carrier, Upper: ship-hull surface mesh,
Lower: free-surface mesh

unsteady seakeeping problems was shown by Guo et al. [8], and careful and systematic study
on uncertainty and convergence using 4 different meshes was performed, which shows the
reliability and accuracy of computed results for the prediction of ship motions and added
resistance. Hänninen et al. [26] also applied ISIS-CFD solver to compute the time histories
of local pressure at 10 locations around the still waterline in the bow area of a passenger
ship. By using 3 different meshes, they have checked the dependency of numerical results
on the mesh resolution, the time step per wave period, and the iteration number within a
time step, thereby confirming reliability of the method, although the computational cost is
still very high.

Judging from these results obtained so far regarding the reliability of the ISIS-CFD flow
solver for seakeeping problems, it may be appropriate to use FINE/Marine as an analysis
tool for hydrodynamic discussion on the experimental results to be obtained in the present
study.

This CFD code solves the incompressible unsteady RANS equations using the finite vol-
ume method to generate the spatial discretization of the equations. The governing equations
for an incompressible flow are the Navier-Stokes and continuity equations. In treating tur-
bulent flows, it is common to separate the velocity vector into mean and fluctuating parts
as follows:

ui = ui + u′
i (16)

where an overbar denotes the average value and u′
i the fluctuating component. Then the
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averaged Navier-Stokes and continuity equations can be written as

∂ ui
∂t

+ uj
∂ ui
∂xj

= −1

ρ

∂ p

∂xi
+ ν∇2ui + gδi3 −

∂

∂xj
u′
i u

′
j (17)

∂ uj
∂xj

= 0 (18)

where ρ and ν denote the density and kinematic viscosity coefficient of the fluid, respectively,
and δi3 is the Kronecker’s delta, equal to 1 only for i = 3.

Because of existence of the last term in Eq. (17), which is due to the Reynolds stress
−ρu′

i u
′
j , some kinds of turbulence modeling must be normally introduced. The k -ω SST

model [51, 52] is adopted for the simulation with FINE/Marine.

Table 3 Summary of schemes used in the CFD simulations by FINE/Marine [48]

Item Scheme used

Grid system Unstructured, non-conformal, fully hexahedral grid

Spatial discretization Finite volume method

Advection term QUICK 3rd-order upwind difference

Viscous diffusion term 2nd-order central difference

Time marching Backward difference, sub-iteration with virtual time

Coupling between pressure and velocity Projection method solving Poisson’s equation

Free-surface capturing VOF method (BRICS scheme)

Turbulence model k -ω SST

Body-surface boundary condition Logarithmic function as wall function

Table 3 shows a summary of the schemes used in the present CFD simulation. Details
refer to FINE/Marine V 8.2 [48]. In Fig. 7, only half of the ship hull is used in the calcula-
tions, thus a symmetry boundary condition is adopted at the center plane boundary. Box 1
represents the domain of the incident wave, ship-hull, and vortex. Thus, the mesh density of
this domain was set to be relatively fine to prevent the numerical attenuation of the wave.
Boxes 2, 3 and 4 represent the downstream domain. In these domains, the mesh density
was relatively coarse to prevent the wave reflection from the external boundary as shown
in Figs. 7 and 8. Lref in Fig. 7 takes a larger value between ship length L and wavelength
λ. Hw is the wave height equal to 2ζa. At wavelength of λ/L = 1.25, the total number
of elements was 2,907,979, as shown on the left side of Fig. 8, and the time step was taken
equal to 1/250 of the encounter period, with the incident-wave amplitude equal to 0.0240m
in accordance with the experiment. On the right side of Fig. 8, close-up views of the mesh
for the bow and stern parts are shown.

In fact, there are recommended values in the user manual of FINE/Marine for the number
of mesh and time step, which were used for the computations in this paper. Furthermore,
before implementing the present study, we have studied independently for a simpler problem
of incident-wave propagation to check the dependency of numerical results on the number
of mesh and time step, and we have confirmed appropriate selection of the parameters;
with which we confirmed that virtually no decaying phenomenon exists in an important
computational domain around a ship. Therefore we believe that computed results by the
CFD method shown in this paper are reliable enough for the purpose of observing underlying
physics to be seen in the measured results, although detailed convergence study is not
performed by ourselves.
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Fig. 7 Calculation domain of CFD computation for RIOS bulk carrier

Fig. 8 Computational mesh of CFD for bulk carrier, Left: calculation domain mesh, Right:
close-up view of bow and stern part mesh

3.3 Analysis of ship-side wave

In order to synchronize the time histories of unsteady physical quantities measured in the
experiment, the origin of time should be taken equal to the time instant when the crest of
incident wave arrives at the origin of the coordinate system. In what follows, we consider
a general case that the forward speed U of a ship exists; hence the circular frequency of
encounter ωe (= ω −KU cosχ) must be used for harmonic oscillation problems.

Suppose that a regular head wave with amplitude ζa and wavenumber K (= ω2/g) was
measured at x = ℓ and its first-harmonic component in the Fourier series was obtained in
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the form
ζ(ℓ, t) = Re

[
(ζℓc − iζℓs) e

iωet
]
= Re

[
(ζ0c − iζ0s) e

i(ωet+Kℓ)
]

(19)

Here the complex amplitude at the origin (x = 0) is denoted as ζ0c − iζ0s, which can be
obtained from Eq. (19) as

ζ0c − iζ0s =
(
ζℓc − iζℓs

)
e−iKℓ ≡ ζ0 ≡ ζa e

iφ (20)

Therefore the amplitude ζa and phase φ can be calculated as

ζa =
∣∣ζ0 ∣∣ =√ζ2ℓc + ζ2ℓs , φ = −Kℓ− tan−1

(
ζℓs/ζℓc

)
(21)

Meanwhile, suppose that the ship-side wave at an arbitrary point ζ(t) was recorded and
its Fourier-series expansion is written as

ζ(t) = ζ(0) +
N∑

n=1

Re
[
(ζ(n)c − iζ(n)s ) einωet

]
(22)

In order to synchronize the phase of this time record with the incident wave measured at
the origin, the time-dependent part should be divided by the complex amplitude ζ0 given
by Eq. (20). For instance, the first-harmonic component of Eq. (22) can be transformed as

Re

[
ζ
(1)
c − iζ

(1)
s

ζ0
eiωet

]
= Re

[
ζ
(1)
c − iζ

(1)
s

ζa
eiωe(t−φ/ωe)

]
(23)

Therefore, the time histories of all ship-side waves measured should be shifted in time with
∆t = φ/ωe.

In the same way for higher-harmonic components in Eq. (22), we can shift the time with
∆t = φ/ωe and hence write the ship-side wave record in the form

ζ(t) =
U2

2g
c0 + ζa

N∑
n=1

Re
[
cn e

inωet
]

c0 = 2K0ζ
(0) , cn =

(ζ
(n)
c − iζ

(n)
s )

ζn0

∣∣ζ0 ∣∣n−1

 (24)

where the steady-wave component has been normalized with U2/2g = 1/2K0 and the
unsteady-wave component normalized with ζa. In the present study, we used up to the
5th harmonic component (N = 5) and the coefficients cn (n = 0 ∼ 5) for each ship-side
wave were saved for subsequent use.

The same transformation must be implemented to all harmonic oscillatory quantities such
as wave-induced ship motions and hydrodynamic pressures on the ship hull; thereby we can
synchronize all the data, even if the measurement had been carried out at different times.

3.4 Analysis of pressure

In the experiment measuring the pressure, the static pressure when the ship does not move
in still water was taken as the zero base. Thus the time histories of measured pressure
fluctuate around zero. However, the data obtained by pressure sensors affixed around the
still waterline must be of rectified pulse-type signals, because the sensor positions repeat
coming out and plunging into water.
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Typical examples of the pressure time history are shown in Fig. 9, which were obtained
from the measurement with FBG sensors at the transverse section of ordinate number 9.5
and at 4 different locations along the girth, i.e. θ = 30, 60, 90, and 93 degs from the
lowest figure (where θ is the polar angle with θ = 0 taken at the bottom center and θ = 90
the still waterline). We note here that the hydrostatic pressure is set as the zero base in
this measurement of the pressure. We can see that the time histories at θ = 90 and 93
degs show half-rectified pulse-type variation because the location of the pressure sensor is
repeatedly coming out of water and plunging into water. However, looking at closely these
nonlinear time histories, it can be seen that the pressure is not exactly zero when the sensor
is obviously in air (e.g. in the case of θ = 93 deg shown in the uppermost figure). These
data must be analyzed and modified if necessary, with the information of ship-side wave.

The procedure for rectifying physically unreasonable time histories of the pressure is as
follows. (1) In order to decide the time instant and duration for the analysis, the trigger
signal will be searched in the time record. This is because the Fourier analysis for all the
measured quantities has been made with the trigger signal used as a reference time instant
every time, so that we can use the time record measured at the same location in the towing
tank for every measurement. Then the time duration for the analysis was decided to be
±T (encounter wave period) from the trigger signal. (2) From the incident-wave record, the
origin of the time history will be adjusted as explained with regard to Eqs. (23) and (24),
and thereby synchronized with the record of the ship-side wave. (3) The time instant when
the ship-side wave intersects the position of the pressure sensor in question will be searched,
so that the time instant and duration when the sensor is in air can be determined. If the
measured value of the pressure is nonzero during that time span, the value at intersecting
time will be set equal to zero and at the same time the profile of measured pressure will be
shifted to satisfy the physical condition that the pressure is exactly zero when the sensor is
in air.

[ sec ]

Experimental data in motion-free condition
RIOS Bulk Carrier,  Fn=0.18, χ=180 deg, λ/L=1.25

Fig. 9 Examples of the time history of measured pressure in motion-free condition
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Once the time history of the pressure has been rectified, the Fourier-series analysis incor-
porating higher-order terms will be made for the pressure time histories, as will be explained
later. For that analysis, however, the constituents of the total pressure should be correctly
understood, which can be made as explained in what follows. The total pressure P (x, t)
at a certain sensor can be written, with the atmospheric pressure taken as the base, in the
form

P (x, t) = −ρgz + p(x, t) (25)

The first term on the right-hand side is the hydrostatic pressure, and the second term is the
steady and unsteady hydrodynamic pressures to be measured in the experiment.

When the amplitude of ship motions is small, the relationship between the inertial coordi-
nate system x moving at constant speed of a ship (which is called the space-fixed coordinate
system) and the body-fixed coordinate system x is given as

x = x+αTs +αT (t) +
[
αRs +αR(t)

]
× x (26)

αTs = (0, 0, ξ3s), αRs = (0, ξ5s, 0)

αT (t) = (ξ1(t), 0, ξ3(t)), αR(t) = (0, ξ5(t), 0)

}
(27)

where αT and αR denote the translational and rotational motion vectors, respectively, and
these are given in head waves as shown above. Suffix s implies the steady components.

Substituting the z-component of Eq. (26) into Eq. (25), it follows that

P (x, t) = −ρgz − ρg
(
ξ3s − xξ5s

)
− ρg

{
ξ3(t)− xξ5(t)

}
+ p(x, t) (28)

Since the value of −ρgz is taken as the zero base in the actual measurement, the pressure
on the right-hand side of Eq. (28) except for−ρgz is the measured pressure at sensor positions
on the ship hull; let this measured pressure be denoted as pM (x, t). Then the total pressure
can be retrieved from the following relation:

pT (x, t) =

{
pM (x, t) for z > 0

pM (x, t)− ρgz for z < 0
(29)

The total pressure thus obtained was expanded with the Fourier series as follows:

pT (x, t) = p(0)(x) +
N∑

n=1

Re
[ {
p(n)c (x)− ip(n)s (x)

}
einωet

]
≡ p(0)(x) + pu(x, t) (30)

where pu(x, t) is meant to denote only the time-variant term, and it is found that N = 10 is
sufficient to represent even highly nonlinear rectified pulse-type signals. This time-variant
unsteady pressure pu(x, t) will be used to compute the wave loads in the next section.

However, we note that the unsteady pressure obtained above is just the value only at the
location of the pressure sensor. In order to compute the unsteady pressure at any point on
the ship-hull surface (which will be needed in the pressure integration), we will have to use
a spline interpolation in terms of the values at sensor positions. The interpolation has been
done firstly along the girth (θ direction) at each transverse section where the measurement
was made. Then in terms of the values along the girth, the secondary interpolation was
made in the longitudinal direction. Convergence of the results was confirmed by computing
integrated forces with increasing the number of panels on the ship hull.
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4. Vertical Bending Moment

The wave loads normally refer to the shear force and bending moment, but in this paper,
attention is focused on the vertical bending moment (VBM hereafter). There are two compo-
nents in VBM owing to the integration of unsteady pressure and the inertia force [53]. These
are time-variant and basically nonlinear, thus the VBM acting on the transverse section at
x = x0 in the ship’s longitudinal direction may be computed from

Mv(x0, t) =

∫ x0

xA

dx

∫
CH(x)

pu(x, t)n5(x, t) dℓ

−
∫ x0

xA

w(x)

g

(
x− ℓx − x0

){
ξ̈3(t)−

(
x− ℓx

)
ξ̈5(t)

}
dx (31)

where n5(x, t) =
(
z − ℓz

)
n1(x, t)−

(
x− ℓx − x0

)
n3(x, t) (32)

is the extended normal vector for computing the VBM at x = x0, and the hogging moment
is defined to be positive in Eq. (31). The origin of the coordinates in Eq. (31) is shifted to
the center of gravity, denoted as (ℓx, 0, ℓz). The x- and z-components of the normal vector,
n1(x, t) and n3(x, t), are expressed in the space-fixed coordinate system, which are changing
in time due to wave-induced ship motions, although the corresponding terms in the body-
fixed coordinate system, denotes as ñ1(x) and ñ3(x), are time-invariant. The relationship
between these terms is given as follows:{

n1(x, t)

n3(x, t)

}
=

[
cos ξ5(t) sin ξ5(t)

− sin ξ5(t) cos ξ5(t)

]{
ñ1(x)

ñ3(x)

}
(33)

where ξ5(t) is the wave-induced pitch motion of a ship. The lower limit xA in the integral
with respect to x in Eq. (31) is the longitudinal position of aft end of a ship and CH(x) the
contour of transverse section at station x.

We note that the wetted surface of ship hull can be computed with a spline interpolation
from the information of ship-side wave given by Eq. (24) and the unsteady pressure pu(x, t)
from Eq. (30) at each time step; both of these are given in the body-fixed coordinate sys-
tem. Furthermore, as shown by Eq. (33), the normal-vector components in the space-fixed
coordinate system can be computed from the information of body-fixed coordinates. In the
present case, the unsteady pressure pu(x, t) includes nonlinear components as indicated by
Eq. (30), but in the linear problem consisting of only the first-harmonic components, the
unsteady pressure may be given as a linear superposition of the diffraction pressure pD, the
radiation pressure pR, and the variation of hydrostatic pressure pS ; which is the case in the
linear potential-flow theory like RPM.

The second line in Eq. (31) indicates the inertia-force term, where ξ̈3(t) and ξ̈5(t) are the
acceleration in heave and pitch, respectively, and w(x) is the weight-distribution function
related to the ship’s mass m and the gyrational radius in pitch κyy as follows:∫ xF

xA

w(x)

g
dx = m,

∫ xF

xA

w(x)

g
x dx = mℓx∫ xF

xA

w(x)

g
(x− ℓx)

2dx = mκ2yy

 (34)

where xF in the upper limit of integration range denotes the fore end of a ship.
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In calculating the VBM according to Eq. (31), the integrated result up to x0 = xF must be
consistent to the equations of coupled motion equations in surge, heave, and pitch. Namely
the integrated value of Eq. (31) up to x0 = xF must be equal to zero. In order to ensure
this condition of zero VBM at the fore end of a ship and the correct computation of VBM
in the time domain, the origin in time histories (i.e. the phase with respect to an incident
wave) of all harmonic oscillatory quantities, particularly both unsteady pressure and ship
motions, must be synchronized as explained in Section 3.3.

Normally the weight distribution should be provided as an input data in actual problems.
However, in the present study, since the weight distribution was not measured and unknown,
the VBM due to the inertia force is computed under the assumption of uniform structural
density; that is, the weight distribution is assumed equal to the distribution of volume
displacement, which may be computed from the state of equilibrium in the zero-speed static
condition or in the steady translation of a ship including the steady hydrodynamic-pressure
force.

5. Results and Discussion

This section is divided into four subsections. Each of which shows different aspects of our
findings. Section 5.1 will outline the reliability of measured unsteady pressure distribution
and its comparison with computed results by RPM and CFD methods. Then the VBM eval-
uated from the unsteady pressure distribution at zero speed (Section 5.2) and forward speed
(Section 5.3) are discussed. Lastly, in Section 5.4 a comparison is made with the benchmark
data for the VBM measured directly at a specified transverse section by a segmented ship
of a 6750-TEU container ship.

5.1 Validation of unsteady pressure distribution

Comparison of the spatial distribution of first-harmonic pressure has been done by Iwashita
et al. [37, 39, 41, 42] and Kashiwagi et al. [38, 40] along the girth at some transverse sections
between the results measured in the motion-free case in head waves and computed with some
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Fig. 10 Validation of pressure integration on the hull surface of RIOS bulk carrier in diffrac-
tion problem: comparison with the values measured directly by dynamometer at
Fn = 0.18 in head waves
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Table 4 Relative errors in the comparison between the values of direct measurement by
dynamometer Exp and diffraction pressure integration DPI

|E1|/ρgζaBL |E3|/ρgζaBL |E5|/ρgζaBL2

λ/L
Exp DPI E (%) Exp DPI E (%) Exp DPI E (%)

0.8 0.051 0.030 −41.18 0.064 0.054 −15.63 0.034 0.040 17.65

1.0 0.069 0.061 −11.59 0.044 0.054 22.73 0.070 0.076 11.43

1.25 0.090 0.064 −28.49 0.160 0.156 −2.50 0.093 0.091 −2.15

1.5 0.091 0.082 −9.89 0.247 0.262 6.07 0.095 0.100 5.26

2.0 0.087 0.091 4.60 0.381 0.392 3.02 0.095 0.095 0.53

methods based on the linear potential-flow theory in the frequency domain, through which
repeatability and reliability of the experimental data has been confirmed.

As another validation of measured results, we have computed the first-harmonic wave-
exciting forces from the integration of unsteady pressure distribution measured for the
diffraction problem and compared the result with the corresponding forces measured di-
rectly with dynamometer. The results are shown in Fig. 10, where the values obtained by
the integration of measured unsteady diffraction pressure are indicated with black circle
symbol and the values directly measured with dynamometer are indicated with white circle
and gray diamond symbols (which are the results in the experiments conducted in 2012 and
2016, respectively). Computed results by the RPM of the forward-speed version are provided
with solid line for comparison. Overall, good agreement can be observed in figures. In order
to quantify the errors, Table 4 presents the relative errors between the results by the direct
measurement and pressure integration at the range of wavelength 0.8 < λ/L < 2.0. In this
table, the values of direct measurement denoted as Exp are the average of the experiments
in 2012 and 2016 and the results of diffraction pressure integration are indicated as DPI.
The relative error is computed from (DPI−Exp)/Exp. We note that the wave-exciting
forces at shorter wavelengths are relatively small and slight discrepancy between the two
small values provides a large value in the error percentage. For instance, at λ/L = 1.0 the
largest relative error occurs in the heave exciting force with 22.73% error, but the value itself
is very small and thus this difference is not conspicuous in the figure. Looking at Table 4
with this fact kept in mind, we can see fairly good agreement for the heave force and pitch
moment at all wavelengths, which indicates reliability of the unsteady pressure measured
with FBG pressure sensors. We note however that there exist slight discrepancies in the
surge exciting force at some shorter wavelengths, typically prominent underestimation with
41.18% error at λ/L = 0.8. This order of error is visible even in the figure. A possible
reason of this difference may be attributed to the scarcity of FBG pressure sensors in the
bow upper region above the still waterline, because the pressure on that region contributes
to the surge force. On the other hand, the dominant pressures for the heave and pitch forces
act on the bottom of a ship because of the direction of normal vector and the pressures near
or above still waterline contribute little especially for a wall-sided ship.

As another demonstration of the results, a side view of the spatial distribution of unsteady
pressure is shown in Fig. 11 for the case of λ/L = 1.0 in head wave and Fn = 0.0, where the
pressure is shown in the nondimensional form of p/ρgζa and ζa = 0.0106 m in accordance
with the experiment in this particular example. Note that the color scale in the contour
display is taken from −2.0 to +2.0, and that the phase of variation θ is taken such that θ = 0
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Fig. 11 Unsteady pressure distribution at λ/L = 1.0 and Fn = 0.0 in head wave; (a)
Experiment, (b) Computation by RPM. Values are shown with p/ρgζa and ζa =
0.0106 m

corresponds to the time instant of maximum sagging moment. Overall, favorable agreement
can be seen between experimental data and computed results by the linear RPM explained
in Section 3.1, although we can see slight discrepancy in the magnitude at the bow region
particularly at time instants of θ = 0 and θ = π. Namely the phase in the pressure variation
looks a little different between the experiment and the computation by RPM in this paper,
but it is confirmed by Iwashita et al. [42] using the free-surface Green-function method that
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Fig. 12 Unsteady pressure distribution at λ/L = 1.25 and Fn = 0.18 in head wave; (a)
Experiment, (b) Computation by CFD. Values are shown with p/ρgζa and ζa =
0.0240 m

the amplitude of the first harmonic component in the unsteady pressure at Fn = 0.0 agrees
well along the girth at each of the transverse sections where the measurement was conducted.

Likewise, a side view of the unsteady pressure distribution at λ/L = 1.25 in head wave
and Fn = 0.18 is shown in Fig. 12 in the nondimensional form of p/ρgζa with ζa = 0.0240 m,
where a comparison is made between experiment and nonlinear computation by CFD using
FINE/Marine. It should be noted that the maximum nondimensional value of unsteady
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pressure becomes a little larger than 4.0 near the bow and free surface in this particular
case, but the color scale in the contour display is kept the same as that in Fig. 11 to see the
relative magnitude and to show overall good agreement even for the forward-speed case. We
also note that λ/L = 1.25 is close to the resonant frequency in ship motions at Fn = 0.18 (as
will be shown later) and the degree of agreement for this unsteady pressure distribution was
not so good when compared to computed results by the forward-speed version of RPM [42],
which may be due to large ship motions and hence strong nonlinear effects.

5.2 Vertical bending moment at zero speed

We start with an easier case, i.e. at zero forward speed (Fn = 0.0) in head waves. Since the
wave steepnessH/λ (the ratio of wave heightH with wavelength λ) in the experiment was set
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at Fn = 0.0 in head waves. Left: integration of measured pressure distribution,
Right: computed by RPM
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to about 1/50, measured phenomena must be in the framework of linear theory. Therefore
the linear potential theory, typically RPM, can be used for the numerical computation. For
computing the VBM from Eq. (31), the motion RAOs are necessary, the results of which
are presented in Fig. 13 for surge, heave, and pitch motions, and good agreement can be
seen between measured and computed results (the results shown with white and black circle
symbols were obtained by the experiments conducted in 2015 and 2016, respectively). We
have already confirmed in Fig. 11 that the unsteady pressure distribution at Fn = 0.0 was
also in good agreement between measured and computed results. Thus we can expect good
agreement in the VBM as well. In fact, the VBM was evaluated from Eq. (31) using only the
measured data and also only the computed values by RPM. A comparison of the longitudinal
distribution of VBM thus evaluated is shown in Fig. 14 at wavelengths of λ/L = 0.8, 1.0, 1.25,
1.5, and 2.0 for the maximum values in the hogging (plus) and sagging (minus) moments. As
expected, very good agreement can be confirmed for the sectional values of VBM between
the values evaluated with experimental data and computed with RPM; which proves that
the unsteady pressure distribution on the ship-hull surface has been successfully measured
and the procedure for the data analysis and evaluation of VBM is consistent.

5.3 Vertical bending moment at forward speed

Next comparison is for the case of forward speed of Fn = 0.18, in which nonlinearity in the
VBM must be observed especially when the ship motions are resonant around λ/L = 1.25;
that is, as pointed out by some scholars [13–16], the magnitude in the sagging moment may
be larger than that in the hogging moment, although the wave steepness is the same as that
at Fn = 0.0. To see visually the degree of nonlinearity at λ/L = 1.25, two snapshots for the
wave profile at sagging and hogging conditions in the experiment are shown in Fig. 15. Since
the degree of nonlinearity looks conspicuous from these snapshots, numerical computations
at Fn = 0.18 were implemented using CFD software, FINE/Marine V 8.2.

As a preliminary check for computing the VBM, the motion RAOs are computed by
CFD and compared with measured values (the experiments plotted with white and black
circles were conducted in September 2017 and 2018, respectively). In CFD computations,
the amplitude of ship motion was taken equal to half of the peak-to-peak mean value in the
computed time histories. Obtained results are shown in Fig. 16 at 6 wavelengths in the range
of λ/L = 0.5 ∼ 2.0 for comparison. However, CFD results under λ/L = 0.5 are not presented
because of large computation time due to necessity of increasing the number of meshes and
time steps for obtaining converged results in short wave simulation. It should be noticed that
the surge is fixed in the CFD computation whereas it was free in the experiment. The pitch

Fig. 15 Snap shots of wave profile at λ/L = 1.25 of head wave and Fn = 0.18. Left:
sagging, Right: hogging
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Fig. 16 Heave and pitch RAOs of RIOS bulk carrier at Fn = 0.18 in head waves

is naturally coupled with surge even for a longitudinally symmetric body at zero speed. Thus
there must be a difference in the physical situation between computation and experiment in
the present comparison; which may affect particularly the pitch-motion results, although at
forward speed the heave would also be affected by surge through the coupling among surge,
heave, and pitch motions.

Table 5 shows the values in digits and the relative standard deviation (SD) representing
the uncertainty of the experiment conducted in 2017 and 2018. The repeatability can be seen
with relatively small deviation particularly in heave at λ/L = 1.25 and in pitch at λ/L = 1.5
with 0.18% and 0.73%, respectively. It is noted that the heave motion becomes resonant
around λ/L = 1.25 at Fn = 0.18. Comparing the CFD results with the average value
of the experiment, a good agreement can be seen at heave-resonant λ/L = 1.25 only with
7.80% overestimation and 4.01% underestimation for heave and pitch, respectively, although
the surge is fixed in the CFD computations. We can conclude from these comparisons that
overall computed results by CFD are in good agreement with measured values, despite slight
discrepancies at some other wavelengths.

Table 5 Results and relative errors of heave and pitch motions between CFD and experiment

λ/L
|X3|/ζa |X5|/Kζa

Ex2017 Ex2018 SD(%) CFD E(%) Ex2017 Ex2018 SD(%) CFD E(%)

0.5 0.023 0.019 13.47 0.015 −28.57 0.018 0.018 0.00 0.014 −22.22
0.8 0.039 0.040 1.79 0.032 −18.99 0.097 0.097 0.00 0.093 −4.12
1.0 0.586 0.503 10.78 0.480 −11.85 0.565 0.501 8.49 0.398 −25.33
1.25 1.187 1.184 0.18 1.278 7.80 1.036 0.960 5.38 0.958 −4.01
1.5 1.001 1.059 3.98 1.213 17.77 1.162 1.174 0.73 1.300 11.30
2.0 0.897 0.845 4.22 0.957 9.87 1.176 1.080 6.02 1.174 4.08
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Fig. 17 VBM distribution at λ/L = 1.25 of head wave and Fn = 0.18; (a) Experiment, (b)
Computation by CFD

The spatial distribution of unsteady pressure at λ/L = 1.25 and Fn = 0.18 was already
compared in Fig. 11, as a validation of the measured results. Even in this motion-resonant
nonlinear condition, we could see favorable agreement in the pressure distribution on almost
the whole ship-hull surface.

As is obvious from Eq. (31), once the value of n5(x, t) defined by Eq. (32) is multiplied by
the pressure distribution, we can obtain the integrand function for the first term of VBM to
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Table 6 Results and relative errors of VBM between CFD and experiment around motion-
resonant wavelengths.

λ/L x/(L/2)
MV /ρgζaBL2 (Hogging) MV /ρgζaBL2 (Sagging)

Exp CFD E(%) Exp CFD E(%)

1.0 −0.2 0.014 0.016 14.3 −0.016 −0.019 18.8

0.1 0.015 0.018 20.0 −0.019 −0.022 15.8

0.4 0.012 0.015 25.0 −0.019 −0.022 15.8

0.7 0.006 0.007 16.7 −0.016 −0.017 6.3

1.25 −0.2 0.020 0.022 10.0 −0.023 −0.024 4.3

0.1 0.023 0.025 8.7 −0.027 −0.029 7.4

0.4 0.022 0.024 9.1 −0.028 −0.030 7.1

0.7 0.016 0.018 12.5 −0.023 −0.024 4.3

1.5 −0.2 0.014 0.016 14.3 −0.016 −0.018 12.5

0.1 0.016 0.018 12.5 −0.019 −0.021 10.5

0.4 0.015 0.017 13.3 −0.020 −0.022 10.0

0.7 0.010 0.012 20.0 −0.016 −0.018 12.5

be computed by the pressure integration. For the second inertia term of VBM in Eq. (31),
the weight distribution is initially treated as the Bonjean volume distribution along the girth
at each transverse section. Then, once the sum of these two terms is integrated with respect
to x up to a desired position x = x0, we can provide the spatial distribution of VBM, which
is depicted in Fig. 17 for the case of λ/L = 1.25 and Fn = 0.18 in a nondimensional form
divided by ρgζaL

2. Overall, good agreement can be seen also in this VBM distribution.
It should be pointed out that the maximum values in both sagging and hogging moments
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Fig. 18 Longitudinal distribution of vertical bending moment (VBM) on RIOS bulk carrier
at Fn = 0.18 in head waves. Left: integration of measured pressure distribution,
Right: computed by CFD
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occur at a slightly forward position from the midship.
According to Eq. (31), by integrating this kind of distribution of VBM along the girth

direction at each transverse section in the ship’s longitudinal direction, we can obtain the
longitudinal distribution of VBM, as already done and shown in Fig. 14 for the zero-speed
case. For the forward-speed case of Fn = 0.18, obtained results are shown in Fig. 18 for
several wavelengths (λ/L = 0.8 ∼ 2.0) of head waves. Computations are performed only
with experimental data of the pressure distribution and ship motion and in the same way
only with CFD. It should be noted that Fig. 18 are plotted for the maximum value in the
hogging moment and the minimum value in the sagging moment in the time histories of the
VBM generated according to Eq. (31). We also note that, in the forward-speed case, the
steady hydrodynamic pressure due to forward translation of a ship is incorporated in the
VBM computation in terms of satisfying the steady-state equilibrium condition.

From the comparison in Fig. 18, we can see very good overall agreement between the
experiment and CFD computation, although the CFD computation tends to overestimate
slightly for some wavelengths. For instance, at motion-resonant wavelength λ/L = 1.25,
from a comparison between left and right figures in Fig. 18 we can observe overprediction
in the magnitude of hogging moment and also slightly in the sagging moment. Looking at
relative magnitude between λ/L = 1.0 and 1.5, we can see a slight difference in the rear
half of a ship. Nevertheless, the agreement in the overall variation tendency is very good,
confirming the validity of experimental and CFD results. Table 6 shows the values in digits
and relative errors of VBM at several sections of x/(L/2) = −0.2, 0.1, 0.4, 0.7; which indicate
relatively small difference even at around motion-resonant wavelengths, with maximum error
25%. More importantly, the asymmetric property in the VBM can be clearly observed by
both experiment and CFD, with larger sagging moment for all wavelengths (although the
degree of asymmetry is different depending on the wavelength), and the position where the
cross-sectional VBM becomes maximal is shifted a little forward from the corresponding
position observed at Fn = 0.0 (Fig. 14); which is anticipated also from Fig. 17 and must be
understood as an important forward-speed effect. In fact, as shown in Fig. 11 for Fn = 0.18,
the magnitude of unsteady pressure becomes very large in the bow region (particularly
at resonant wavelength λ/L = 1.25) due to existence of the forward speed of a ship, and
consequently the VBM tends to take maximal values at a position forward from the midship.

5.4 Validation of VBM with benchmark test data

The VBM has been computed in this study by integrating the unsteady pressure distribution
obtained by the experiment or computation over the ship hull and the results were com-
pared, but this kind of comparison is essentially the same as the comparison of the spatial
distribution of unsteady pressure. Thus, if possible, a comparison should be made for the
VBM measured directly at a specified transverse section by a segmented ship model for a
wide range of wavelength.

For that purpose, the analysis method in this paper was further validated through com-
parison with the benchmark data of a 6750-TEU container ship whose principal particulars
are shown in Table 7. This benchmark test was conducted to assess the performance of
seakeeping analysis codes and the results were disclosed at the ITTC-ISSC joint workshop
in 2014. The experimental results were provided by KRISO and summarized by Kim et
al. [43].

Since the tested container ship model was constructed using a flexible backbone and seg-
mented hulls, hydroelastic responses may be prominent in waves especially for the forward-
speed case. Thus for a comparison with the present method, the zero-speed test condition
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Table 7 Principal particulars of 6750-TEU container ship used for bench-mark test, Kim et
al. [43]

Item Prototype Model

Scale 1/1 1/70

LOA (m) 300.891 4.298

LBP (m) 286.6 4.094

B (m) 40.0 0.571

d (m) 11.98 0.171

Cb 0.624 0.624

KM (m) 18.662 0.267

GM (m) 2.100 0.030

KG (m) 16.562 0.237

LCG from AP (m) 138.395 1.977

κxx (m) 14.4 0.206

κyy(= κzz) (m) 70.144 1.002

Natural period of roll (sec) 20.5 2.450

Neutral axis from keel (m) 7.35 0.105
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Fig. 19 Comparison of heave and pitch RAOs of 6750-TEU container ship, at Fn = 0.0
and H/λ < 1/100 in head waves (experiment data by Kim et al. [43])

is chosen, which may satisfy the quasi-static assumption and the results are mostly linear.
The tested ship model consists of eight segmented hulls. The mass at each segmented hull
approaches a uniform distribution and thus the total mass distribution is assumed equal to
the distribution of volume displacement. Sectional forces were measured at seven sections
by strain gauges installed on the backbone. Since the results are expected to be linear,
comparison with the benchmark test data is made with the computation by RPM.

First, the RAOs of heave and pitch motions are presented in Fig. 19. Then the resulting
VBM is shown in Fig. 20, where the RAO of VBM at Section 4 is compared on the left-hand
side, whilst the longitudinal distribution of VBM is shown on the right-hand side for wave-
lengths of λ/L = 0.6, 1.07 and 1.48. The values in digits and relative errors of the Fig. 19
and the left-hand side of the Fig. 20 are presented in Table 8. The amplitude of heave and
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Fig. 20 Validation of vertical bending moment (VBM) on 6750-TEU container ship, Left:
comparison of VBM at Section 4, Right: longitudinal distribution of VBM com-
puted by RPM (experiment data by Kim et al. [43])

Table 8 Results and relative errors of heave, pitch, and VBM at Section 4 of 6750-TEU
container ship, Kim et al. [43].

Case λ/L
|X3|/ζa |X5|/ζa |MV |/ρgζaBL2

Exp RPM E(%) Exp RPM E(%) Exp RPM E(%)

1 0.54 0.227 0.249 9.7 0.061 0.073 19.7 0.0050 0.0040 −20.0

2 0.67 0.201 0.332 65.2 0.100 0.046 −54.0 0.0115 0.0100 −13.0

3 0.85 0.162 0.189 16.7 0.288 0.199 −30.9 0.0155 0.0136 −12.3

4 1.07 0.297 0.260 −12.5 0.487 0.380 −22.0 0.0158 0.0153 −3.2

5 1.48 0.555 0.544 −2.0 0.666 0.615 −7.7 0.0129 0.0128 −0.8

6 1.76 0.680 0.663 −2.5 0.730 0.706 −3.3 0.0108 0.0106 −1.9

7 2.28 0.810 0.796 −1.7 0.888 0.836 −5.9 0.0079 0.0076 −3.8

8 2.52 0.833 0.831 −0.2 0.909 0.869 −4.4 0.0069 0.0067 −2.9

9 2.88 0.862 0.870 0.9 0.938 0.909 −3.1 0.0059 0.0056 −5.1

10 3.68 0.926 0.920 −0.6 0.968 0.948 −2.1 – 0.0040 –

pitch represents favorable agreement at wavelengths larger than λ/L = 1.07 despite slight
underestimation in pitch. Looking at the amplitude of VBM explained at Section 4, it is
noted that the maximum value of VBM is observed at λ/L = 1.07 but this maximum value
is slightly underestimated with 3.2% by RPM; which may be attributed to a slight underes-
timation of heave and pitch motions as indicated at λ/L = 1.07. Slight underestimation of
ship motions results in some underestimation of VBM for the corresponding wavelengths.
Nonetheless, in general, the VBM computed by RPM is in good agreement with the results
directly measured using a ship model with backbone and segmented hulls.

6. Conclusions

In order to provide world’s first experimental data of the spatial distribution of wave-induced
unsteady pressure on the whole hull surface of a ship oscillating in waves, an unprecedented
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experiment was conducted, measuring the pressures at a large number of locations on the
ship hull simultaneously in terms of 333 FBG pressure sensors affixed with double-sided
tape on almost whole ship-hull surface. To detect the time-variant wetted surface of the
ship hull, the measurement of incident head wave, wave-induced ship motions and ship-
side wave profile was also carried out, and all the data were synchronized by adjusting the
phase of all data in terms of the complex amplitude of incident wave obtained after the
Fourier-series analysis. The time history of the spatial distribution of unsteady pressure was
obtained with a spline-interpolation technique using point-wise pressures measured at 333
points which include a bow area above the still waterline. Since the pressure distribution is
the base for computing almost all hydrodynamic quantities like total hydrodynamic forces,
the VBM distribution, the added resistance, ship motions and so on, the experimental data
obtained in this study can be effectively used for deepening our understanding of local
physical phenomena; for example, which part of the ship hull provides dominant pressures
to the physical quantity concerned, what kind of nonlinearities or hydrodynamic cancellation
are essential in understanding the phenomenon in question.

Validation of obtained data of unsteady pressure has been made by confirming the re-
peatability, namely the standard deviation, of the measured results and by comparing the
measured and computed values along the girth at some of the transverse sections where the
pressure measurement has been done. The pressure distribution obtained with interpolation
was compared to the results computed by RPM for the zero-speed linear case and by CFD
for the forward-speed nonlinear case. Remarkable agreement for both cases could be con-
firmed. In addition, in this paper, the first-harmonic wave-exciting forces were computed by
integrating the unsteady pressure distribution over the wetted surface of a motion-fixed ship
model and compared with the values directly measured with dynamometer. Good agree-
ment was also confirmed in this validation, but at the same time small discrepancy in the
surge exciting force was pointed out, a reason of which should be attributed to the scarcity
of FBG pressure sensors in the bow upper region, suggesting a necessity of increasing the
sensors in that region for more precise study.

In terms of measured and computed spatial distribution of unsteady pressure and wave-
induced ship motions, the longitudinal distribution of the VBM along the ship’s length was
computed and shown in a form of maximum values in the hogging and sagging moments.
Obtained results by using only the measured data agreed well with computed results not only
for the zero-speed linear case but also for the forward-speed nonlinear case. Especially for the
latter case of Fn = 0.18, asymmetric and hence nonlinear property in the VBM was clearly
observed with larger value in the sagging moment by both experiment and CFD computation.
The error values in the nonlinear VBM were presented at several longitudinal positions and
it could be seen from these values that the degree of agreement between measured and
computed results is good especially at around the motion-resonant wavelengths. As an
important forward-speed effect, it was also observed that the longitudinal position where
the sectional VBM takes maximum is shifted forward from the midship due to large increase
in the unsteady pressure in the bow region and also increase in the ship motions particularly
near the motion-resonant frequency. This finding on the forward-speed effect on the VBM
is a world first to the best of our knowledge.

As further validation, a comparison was also made with the benchmark data used in
the ITTC-ISSC joint workshop for the frequency-response function of the VBM measured
at a specified longitudinal position using a segmented model of 6750-TEU container ship.
Favorable agreement was confirmed also in this comparison. From these favorable results,
the method proposed in this study may provide a new paradigm for obtaining experimentally
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the VBM distribution at any position, and obtained results could be useful as the validation
data for other numerical computation methods.
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46. Hu, C-H., Kishev, Z., Kashiwagi, M., Sueyoshi, M. and Faltinsen, O.M. : Application of CIP
Method for Strongly Nonlinear Marine Hydrodynamics, Ship Technology Research (Shiffstech-
nik), 2006 (April), Vol. 53, No. 2, pp. 74–87.

47. Kishev, Z., Hu, C-H. and Kashiwagi, M. : Numerical Simulation of Violent Sloshing by a
CIP-Based Method, Journal of Marine Science and Technology, 2006 (June), Vol. 11, No. 2,
pp. 111–122.

48. Kashiwagi, M., Ten, I. and Yasunaga, M. : Hydrodynamics of a Body Floating in a Two-Layer
Fluid of Finite Depth (Part 2: Diffraction Problem and Wave-Induced Motions), Journal of
Marine Science and Technology, 2006 (September), Vol. 11, No. 3, pp. 150–164.

49. Nishi, Y., Hu, C-H. and Kashiwagi, M. : Multigrid Technique for Numerical Simulations of
Water Impact Phenomena, International Journal of Offshore and Polar Engineering, 2006
(December), Vol. 16, No. 4, pp. 283–289.

50. Kashiwagi, M., Yamada, H., Yasunaga, M. and Tsuji, T. : Development of Floating Body with
High Performance in Wave Reflection, International Journal of Offshore and Polar Engineering,
2007 (March), Vol. 17, No. 1, pp. 39–46.

51. Kashiwagi, M. and Hu, C-H. : Numerical Calculation Method on Extremely Nonlinear Wave-
Body Interactions and Experimental Validation (in Japanese), Progress in Multiphase Flow
Research Part-2, 2007 (March), pp. 189–196.

52. Kashiwagi, M. : Wave Drift Force in a Two-Layer Fluid of Finite Depth, Journal of Engineering
Mathematics, 2007 (August), Vol. 58, pp. 51–66.

53. Kashiwagi, M. : 3-D Calculation for Multiple Floating Bodies in Proximity Using Wave Inter-
action Theory, International Journal of Offshore and Polar Engineering, 2008 (March), Vol. 18,
No. 1, pp. 14–20.

54. Sueyoshi, M., Kashiwagi, M. and Naito, S. : Numerical Simulations of Wave-Induced Nonlin-
ear Motions of a Two-Dimensional Floating Body by Moving Particle Semi-Implicit Method,
Journal of Marine Science and Technology, 2008 (May), Vol. 13, No. 2, pp. 85–94.

55. Mori, K., Imanishi, H., Tsuji, Y., Hattori, T., Matsubara, M., Mochizuki, S., Inada, M. and
Kashiwagi, M. : Direct Total Skin-Friction Measurement of a Flat Plate in Zero-Pressure-
Gradient Boundary Layers, Fluid Dynamics Research, 2009 (March), Vol. 41, pp. 1–19.

56. Mikami, T. and Kashiwagi, M. : Time-Domain Strip Method with Memory-Effect Function
Considering Body Nonlinearity of Ships in Large Waves (2nd report), Journal of Marine Science
and Technology, 2009 (June), Vol. 14, No. 2, pp. 185–199.
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57. Hu, C-H. and Kashiwagi, M. : Two Dimensional Numerical Simulation and Experiment on
Strongly Nonlinear Wave-Body Interactions, Journal of Marine Science and Technology, 2009
(June), Vol. 14, No. 2, pp. 200–213.

58. He, G-H. and Kashiwagi, M. : Nonlinear Solution for Vibration of a Vertical Plate and Transient
Waves, Generated by Wave Impact, International Journal of Offshore and Polar Engineering,
2009 (September), Vol. 19, No. 3, pp. 189–197.

59. He, G-H., Kashiwagi, M. and Hu, C-H. : Nonlinear Solution for Vibration of Vertical Elastic
Plate by Initial Elevation of Free Surface, International Journal of Offshore and Polar Engi-
neering, 2010 (March), Vol. 20, No. 1, pp. 34–40.

60. Hu, C-H., Sueyoshi, M. and Kashiwagi, M. : Numerical Simulation of Strongly Nonlinear Wave-
Ship Interaction by CIP based Cartesian Grid Method, International Journal of Offshore and
Polar Engineering, 2010 (June), Vol. 20, No. 2, pp. 81–87.

61. Kashiwagi, M. and Hu, C-H. : 3-D Effects on Measured Results Using a 2-D Model in a Narrow
Wave Channel, International Journal of Offshore and Polar Engineering, 2010 (June), Vol. 20,
No. 2, pp. 88–-94.

62. Kagemoto, H., Murai, M. and Kashiwagi, M. : Can a Single Floating Body be Expressed as the
Sum of Two Bodies?, Journal of Engineering Mathematics, 2010 (July), Vol. 68, pp. 153–164.

63. Kashiwagi, M., Ikeda, T. and Sasakawa, T. : Effects of Forward Speed of a Ship on Added Re-
sistance in Waves, International Journal of Offshore and Polar Engineering, 2010 (September),
Vol. 20, No. 3, pp. 196–203.

64. Bondarenko, O. and Kashiwagi, M. : Dynamic Behavior of Ship Propulsion Plant in Actual
Seas, Journal of Japan Institute of Marine Engineers, 2010 (September), Vol. 45, pp. 76–80.

65. Kashiwagi, M. and Shi, Q. : Pressure Distribution Computed by Wave-Interaction Theory
for Adjacent Multiple Bodies, Journal of Hydrodynamics, Series B, 2010 (October), Vol. 22,
pp. 526–531.

66. Iwashita, H., Elangovan, M., Kashiwagi, M. and Sasakawa, T. : On an Unsteady Wave Pattern
Analysis of Ships Advancing in Waves (in Japanese), Journal of the Japan Society of Naval
Architects and Ocean Engineers，2011 (June), Vol. 13, pp. 95–106.

67. Bondarenko, O. and Kashiwagi, M. : Statistical Consideration of Propeller Load Fluctuation
at Racing Condition in Irregular Waves, Journal of Marine Science and Technology, 2011
(December), Vol. 6, No. 4, pp. 402–410.

68. He, G-H. and Kashiwagi, M. : Nonlinear Analysis on Hydroelastic Behavior of Vertical Plate
due to Solitary Waves, it Journal of Marine Science and Technology, 2012 (June), Vol. 17,
No. 2, pp. 154–167.

69. Kashiwagi, M. : Hydrodynamic Study on Added Resistance Using Unsteady Wave Analysis,
Journal of Ship Research, 2013 (December), Vol. 57, No. 4, pp. 220–240.

70. He, G-H. and Kashiwagi, M. : Time-Domain Analysis of Steady Ship-Wave Problem Using
Higher-Order BEM, International Journal of Offshore and Polar Engineering, 2014 (March),
Vol. 24, No. 1, pp. 1–10.

71. He, G-H. and Kashiwagi, M. : A Time-Domain Higher-Order Boundary Element Method for 3D
Forward-Speed Radiation and Diffraction Problems, Journal of Marine Science and Technology,
2014 (June), Vol. 19, No. 2, pp. 228–244.
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72. He, G-H. and Kashiwagi, M. : Radiation-problem Solutions Using a Time-domain Iterative
HOBEM, International Journal of Offshore and Polar Engineering, 2014 (June), Vol. 24, No. 2,
pp. 81–89.

73. Tasrief, M. and Kashiwagi, M. : Development of Practical Integrated Optimization Method for
Ship Geometry with High Performance in Waves, Journal of Japan Society of Naval Architects
and Ocean Engineers, 2014 (June), Vol. 19, pp. 89–100.

74. Sakai, K., Kashiwagi, M. and Takaramoto, R. : Wave-energy Absorption by a Rotating Electric-
power Generator Set inside an Asymmetric Floating Body, Journal of Japan Society of Naval
Architects and Ocean Engineers, 2014 (June), Vol. 19, pp. 205–211.

75. Takaramoto, R., Kashiwagi, M. and Sakai, K. : Wave Energy Absorption in Irregular Waves by
a Floating Body Equipped with Interior Rotating Electric-Power Generator, Journal of Ocean
and Wind Energy, 2014 (August), Vol. 1, No. 3, pp. 129–134.

76. Iida, T., Kashiwagi, M. and He, G-H. : Numerical Confirmation of Cloaking Phenomenon on an
Array of Floating Bodies and Reduction of Wave Drift Force, International Journal of Offshore
and Polar Engineering, 2014 (December), Vol. 24, No. 4, pp. 241–246.

77. Iida, T., Kashiwagi, M. and Miki, M. : Wave Pattern in Cloaking Phenomenon around a Body
Surrounded by Multiple Vertical Circular Cylinders, International Journal of Offshore and
Polar Engineering, 2016 (March), Vol. 26, No. 1, pp. 13–19.

78. Liu, Y., Hu, C-H., Sueyoshi, M., Iwashita, H. and Kashiwagi, M. : Motion Response Prediction
by Hybrid Panel-Stick Models for a Semi-Submersible with Bracings, Journal of Marine Science
and Technology, 2016 (December), Vol. 21, No. 4, pp. 742–757.

79. Iwashita, H., Kashiwagi, M., Ito, Y. and Seki, Y. : Calculations of Ship Seakeeping in Low-
Speed /Low-Frequency Range by Frequency-Domain Rankine Panel Methods (in Japanese),
Journal of the Japan Society of Naval Architects and Ocean Engineers, 2016 (December)，
Vol. 24, pp. 129–146.

80. Kashiwagi, M. : Hydrodynamic Interactions of Multiple Bodies with Water Waves, Interna-
tional Journal of Offshore and Polar Engineering, 2017 (June)，Vol. 27, No. 2, pp. 113–122.

81. Sasa, K., Faltinsen, O.M., Lu L-F., Sasaki W., Prpic-Orsic, J., Kashiwagi, M. and Ikebuchi,
T. : Development and validation of speed loss for a blunt-shaped ship in two rough sea voyages
in the Southern Hemisphere, Ocean Engineering, 2017 (July)，Vol. 142, pp. 577–596.

82. Zhang, J. and Kashiwagi, M. : Application of ALE to Nonlinear Wave Radiation by a Non-
wall-sided Structure, Journal of Japan Society of Naval Architects and Ocean Engineers, 2017
(June), Vol. 25, pp. 109–121.

83. Iida, T. and Kashiwagi, M. : Water Wave Focusing Using Coordinate Transformation, Journal
of Energy and Power Engineering, 2017 (October), Vol. 11, No. 10, pp. 631–636.

84. Zhang, Z., He, G-H., Kashiwagi, M. and Wang, Z. : A quasi-cloaking phenomenon to reduce
the wave drift force on an array of adjacent floating bodies, Applied Ocean Research, 2018
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85. Iida, T. and Kashiwagi, M. : Small Water Channel Network for Designing Wave Fields
in Shallow Water, Journal of Fluid Mechanics, 2018 (April), Vol. 849, pp. 90–110,
http://dx.doi.org/10.1017/ jfm.2018.355
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86. Wicaksono, A. and Kashiwagi, M. : Wave-induced steady forces and yaw moment of a ship
advancing in oblique waves, Journal of Marine Science and Technology, 2018 (December),
Vol. 23, pp. 767–781, https://doi.org/10.1007/s00773-017-0510-6

87. Iida, T. and Kashiwagi, M. : Negative Refraction of Deep Water Waves through Wa-
ter Channel Network, Journal of Hydrodynamics, 2019 (January), Vol. 31, pp. 840–847,
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88. Loukogeorgaki, E. and Kashiwagi, M. : Minimization of Drift Force on a Floating Cylinder by
Optimizing the Flexural Rigidity of a Concentric Annular Plate, Applied Ocean Research, 2019
(April), Vol. 85, pp. 136–150, https://doi.org/10.1016/j.apor.2019.02.001

89. Kitagawa, Y. and Kashiwagi, M. : A Strip-Theory Method Including nx-Related Terms and
Its Effects on Propeller Inflow Velocity in Waves, Journal of Japan Society of Naval Architects
and Ocean Engineers, 2019 (June), Vol. 29, pp. 39–50.

90. Heo, K. and Kashiwagi, M. : A Numerical Study of Second-order Springing of an Elastic Ship
Using Higher-order Boundary Element Method (HOBEM), Applied Ocean Research, 2019 (De-
cember), Vol. 93, No. 101903 (pp. 1–16) https://doi.org/10.1016/j.apor.2019.101903

91. Liu, Y., Cong, P., Yoshida, S., Gou, Y. and Kashiwagi, M. : Enhanced Endo’s approach
for evaluating free-surface Green’s function with application to wave-structure interactions,
Ocean Engineering, 2020 (July)，Vol. 207, No. 107377 (pp. 1–18), https://doi.org/10.1016/
j.oceaneng.2020.107377

92. Chen, C., Sasa, K., Ohsawa, T., Kashiwagi, M., Prpic-Orsic, J. and Mizojiri, T. : Comparative
assessment of NCEP and ECMWF global datasets and numerical approaches on rough sea
generation for ship navigation based on numerical simulation and shipboard measurements,
Applied Ocean Research, 2020 (August)，Vol. 101, No. 102219.

93. Waskito, K.T., Kashiwagi, M., Iwashita, H. and Hinatsu, M. : Prediction of Nonlinear Vertical
Bending Moment Using Measured Pressure Distribution on Ship Hull, Applied Ocean Research,
2020 (August)，Vol. 101, No. 102261.

94. Yang, K-K., Kashiwagi, M. and Kim, Y. : Numerical Study on Ship-Generated Unsteady Waves
Based on a Cartesian-Grid Method, Journal of Hydrodynamics, 2020 (October)，Vol. 32, No. 5,
pp. 953–968.

95. Heo, K. and Kashiwagi, M. : Numerical study on the second-order hydrodynamic force and re-
sponse of an elastic body –in bichromatic waves, Ocean Engineering, 2020 (December), Vol. 217,
Paper No. 107870.

96. Kashiwagi, M. : Enhanced Unified Theory with Forward-Speed Effect Taken into Account in
the Inner Free-Surface Condition, Journal of Ship Research, 2020 (December), Paper Num-
ber: SNAME-JSR-04200028, https://doi.org/10.5957/JOSR.04200028

97. Yang, K-K., Kim, B-S., Kim, Y., Kashiwagi, M. and Iwashita, H. : Numerical Study on Un-
steady Pressure Distribution on Bulk Carrier in Head Waves with Forward Speed, Processes
(Open Access Journal) by MDPI, 2021 (January), https://doi.org/10.3390/pr9010171

98. Hong, Y., Heo, K. and Kashiwagi, M. : Hydroelastic Analysis of a Ship with Forward Speed Us-
ing Orthogonal Polynomials as Mode Functions of Timoshenko Beam, Applied Ocean Research
(submitted)

99. Zhang, J., Duan, W., Kashiwagi, M. and Ma, S. : A short note on computation of nonlin-
ear wave-structure interaction without solving acceleration potential, Applied Ocean Research
(submitted)
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1. Koterayama, W., Kyozuka, Y., Nakamura, M., Ohkusu, M. and Kashiwagi, M. : Motions
of Depth Controllable Towed Vehicle, Proc. of 7th International Symposium on Offshore
Mechanics and Arctic Eng., 1988 (February), Vol. 1, pp. 423–430.

2. Kashiwagi, M. and Ohkusu, M. : Radiation Problem of a Two-Dimensional Surface-Piercing
Body With Forward Speed, Proc. of 3rd International Workshop on Water Waves and Floating
Bodies (Woods Hole, USA), 1988 (April), pp. 91–95.

3. Ohkusu, M., Kashiwagi, M. and Varyani, K. : Theoretical Prediction of Wave Forces on Off-
shore Structure in Current and Waves, Proc. of Techno-Ocean ’88 International Symposium
(Kobe), 1988 (November), Vol. 2, pp.214–222.

4. Kashiwagi, M. : Theoretical Prediction of Tank-Wall Effects on Hydrodynamic Forces Acting
on an Oscillating and Translating Slender Ship, Proc. of 4th International Workshop on Water
Waves and Floating Bodies (Bergen, Norway), 1989 (May), pp. 105–109.

5. Kashiwagi, M. and Ohkusu, M. : Side-Wall Effects on Hydrodynamic Forces Acting on a Ship
with Forward and Oscillatory Motions, Proc. of 5th International Conference on Numerical
Ship Hydrodynamics (Hiroshima), 1989 (September), pp. 499–511.

6. Kashiwagi, M. : Radiation and Diffraction Forces Acting on an Offshore-Structure Model in a
Towing Tank, Proc. of 1st Pacific/Asia Offshore Mechanics Symposium (Seoul, Korea), 1990
(June), Vol. 2, pp. 95–102.

7. Koterayama,W., Nakamura, M., Kyozuka, Y., Kashiwagi, M. and Ohkusu, M. : Depth and
Roll Controllable Towed Vehicle ”DRAKE” for Ocean Measurements, Proc. of 1st Pacific/Asia
Offshore Mechanics Symposium (Seoul), 1990 (June), pp. 257–264.

8. Koterayama, W., Kaneko, A., Kashiwagi, M. and Nakamura, M. : A New Ocean Measurement
System Using ADCP on a Towed Vehicle, Proc. of 4th Pacific Congress on Marine Science
and Technology (Tokyo), 1990 (July), pp. 325–332.

9. Kashiwagi, M. and Ohkusu, M. : Second-Order Steady Force and Yaw Moment on a Ship
Advancing in Waves, Proc. of 6th International Workshop on Water Waves and Floating
Bodies (Woods Hole, USA), 1991 (April), pp. 109–113.

10. Kashiwagi, M. and Ohkusu, M. : Forward-Speed Effects on Hydrodynamic Interactions be-
tween Twin Hulls of a Catamaran in Waves, Proc. of 8th International Workshop on Water
Waves and Floating Bodies (Newfoundland, Canada), 1993 (May), pp. 49–52.

11. Kashiwagi, M. and Bessho, M. : A New Flow Model for a 2-D Shallow-Draft Ship Advancing
at High Speed in Waves, Proc. of 2nd Japan-Korea Joint Workshop on Ship and Marine
Hydrodynamics (Osaka), 1993 (June), pp. 45–52.

12. Kashiwagi, M. : A New Development in the Theory for 3-D Unsteady Problem of a Ship Ad-
vancing in Waves, Proc. of 2nd Symposium on Nonlinear and Free-Surface Flows (Hiroshima),
1993 (November), pp. 23–27.

13. Kashiwagi, M. : Heave and Pitch Motions of a Catamaran Advancing in Waves, Proc. of 2nd
International Conference on Fast Sea Transportation (Yokohama), 1993 (December), pp. 643–
655.

14. Kashiwagi, M. : A New Green-Function Method for the 3-D Unsteady Problem of a Ship with
Forward Speed, Proc. of 9th International Workshop on Water Waves and Floating Bodies
(Oita, Japan), 1994 (April), pp. 99–104.
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15. Kashiwagi, M. : A New Forward-Speed Slender-Ship Theory Incorporating 3-D Interactions
among Transverse Sections, Proc. of 3rd Symposium on Nonlinear and Free-Surface Flows
(Hiroshima), 1994 (December), pp. 27–31.

16. Kashiwagi, M. : A New Slender-Ship Theory with Arbitrary Forward Speed and Oscillation
Frequency, Proc. of 10th International Workshop on Water Waves and Floating Bodies (Ox-
ford, UK), 1995 (April), pp. 109–114.

17. Kashiwagi, M. : Time-Domain Full-Nonlinear Wave Radiation by a 2-D Floating Body, Proc.
of 4th Symposium on Nonlinear and Free-Surface Flows (Hiroshima), 1995 (October), pp. 17–
20.

18. Kashiwagi, M. : A Precise Calculation Method for Hydroelastic Behaviors of Very Large Float-
ing Structures, Proc. of 11th International Workshop on Water Waves and Floating Bodies
(Hamburg, Germany), 1996 (March), pp. 99–103.

19. Kashiwagi, M. : A Calculation Method of Hydrodynamic Forces on a Shallow-Draft and Very
Large Floating Structure, Proc. of Techno-Ocean ’96 International Conference (Kobe), 1996
(October), pp. 627–632.

20. Kashiwagi, M. : A B-Spline Galerkin Method for Computing Hydroelastic Behaviors of a
Very Large Floating Structure, International Workshop on Very Large Floating Structures
(in Yokosuka), 1996 (November), pp. 149–156.

21. Kashiwagi, M. : Time-Domain Full-Nonlinear Computations of an Oscillating 2-D Floating
Body, 2nd International Conference on Hydrodynamics (ICHD-96), (in Hong Kong), 1996
(December), pp. 177–182.

22. Kashiwagi, M. and Furukawa, C. : A Mode-Expansion Method for Predicting Hydroelastic
Behavior of a Shallow Draft VLFS, International Conference on Offshore Mechanics and
Arctic Engineering (in Yokohama), 1997 (April), Vol. 6, pp. 179–186.

23. Kashiwagi, M. : A B-Spline Galerkin Scheme for Computing Wave Forces on a Floating Very
Large Elastic Plate, Proc. of the 7th International Offshore and Polar Engineering Conference
(Honolulu), 1997 (May), Vol. 1, pp. 229–236.

24. Kashiwagi, M. : A Full-Nonlinear Simulation Method for Motions of a Floating Body in Waves,
Proc. of 5th Symposium on Nonlinear and Free-Surface Flows (Hiroshima), 1997 (October),
pp. 49–52.

25. Kashiwagi, M. : A New Direct Method for Calculating Hydroelastic Deflection of a Very
Large Floating Structure in Waves, Proc. of 13th International Workshop on Water Waves
and Floating Bodies (Alphen aan den Rijn, The Netherlands), 1998 (March), pp. 63–66.

26. Kashiwagi, M. : A Direct Method versus a Mode-Expansion Method for Calculating Hy-
droelastic Response of a VLFS in Waves, Proc. of the 8th International Offshore and Polar
Engineering Conference (Montreal), 1998 (May), Vol. 1, pp. 215–222.

27. Kashiwagi, M. : A New Solution Method for Hydroelastic Problems of a Very Large Floating
Structure in Waves, Proc. of 17th International Conf. on Offshore Mechanics and Arctic Eng.
(Lisbon, Portugal), 1998 (July), Paper No. OMAE98-4332 (CD-ROM).

28. Kashiwagi, M. : Nonlinear Simulations of Wave-Induced Motions of a Floating Body by Means
of MEL Method, Proc. of 3rd International Conference on Hydrodynamics (Seoul, Korea),
1998 (October), pp. 185–190.
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29. Kashiwagi, M. : Nonlinear Motions of a Floating Body in Time Domain, Proc. of 6th Sympo-
sium on Nonlinear and Free-Surface Flows (Hiroshima), 1998 (November), pp. 43–47.

30. Kashiwagi, M. : Hydrodynamic Interactions among a Great Number of Columns Supporting
a Very Large Flexible Structure, Proc. of 2nd International Conference on Hydroelasticity in
Marine Technology (Fukuoka), 1998 (December), pp. 165–176.

31. Mikami, T., Kobayashi, M., Shimada, K., Miyajima, S., Kashiwagi, M. and Ohkusu, M. : The
Response of VLFS with Anisotropic Rigidity in Waves, Proc. of 2nd International Conference
on Hydroelasticity in Marine Technology (Fukuoka), 1998 (December), pp. 247–254.

32. Kashiwagi, M. : A Hierarchical Interaction Theory for Wave Forces on a Great Number of
Buoyancy Bodies, Proc. of 14th International Workshop on Water Waves and Floating Bodies
(Port Huron, USA), 1999 (April), pp. 68–71.

33. Kashiwagi, M. : Research on Hydroelastic Responses of VLFS: Recent Progress and Future
Work, Proc. of 9th International Offshore and Polar Engineering Conference (Brest, France),
1999 (May), Vol. 1, pp. 17–26.

34. Kashiwagi, M., Mizokami, S. and Yasukawa, H. : Application of the Enhanced Unified Theory
to Seakeeping Calculations of Actual Ships, Proc. of 4th Japan-Korea Joint Workshop on
Ship & Marine Hydrodynamics (Fukuoka), 1999 (July), pp. 59–66.

35. Kashiwagi, M. : A Time-Domain Green Function Method for Transient Problems of a
Pontoon-Type VLFS, Proc. of 3rd International Workshop on Very Large Floating Struc-
tures (VLFS’99) (Honolulu, USA), 1999 (September), Vol. 1, pp. 97–104.

36. Mizokami, S. and Kashiwagi, M. : Wave Pressure Calculation of a VLCC by Enhanced Unified
Theory, Proc. of 7th Symposium on Nonlinear and Free-Surface Flows (Hiroshima), 1999
(October), pp. 33–36.

37. Kashiwagi, M. : Wave Interactions with a Multitude of Floating Cylinders, Proc. of 15th Inter-
national Workshop on Water Waves and Floating Bodies (Caesarea, Israel), 2000 (February),
pp. 99–102.

38. Kashiwagi, M. : Wave Drift Force and Moment on a VLFS Supported by a Great Number of
Floating Columns, Proc. of the 10th International Offshore and Polar Engineering Conference
(Seattle), 2000 (May), Vol. 1, pp. 49–56.

39. Kashiwagi, M. : Transient Elastic Motions of a Pontoon-Type Very Large Floating Struc-
ture, Proc. of 4th International Conference on Hydrodynamics: ICHD2000 (Yokohama), 2000
(September), Vol. 1, pp. 211–216.

40. Kashiwagi, M., Mizokami, S., Yasukawa, H. and Fukushima, Y. : Prediction of Wave Pressure
and Loads on Actual Ships by the Enhanced Unified Theory, Proc. of 23rd Symposium on
Naval Hydrodynamics (Val de Reuil, France), 2000 (September), Tuesday Sessions, pp. 95–
109.

41. Kashiwagi, M. : The State of the Art on Slender-Ship Theories of Seakeeping, Proc. of 4th
Osaka Colloquium on Seakeeping Performance of Ships (Osaka), 2000 (October), pp. 11–25.

42. Kashiwagi, M. : A Near-Field Method for Calculating the Wave Drift Force on a Column-
Supported Large Floating Structure, Proc. of Techno-Ocean 2000 International Symposium
(Kobe), 2000 (November), Vol. 2, pp. 539–542.
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43. Kashiwagi, M. : Second-Order Steady Forces on Multiple Cylinders in a Rectangular Pe-
riodic Array, Proc. of 16th International Workshop on Water Waves and Floating Bodies
(Hiroshima), 2001 (April), pp. 69–72.

44. Kashiwagi, M. : Wave-Induced Local Steady Forces on a Column-Supported Very Large Float-
ing Structure, Proc. of 11th International Offshore and Polar Engineering Conference (Sta-
vanger, Norway), 2001 (June), Vol. 1, pp. 264–271.

45. Kashiwagi, M. : A New Flow Model of a Shallow-Draft Ship Oscillating in Waves at For-
ward Speed, Proc. of 22nd International Conference on Hydrodynamics and Aerodynamics in
Marine Engineering (Varna, Bulgaria), 2001 (October), pp. 185–194.

46. Kashiwagi, M. : First- and Second-Order Water Waves Around an Array of Floating Verti-
cal Cylinders, Proc. of 17th International Workshop on Water Waves and Floating Bodies
(Cambridge, UK), 2002 (April), pp. 73–76.

47. Kashiwagi, M. : Spatial Distribution of the Waves among a Great Number of Cylinders at Near
Trapped-Mode Frequency, Proc. of 10th Congress of the International Maritime Association
of the Mediterranean (Crete, Greece), 2002 (May), CD-ROM.

48. Kashiwagi, M. and Ohwatari, Y. : Spatial Distribution of the Wave Around Multiple Floating
Bodies, Proc. of 12th International Offshore and Polar Engineering Conference (Kitakyushu),
2002 (May), Vol. 3, pp. 479–486.

49. Kashiwagi, M. : A Flow Model for a Displacement-Type Fast Ship with Shallow Draft in
Regular Waves, Proc. of 24th International Symposium on Naval Hydrodynamics (Fukuoka),
2002 (July), Vol. 2, pp. 181–191.

50. Momoki, T.，Kashiwagi, M. and Hu, C-H. : CFD Simulations of Nonlinear Waves and Inter-
actions with a Structure, Proc. of Techno-Ocean 2002 International Conference (Kobe), 2002
(November), CD-ROM (Paper No. T-H-2).

51. Hu, C-H. and Kashiwagi, M. : 2-D Numerical Simulation of Extreme Wave-Body Interactions,
Proc. of 8th Symposium on Nonlinear and Free-Surface Flows (Hiroshima), 2002 (December),
pp. 1–4.

52. Kashiwagi, M. and Higashimachi, N. : Numerical Simulations of Transient Responses of VLFS
during Landing and Take-off of an Airplane, Proc. of 4th International Workshop on Very
Large Floating Structure (Tokyo), 2003 (January), pp. 75–83.

53. Hu, C-H. and Kashiwagi, M. : A CIP Based Numerical Simulation Method for Extreme Wave-
Body Interactions, Proc. of 17th International Workshop on Water Waves and Floating Bodies
(Le Croisic, France), 2003 (April), pp. 81–84.

54. Hu, C-H., Kashiwagi, M. and Momoki, T. : Numerical Simulation of Non-Linear Free Surface
Wave Generation by CIP Method and Its Applications, Proc. of 13th International Offshore
and Polar Engineering Conference (Honolulu, USA), 2003 (May), Vol. 3, pp. 294–299.

55. Kashiwagi, M. and Higashimachi, N. : Transient Responses of a VLFS during Landing and
Take-off of an Airplane, Proc. of 3rd International Conference on Hydroelasticity in Marine
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pp. 65–68.

168. Yasuda, E., Iwashita, H. and Kashiwagi, M. : Improvement of Rankine Panel Method for Sea-
keeping Prediction of a Ship in Low Frequency Region, Proc. of 35th International Conference
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169. Miki, M. Iida, T., Kashiwagi, M. and Asaumi, T. : Optimization of Motions of Surrounding
Multiple Cylinders to Cloak a Central Body Oscillating in Regular Waves, Proc. of 26th
International Offshore and Polar Engineering Conference (Rhodes, Greece), 2016 (June)，
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171. Wang X. and Kashiwagi, M. : A Practical Method for Ship Motions Prediction in Large Waves,
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181. Iida, T. and Kashiwagi, M. : Backward Waves through Array of Rectangular Columns, Proc.
of 33rd International Workshop on Water Waves and Floating Bodies (Guidel-Plages, France),
2018 (April)，pp. 81–84.
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190. Miura, S. and Kashiwagi, M. : Unsteady Pressure Distribution on Ship-Hull Surface Measured
by FBG Pressure Sensors and Computed by Rankine Panel Method, Proc. of 8th PAAMES
and AMEC 2018 (Busan, Korea), 2018 (October), pp. 441–447.

191. Umazume, K. and Kashiwagi, M. : Capture Width and Directivity of Maximum Wave Energy
Extracted by an Array of Vertical Cylinders, Proc. of 8th PAAMES and AMEC 2018 (Busan,
Korea), 2018 (October), pp. 488–493.

192. Kashiwagi, M., Iwashita, H. Miura, S. and Hinatsu, M. : Study on Added Resistance with
Measured Unsteady Pressure Distribution on Ship-hull Surface, Proc. of 34th International
Workshop on Water Waves and Floating Bodies (Newcastle, Australia), 2019 (April)，pp. 81–
84.
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35. Hayashi, T. and Kashiwagi, M. : Reflection and Transmission Waves by an Asymmetric Body
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tion Methods for Body-Oscillation Problems (in charge of Chapters 1, 2, 4, 5, 6, 7), Edited by
Ocean Engineering Committee of Japan Society of Naval Architects, Published by Seizando-
shoten Co., Ltd. (ISBN: 4-425-71321-4), 2003 (April).
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